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PREFACE TO THE
SECOND EDITION

The second edition of this text has been ‘‘on the drawing board’’ for quite some time.
Since the first edition was published, in 1995, the technology of fuzzy set theory and
its application to systems, using fuzzy logic, has moved rapidly. Developments in other
theories such as possibility theory and evidence theory (both being elements of a larger
collection of methods under the rubric ‘‘generalized information theories’’) have shed more
light on the real virtues of fuzzy logic applications, and some developments in machine
computation have made certain features of fuzzy logic much more useful than in the past. In
fact, it would be fair to state that some developments in fuzzy systems are quite competitive
with other, linear algebra-based methods in terms of computational speed and associated
accuracy. To wait eight years to publish this second edition has been, perhaps, too long.
On the other hand, the technology continues to move so fast that one is often caught in
that uncomfortable middle-ground not wanting to miss another important development that
could be included in the book. The pressures of academia and the realities of life seem to
intervene at the most unexpected times, but now seems the best time for this second edition.

There are sections of the first text that have been eliminated in the second edition;
I shall have more to say on this below. And there are many new sections – which are
included in the second edition – to try to capture some of the newer developments; the
key word here is ‘‘some’’ as it would be completely impossible to summarize or illustrate
even a small fraction of the new developments of the last eight years. As with any book
containing technical material, the first edition contained errata that have been corrected in
this second edition. A new aid to students, appearing in this edition, is a section at the
end of the book which contains solutions to selected end-of-chapter problems. As with the
first edition, a solutions manual for all problems in the second edition can be obtained by
qualified instructors by visiting http://www.wileyeurope.com/go/fuzzylogic.

One of the most important explanations I shall describe in this preface has to do
with what I call the misuse of definitional terms in the past literature on uncertainty
representational theories; in this edition I use these terms very cautiously. Principal among
these terms is the word ‘‘coherence’’ and the ubiquitous use of the word ‘‘law.’’ To begin
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with the latter, the axioms of a probability theory referred to as the excluded middle will
hereinafter only be referred to as axioms – never as laws. The operations due to De Morgan
also will not be referred to as a law, but as a principle . . . since this principle does apply to
some (not all) uncertainty theories (e.g., probability and fuzzy). The excluded middle axiom
(and its dual, the axiom of contradiction) are not laws; Newton produced laws, Kepler
produced laws, Darcy, Boyle, Ohm, Kirchhoff, Bernoulli, and many others too numerous to
list here all developed laws. Laws are mathematical expressions describing the immutable
realizations of nature. It is perhaps a cunning, but now exposed, illusion first coined by
probabilists in the last two centuries to give their established theory more legitimacy by
labeling their axioms as laws. Definitions, theorems, and axioms collectively can describe
a certain axiomatic foundation describing a particular kind of theory, and nothing more; in
this case the excluded middle and other axioms (see Appendix A) can be used to describe
a probability theory. Hence, if a fuzzy set theory does not happen to be constrained by an
excluded middle axiom, it is not a violation of some immutable law of nature like Newton’s
laws; fuzzy set theory simply does not happen to have an axiom of the excluded middle – it
does not need, nor is constrained by, such an axiom. In fact, as early as 1905 the famous
mathematician L. E. J. Brouwer defined this excluded middle axiom as a principle in his
writings; he showed that the principle of the excluded middle was inappropriate in some
logics, including his own which he termed intuitionism. Brouwer observed that Aristotelian
logic is only a part of mathematics, the special kind of mathematical thought obtained if
one restricts oneself to relations of the whole and part. Brouwer had to specify in which
sense the principles of logic could be considered ‘‘laws’’ because within his intuitionistic
framework thought did not follow any rules, and, hence, ‘‘law’’ could no longer mean
‘‘rule’’ (see the detailed discussion on this in the summary of Chapter 5). In this regard, I
shall take on the cause advocated by Brouwer almost a century ago.

In addition, the term coherence does not connote a law. It may have been a clever term
used by the probabilists to describe another of their axioms (in this case a permutation of
the additivity axiom) but such cleverness is now an exposed prestidigitation of the English
language. Such arguments of the past like ‘‘no uncertainty theory that is non-coherent
can ever be considered a serious theory for describing uncertainty’’ now carry literally no
weight when one considers that the term coherence is a label and not an adjective describing
the value of an axiomatic structure. I suppose that fuzzy advocates could relabel their
axiom of strong-truth functionality to the ‘‘law of practicability’’ and then claim that any
other axiomatic structure that does not use such an axiom is inadequate, to wit ‘‘a theory
that violates the practicability axiom is a violation of the law of utility,’’ but we shall not
resort to this hyperbole. With this edition, we will speak without the need for linguistic
slight-of-hand. The combination of a fuzzy set theory and a probability theory is a very
powerful modeling paradigm. This book is dedicated to users who are more interested in
solving problems than in dealing with debates using misleading jargon.

To end my discussion on misleading definitional terms in the literature, I have made
two subtle changes in the material in Chapter 15. First, following prof. Klir’s lead of a
couple years ago, we no longer refer to ‘‘fuzzy measure theory’’ but instead describe it now
as ‘‘monotone measure theory’’. The former phrase still causes confusion when referring
to fuzzy set theory; hopefully this will end that confusion. And, in Chapter 15 in describing
the monotone measure, m, I have changed the phrase describing this measure from a ‘‘basic
probability assignment (bpa)’’ to a ‘‘basic evidence assignment (bea)’’. Here we attempt to
avoid confusion with any of the terms typically used in probability theory.
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As with the first edition, this second edition is designed for the professional and
academic audience interested primarily in applications of fuzzy logic in engineering and
technology. Always I have found that the majority of students and practicing professionals
are interested in the applications of fuzzy logic to their particular fields. Hence, the book is
written for an audience primarily at the senior undergraduate and first-year graduate levels.
With numerous examples throughout the text, this book is written to assist the learning
process of a broad cross section of technical disciplines. The book is primarily focused on
applications, but each of the book’s chapters begins with the rudimentary structure of the
underlying mathematics required for a fundamental understanding of the methods illustrated.

Chapter 1∗ introduces the basic concept of fuzziness and distinguishes fuzzy uncer-
tainty from other forms of uncertainty. It also introduces the fundamental idea of set
membership, thereby laying the foundation for all material that follows, and presents
membership functions as the format used for expressing set membership. The chapter sum-
marizes an historical review of uncertainty theories. The chapter reviews the idea of ‘‘sets
as points’’ in an n-dimensional Euclidean space as a graphical analog in understanding the
relationship between classical (crisp) and fuzzy sets.

Chapter 2 reviews classical set theory and develops the basic ideas of fuzzy sets.
Operations, axioms, and properties of fuzzy sets are introduced by way of comparisons with
the same entities for classical sets. Various normative measures to model fuzzy intersections
(t-norms) and fuzzy unions (t-conorms) are summarized.

Chapter 3 develops the ideas of fuzzy relations as a means of mapping fuzziness
from one universe to another. Various forms of the composition operation for relations
are presented. Again, the epistemological approach in Chapter 3 uses comparisons with
classical relations in developing and illustrating fuzzy relations. This chapter also illustrates
methods to determine the numerical values contained within a specific class of fuzzy
relations, called similarity relations.

Chapter 4 discusses the fuzzification of scalar variables and the defuzzification of
membership functions. The chapter introduces the basic features of a membership function
and it discusses, very briefly, the notion of interval-valued fuzzy sets. Defuzzification is
necessary in dealing with the ubiquitous crisp (binary) world around us. The chapter details
defuzzification of fuzzy sets and fuzzy relations into crisp sets and crisp relations, respec-
tively, using lambda-cuts, and it describes a variety of methods to defuzzify membership
functions into scalar values. Examples of all methods are given in the chapter.

Chapter 5 introduces the precepts of fuzzy logic, again through a review of the relevant
features of classical, or a propositional, logic. Various logical connectives and operations
are illustrated. There is a thorough discussion of the various forms of the implication
operation and the composition operation provided in this chapter. Three different inference
methods, popular in the literature, are illustrated. Approximate reasoning, or reasoning
under imprecise (fuzzy) information, is also introduced in this chapter. Basic IF–THEN
rule structures are introduced and three graphical methods for inferencing are presented.

Chapter 6 provides several classical methods of developing membership functions,
including methods that make use of the technologies of neural networks, genetic algorithms,
and inductive reasoning.

Chapter 7 is a new chapter which presents six new automated methods which can be
used to generate rules and membership functions from observed or measured input–output

∗ Includes sections taken from Ross, T., Booker, J., and Parkinson, W., 2002, Fuzzy Logic and Probability
Applications: Bridging the Gap, reproduced by the permission of Society for Industrial and Applied Mathematics,
Philadelphia, PA.
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data. The procedures are essentially computational methods of learning. Examples are pro-
vided to illustrate each method. Many of the problems at the end of the chapter will require
software; this software can be downloaded from: www.wileyeurope.com/go/fuzzylogic.

Beginning the second category of chapters in the book highlighting applications,
Chapter 8 continues with the rule-based format to introduce fuzzy nonlinear simulation
and complex system modeling. In this context, nonlinear functions are seen as mappings
of information ‘‘patches’’ from the input space to information ‘‘patches’’ of the output
space, instead of the ‘‘point-to-point’’ idea taught in classical engineering courses. Fidelity
of the simulation is illustrated with standard functions, but the power of the idea can be
seen in systems too complex for an algorithmic description. This chapter formalizes fuzzy
associative memories (FAMs) as generalized mappings.

Chapter 9 is a new chapter covering the area of rule-base reduction. Fuzzy systems
are becoming popular, but they can also present computational challenges as the rule-bases,
especially those derived from automated methods, can become large in an exponential
sense as the number of inputs and their dimensionality grows. This chapter summarizes two
relatively new reduction techniques and provides examples of each.

Chapter 10 develops fuzzy decision making by introducing some simple concepts in
ordering, preference and consensus, and multiobjective decisions. It introduces the powerful
concept of Bayesian decision methods by fuzzifying this classic probabilistic approach.
This chapter illustrates the power of combining fuzzy set theory with probability to handle
random and nonrandom uncertainty in the decision-making process.

Chapter 11 discusses a few fuzzy classification methods by contrasting them with
classical methods of classification, and develops a simple metric to assess the goodness
of the classification, or misclassification. This chapter also summarizes classification using
equivalence relations. The algebra of fuzzy vectors is summarized here. Classification
is used as a springboard to introduce fuzzy pattern recognition. A single-feature and a
multiple-feature procedure are summarized. Some simple ideas in image processing and
syntactic pattern recognition are also illustrated.

Chapter 12 summarizes some typical operations in fuzzy arithmetic and fuzzy num-
bers. The extension of fuzziness to nonfuzzy mathematical forms using Zadeh’s extension
principle and several approximate methods to implement this principle are illustrated.

Chapter 13 introduces the field of fuzzy control systems. A brief review of control
system design and control surfaces is provided. Some example problems in control are
provided. Two new sections have been added to this book: fuzzy engineering process
control, and fuzzy statistical process control. Examples of these are provided in the chapter.

Chapter 14 briefly addresses some important ideas embodied in fuzzy optimization,
fuzzy cognitive mapping, fuzzy system identification, and fuzzy regression.

Finally, Chapter 15 enlarges the reader’s understanding of the relationship between
fuzzy uncertainty and random uncertainty (and other general forms of uncertainty, for
that matter) by illustrating the foundations of monotone measures. The chapter discusses
monotone measures in the context of evidence theory and probability theory. Because this
chapter is an expansion of ideas relating to other disciplines (Dempster–Shafer evidence
theory and probability theory), it can be omitted without impact on the material preceding it.

Appendix A of the book shows the axiomatic similarity of fuzzy set theory and
probability theory and Appendix B provides answers to selected problems from each chapter.

Most of the text can be covered in a one-semester course at the senior undergraduate
level. In fact, most science disciplines and virtually all math and engineering disciplines



PREFACE TO THE SECOND EDITION xix

contain the basic ideas of set theory, mathematics, and deductive logic, which form the
only knowledge necessary for a complete understanding of the text. For an introductory
class, instructors may want to exclude some or all of the material covered in the last
section of Chapter 6 (neural networks, genetic algorithms, and inductive reasoning),
Chapter 7 (automated methods of generation), Chapter 9 on rule-base reduction methods,
and any of the final three chapters: Chapter 13 (fuzzy control), Chapter 14 (miscellaneous
fuzzy applications), and Chapter 15 on alternative measures of uncertainty. I consider the
applications in Chapter 8 on simulations, Chapter 10 on decision making, Chapter 11 on
classification, and Chapter 12 on fuzzy arithmetic to be important in the first course on this
subject. The other topics could be used either as introductory material for a graduate-level
course or for additional coverage for graduate students taking the undergraduate course for
graduate credit.

The book is organized a bit differently from the first edition. I have moved most of
the information for rule-based deductive systems closer to the front of the book, and have
moved fuzzy arithmetic toward the end of the book; the latter does not disturb the flow of the
book to get quickly into fuzzy systems development. A significant amount of new material
has been added in the area of automated methods of generating fuzzy systems (Chapter 7);
a new section has been added on additional methods of inference in Chapter 5; and a
new chapter has been added on the growing importance of rule-base reduction methods
(Chapter 9). Two new sections in fuzzy control have been added in Chapter 13. I have also
deleted materials that either did not prove useful in the pedagogy of fuzzy systems, or were
subjects of considerable depth which are introduced in other, more focused texts. Many of
the rather lengthy example problems from the first edition have been reduced for brevity. In
terms of organization, the first eight chapters of the book develop the foundational material
necessary to get students to a position where they can generate their own fuzzy systems.
The last seven chapters use the foundation material from the first eight chapters to present
specific applications.

The problems in this text are typically based on current and potential applications, case
studies, and education in intelligent and fuzzy systems in engineering and related technical
fields. The problems address the disciplines of computer science, electrical engineering,
manufacturing engineering, industrial engineering, chemical engineering, petroleum engi-
neering, mechanical engineering, civil engineering, environmental engineering, engineering
management, and a few related fields such as mathematics, medicine, operations research,
technology management, the hard and soft sciences, and some technical business issues.
The references cited in the chapters are listed toward the end of each chapter. These refer-
ences provide sufficient detail for those readers interested in learning more about particular
applications using fuzzy sets or fuzzy logic. The large number of problems provided in the
text at the end of each chapter allows instructors a sizable problem base to afford instruction
using this text on a multisemester or multiyear basis, without having to assign the same
problems term after term.

I was most fortunate this past year to have co-edited a text with Drs. Jane Booker
and Jerry Parkinson, entitled Fuzzy Logic and Probability Applications: Bridging the Gap,
published by the Society for Industrial and Applied Mathematics (SIAM), in which many
of my current thoughts on the matter of the differences between fuzzy logic and probability
theory were noted; some of this appears in Chapters 1 and 15 of this edition. Moreover, I
am also grateful to Prof. Kevin Passino whose text, Fuzzy Control, published by Prentice
Hall, illustrated some very recent developments in the automated generation of membership
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functions and rules in fuzzy systems. The algorithms discussed in his book, while being
developed by others earlier, are collected in one chapter in his book; some of these are
illustrated here in Chapter 7, on automated methods. The added value to Dr. Passino’s
material and methods is that I have expanded their explanation and have added some simple
numerical examples of these methods to aid first-time students in this field.

Again I wish to give credit either to some of the individuals who have shaped my
thinking about this subject since the first edition of 1995, or to others who by their simple
association with me have caused me to be more circumspect about the use of the material
contained in the book. In addition to the previously mentioned colleagues Jane Booker
and Jerry Parkinson, who both overwhelm me with their knowledge and enthusiasm, my
other colleagues at Los Alamos National Laboratory have shaped or altered my thinking
critically and positively: Scott Doebling, Ed Rodriquez, and John Birely for their steadfast
support over the years to investigate alternative uncertainty paradigms, Jason Pepin for his
useful statistical work in mechanics, Cliff Joslyn for his attention to detail in the axiomatic
structure of random sets, Brian Reardon for his critical questions of relevance, François
Hemez and Mark Anderson for their expertise in applying uncertainty theory to validation
methods, Kari Sentz for her humor and her perspective in linguistic uncertainty, Ron Smith
and Karen Hench for their collaborations in process control, and Steve Eisenhawer and
Terry Bott for their early and continuing applications of fuzzy logic in risk assessment.

Some of the newer sections of the second edition were first taught to a group of
faculty and students at the University of Calgary, Alberta, during my most recent sabbatical
leave. My host, Prof. Gopal Achari, was instrumental in giving me this exposure and
outreach to these individuals and I shall remain indebted to him. Among this group, faculty
members Drs. Brent Young, William Svrcek, and Tom Brown, and students Jeff Macisaac,
Rachel Mintz, and Rodolfo Tellez, all showed leadership and critical inquiry in adopting
many fuzzy skills into their own research programs. Discussions with Prof. Mihaela Ulieru,
already a fuzzy advocate, and her students proved useful. Finally, paper collaborations
with Ms. Sumita Fons, Messrs. Glen Hay and James Vanderlee all gave me a feeling of
accomplishment on my ‘‘mission to Canada.’’

Collaborations, discussions, or readings from Drs. Lotfi Zadeh, George Klir, and
Vladik Kreinovich over the past few years have enriched my understanding in this field
immeasurably. In particular, Dr. Klir’s book of 1995 (Fuzzy Sets and Fuzzy Logic) and
his writings in various journals collectively have helped me deepen my understanding of
some of the nuances in the mathematics of fuzzy logic; his book is referenced in many
places in this second edition. I wish to thank some of my recent graduate students who have
undertaken projects, MS theses, or PhD dissertations related to this field and whose hard
work for me and alongside me has given me a sense of pride in their own remarkable tenacity
and productive efforts: Drs. Sunil Donald and Jonathan Lucero and Mr. Greg Chavez, and
Mss. Terese Gabocy Anderson and Rhonda Young. There have been numerous students
over the past eight years who have contributed many example problems for updating the
text; unfortunately too numerous to mention in this brief preface. I want to thank them all
again for their contributions.

Four individuals need specific mention because they have contributed some sections
to this text. I would like to thank specifically Dr. Jerry Parkinson for his contributions to
Chapter 13 in the areas of chemical process control and fuzzy statistical process control,
Dr. Jonathan Lucero for his contributions in developing the material in Chapter 9 for
rule-reduction methods (which form the core of his PhD dissertation), Greg Chavez for his
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text preparation of many of the new, contributed problems in this text and of the material in
Chapter 7, and Dr. Sunil Donald for one new section in Chapter 15 on empirical methods
to generate possibility distributions.

I am most grateful for financial support over the past three years while I have generated
most of the background material in my own research for some of the newer material in the
book. I would like to thank the Los Alamos National Laboratory, Engineering and Science
Applications Division, the University of New Mexico, and the US–Canadian Fulbright
Foundation for their generous support during this period of time.

With so many texts covering specific niches of fuzzy logic it is not possible to
summarize all these important facets of fuzzy set theory and fuzzy logic in a single
textbook. The hundreds of edited works and tens of thousands of archival papers show
clearly that this is a rapidly growing technology, where new discoveries are being published
every month. It remains my fervent hope that this introductory textbook will assist students
and practising professionals to learn, to apply, and to be comfortable with fuzzy set theory
and fuzzy logic. I welcome comments from all readers to improve this textbook as a useful
guide for the community of engineers and technologists who will become knowledgeable
about the potential of fuzzy system tools for their use in solving the problems that challenge
us each day.

Timothy J. Ross
Santa Fe, New Mexico
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CHAPTER

1
INTRODUCTION

It is the mark of an instructed mind to rest satisfied with that degree of precision which the
nature of the subject admits, and not to seek exactness where only an approximation of the
truth is possible.

Aristotle, 384–322 BC

Ancient Greek philosopher

Precision is not truth.
Henri E. B. Matisse, 1869–1954

Impressionist painter

All traditional logic habitually assumes that precise symbols are being employed. It is therefore
not applicable to this terrestrial life but only to an imagined celestial existence.

Bertrand Russell, 1923
British philosopher and Nobel Laureate

We must exploit our tolerance for imprecision.

Lotfi Zadeh
Professor, Systems Engineering, UC Berkeley, 1973

The quotes above, all of them legendary, have a common thread. That thread represents
the relationship between precision and uncertainty. The more uncertainty in a problem, the
less precise we can be in our understanding of that problem. It is ironic that the oldest
quote, above, is due to the philosopher who is credited with the establishment of Western
logic – a binary logic that only admits the opposites of true and false, a logic which does
not admit degrees of truth in between these two extremes. In other words, Aristotelian logic
does not admit imprecision in truth. However, Aristotle’s quote is so appropriate today; it
is a quote that admits uncertainty. It is an admonishment that we should heed; we should
balance the precision we seek with the uncertainty that exists. Most engineering texts do
not address the uncertainty in the information, models, and solutions that are conveyed
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within the problems addressed therein. This text is dedicated to the characterization and
quantification of uncertainty within engineering problems such that an appropriate level of
precision can be expressed. When we ask ourselves why we should engage in this pursuit,
one reason should be obvious: achieving high levels of precision costs significantly in time
or money or both. Are we solving problems that require precision? The more complex a
system is, the more imprecise or inexact is the information that we have to characterize
that system. It seems, then, that precision and information and complexity are inextricably
related in the problems we pose for eventual solution. However, for most of the problems
that we face, the quote above due to Professor Zadeh suggests that we can do a better job
in accepting some level of imprecision.

It seems intuitive that we should balance the degree of precision in a problem with
the associated uncertainty in that problem. Hence, this book recognizes that uncertainty of
various forms permeates all scientific endeavors and it exists as an integral feature of all
abstractions, models, and solutions. It is the intent of this book to introduce methods to
handle one of these forms of uncertainty in our technical problems, the form we have come
to call fuzziness.

THE CASE FOR IMPRECISION

Our understanding of most physical processes is based largely on imprecise human
reasoning. This imprecision (when compared to the precise quantities required by computers)
is nonetheless a form of information that can be quite useful to humans. The ability to
embed such reasoning in hitherto intractable and complex problems is the criterion by which
the efficacy of fuzzy logic is judged. Undoubtedly this ability cannot solve problems that
require precision – problems such as shooting precision laser beams over tens of kilometers
in space; milling machine components to accuracies of parts per billion; or focusing a
microscopic electron beam on a specimen the size of a nanometer. The impact of fuzzy
logic in these areas might be years away, if ever. But not many human problems require
such precision – problems such as parking a car, backing up a trailer, navigating a car
among others on a freeway, washing clothes, controlling traffic at intersections, judging
beauty contestants, and a preliminary understanding of a complex system.

Requiring precision in engineering models and products translates to requiring high
cost and long lead times in production and development. For other than simple systems,
expense is proportional to precision: more precision entails higher cost. When considering
the use of fuzzy logic for a given problem, an engineer or scientist should ponder the
need for exploiting the tolerance for imprecision. Not only does high precision dictate
high costs but also it entails low tractability in a problem. Articles in the popular media
illustrate the need to exploit imprecision. Take the ‘‘traveling salesrep’’ problem, for
example. In this classic optimization problem a sales representative wants to minimize
total distance traveled by considering various itineraries and schedules between a series of
cities on a particular trip. For a small number of cities, the problem is a trivial exercise in
enumerating all the possibilities and choosing the shortest route. As the number of cities
continues to grow, the problem quickly approaches a combinatorial explosion impossible
to solve through an exhaustive search, even with a computer. For example, for 100 cities
there are 100 × 99 × 98 × 97 × · · · × 2 × 1, or about 10200, possible routes to consider!
No computers exist today that can solve this problem through a brute-force enumeration
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of all the possible routes. There are real, practical problems analogous to the traveling
salesrep problem. For example, such problems arise in the fabrication of circuit boards,
where precise lasers drill hundreds of thousands of holes in the board. Deciding in which
order to drill the holes (where the board moves under a stationary laser) so as to minimize
drilling time is a traveling salesrep problem [Kolata, 1991].

Thus, algorithms have been developed to solve the traveling salesrep problem in
an optimal sense; that is, the exact answer is not guaranteed but an optimum answer is
achievable – the optimality is measured as a percent accuracy, with 0% representing the
exact answer and accuracies larger than zero representing answers of lesser accuracy.
Suppose we consider a signal routing problem analogous to the traveling salesrep problem
where we want to find the optimum path (i.e., minimum travel time) between 100,000
nodes in a network to an accuracy within 1% of the exact solution; this requires significant
CPU time on a supercomputer. If we take the same problem and increase the precision
requirement a modest amount to an accuracy of 0.75%, the computing time approaches a
few months! Now suppose we can live with an accuracy of 3.5% (quite a bit more accurate
than most problems we deal with), and we want to consider an order-of-magnitude more
nodes in the network, say 1,000,000; the computing time for this problem is on the order
of several minutes [Kolata, 1991]. This remarkable reduction in cost (translating time to
dollars) is due solely to the acceptance of a lesser degree of precision in the optimum
solution. Can humans live with a little less precision? The answer to this question depends
on the situation, but for the vast majority of problems we deal with every day the answer is
a resounding yes.

AN HISTORICAL PERSPECTIVE

From an historical point of view the issue of uncertainty has not always been embraced
within the scientific community [Klir and Yuan, 1995]. In the traditional view of science,
uncertainty represents an undesirable state, a state that must be avoided at all costs. This
was the state of science until the late nineteenth century when physicists realized that
Newtonian mechanics did not address problems at the molecular level. Newer methods,
associated with statistical mechanics, were developed which recognized that statistical
averages could replace the specific manifestations of microscopic entities. These statistical
quantities, which summarized the activity of large numbers of microscopic entities, could
then be connected in a model with appropriate macroscopic variables [Klir and Yuan,
1995]. Now, the role of Newtonian mechanics and its underlying calculus which considered
no uncertainty was replaced with statistical mechanics which could be described by a
probability theory – a theory which could capture a form of uncertainty, the type generally
referred to as random uncertainty. After the development of statistical mechanics there
has been a gradual trend in science during the past century to consider the influence of
uncertainty on problems, and to do so in an attempt to make our models more robust, in
the sense that we achieve credible solutions and at the same time quantify the amount of
uncertainty.

Of course, the leading theory in quantifying uncertainty in scientific models from
the late nineteenth century until the late twentieth century had been probability theory.
However, the gradual evolution of the expression of uncertainty using probability theory
was challenged, first in 1937 by Max Black, with his studies in vagueness, then with the
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introduction of fuzzy sets by Lotfi Zadeh in 1965. Zadeh’s work [1965] had a profound
influence on the thinking about uncertainty because it challenged not only probability theory
as the sole representation for uncertainty, but the very foundations upon which probability
theory was based: classical binary (two-valued) logic [Klir and Yuan, 1995].

Probability theory dominated the mathematics of uncertainty for over five centuries.
Probability concepts date back to the 1500s, to the time of Cardano when gamblers
recognized the rules of probability in games of chance. The concepts were still very much
in the limelight in 1685, when the Bishop of Wells wrote a paper that discussed a problem
in determining the truth of statements made by two witnesses who were both known to be
unreliable to the extent that they only tell the truth with probabilities p1 and p2, respectively.
The Bishop’s answer to this was based on his assumption that the two witnesses were
independent sources of information [Lindley, 1987].

Probability theory was initially developed in the eighteenth century in such landmark
treatises as Jacob Bernoulli’s Ars Conjectandi (1713) and Abraham DeMoiver’s Doctrine of
Chances (1718, 2nd edition 1738). Later in that century a small number of articles appeared
in the periodical literature that would have a profound effect on the field. Most notable
of these were Thomas Bayes’s ‘‘An essay towards solving a problem in the doctrine of
chances’’ (1763) and Pierre Simon Laplace’s formulation of the axioms relating to games
of chance, ‘‘Memoire sur la probabilite des causes par les evenemens’’ (1774). Laplace,
only 25 years old at the time he began his work in 1772, wrote the first substantial article
in mathematical statistics prior to the nineteenth century. Despite the fact that Laplace,
at the same time, was heavily engaged in mathematical astronomy, his memoir was an
explosion of ideas that provided the roots for modern decision theory, Bayesian inference
with nuisance parameters (historians claim that Laplace did not know of Bayes’s earlier
work), and the asymptotic approximations of posterior distributions [Stigler, 1986].

By the time of Newton, physicists and mathematicians were formulating different
theories of probability. The most popular ones remaining today are the relative frequency
theory and the subjectivist or personalistic theory. The later development was initiated
by Thomas Bayes (1763), who articulated his very powerful theorem for the assessment
of subjective probabilities. The theorem specified that a human’s degree of belief could
be subjected to an objective, coherent, and measurable mathematical framework within
subjective probability theory. In the early days of the twentieth century Rescher developed
a formal framework for a conditional probability theory.

The twentieth century saw the first developments of alternatives to probability theory
and to classical Aristotelian logic as paradigms to address more kinds of uncertainty than
just the random kind. Jan Lukasiewicz developed a multivalued, discrete logic (circa 1930).
In the 1960’s Arthur Dempster developed a theory of evidence which, for the first time,
included an assessment of ignorance, or the absence of information. In 1965 Lotfi Zadeh
introduced his seminal idea in a continuous-valued logic that he called fuzzy set theory.
In the 1970s Glenn Shafer extended Dempster’s work to produce a complete theory of
evidence dealing with information from more than one source, and Lotfi Zadeh illustrated
a possibility theory resulting from special cases of fuzzy sets. Later in the 1980s other
investigators showed a strong relationship between evidence theory, probability theory,
and possibility theory with the use of what was called fuzzy measures [Klir and Wierman,
1996], and what is now being termed monotone measures.

Uncertainty can be thought of in an epistemological sense as being the inverse
of information. Information about a particular engineering or scientific problem may be
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incomplete, imprecise, fragmentary, unreliable, vague, contradictory, or deficient in some
other way [Klir and Yuan, 1995]. When we acquire more and more information about a
problem, we become less and less uncertain about its formulation and solution. Problems
that are characterized by very little information are said to be ill-posed, complex, or
not sufficiently known. These problems are imbued with a high degree of uncertainty.
Uncertainty can be manifested in many forms: it can be fuzzy (not sharp, unclear,
imprecise, approximate), it can be vague (not specific, amorphous), it can be ambiguous
(too many choices, contradictory), it can be of the form of ignorance (dissonant, not
knowing something), or it can be a form due to natural variability (conflicting, random,
chaotic, unpredictable). Many other linguistic labels have been applied to these various
forms, but for now these shall suffice. Zadeh [2002] posed some simple examples of these
forms in terms of a person’s statements about when they shall return to a current place
in time. The statement ‘‘I shall return soon’’ is vague, whereas the statement ‘‘I shall
return in a few minutes’’ is fuzzy; the former is not known to be associated with any unit
of time (seconds, hours, days), and the latter is associated with an uncertainty that is at
least known to be on the order of minutes. The phrase, ‘‘I shall return within 2 minutes
of 6pm’’ involves an uncertainty which has a quantifiable imprecision; probability theory
could address this form.

Vagueness can be used to describe certain kinds of uncertainty associated with
linguistic information or intuitive information. Examples of vague information are that the
data quality is ‘‘good,’’ or that the transparency of an optical element is ‘‘acceptable.’’
Moreover, in terms of semantics, even the terms vague and fuzzy cannot be generally
considered synonyms, as explained by Zadeh [1995]: ‘‘usually a vague proposition is fuzzy,
but the converse is not generally true.’’

Discussions about vagueness started with a famous work by the philosopher Max
Black. Black [1937] defined a vague proposition as a proposition where the possible states
(of the proposition) are not clearly defined with regard to inclusion. For example, consider
the proposition that a person is young. Since the term ‘‘young’’ has different interpretations
to different individuals, we cannot decisively determine the age(s) at which an individual
is young versus the age(s) at which an individual is not considered to be young. Thus,
the proposition is vaguely defined. Classical (binary) logic does not hold under these
circumstances, therefore we must establish a different method of interpretation.

Max Black, in writing his 1937 essay ‘‘Vagueness: An exercise in logical analysis’’
first cites remarks made by the ancient philosopher Plato about uncertainty in geometry,
then embellishes on the writings of Bertrand Russell (1923) who emphasized that ‘‘all
traditional logic habitually assumes that precise symbols are being employed.’’ With these
great thoughts as a prelude to his own arguments, he proceeded to produce his own,
now-famous quote:

It is a paradox, whose importance familiarity fails to diminish, that the most highly developed
and useful scientific theories are ostensibly expressed in terms of objects never encountered
in experience. The line traced by a draftsman, no matter how accurate, is seen beneath the
microscope as a kind of corrugated trench, far removed from the ideal line of pure geometry.
And the ‘‘point-planet’’ of astronomy, the ‘‘perfect gas’’ of thermodynamics, or the ‘‘pure-
species’’ of genetics are equally remote from exact realization. Indeed the unintelligibility at
the atomic or subatomic level of the notion of a rigidly demarcated boundary shows that such
objects not merely are not but could not be encountered. While the mathematician constructs
a theory in terms of ‘‘perfect’’ objects, the experimental scientist observes objects of which
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the properties demanded by theory are and can, in the very nature of measurement, be only
approximately true.

More recently, in support of Black’s work, Quine [1981] states:

Diminish a table, conceptually, molecule by molecule: when is a table not a table? No
stipulations will avail us here, however arbitrary. If the term ‘table’ is to be reconciled with
bivalence, we must posit an exact demarcation, exact to the last molecule, even though we
cannot specify it. We must hold that there are physical objects, coincident except for one
molecule, such that one is a table and the other is not.

Bruno de Finetti [1974], publishing in his landmark book Theory of Probability, gets
his readers’ attention quickly by proclaiming, ‘‘Probability does not exist; it is a subjective
description of a person’s uncertainty. We should be normative about uncertainty and not
descriptive.’’ He further emphasizes that the frequentist view of probability (objectivist
view) ‘‘requires individual trials to be equally probable and stochastically independent.’’
In discussing the difference between possibility and probability he states, ‘‘The logic of
certainty furnishes us with the range of possibility (and the possible has no gradations);
probability is an additional notion that one applies within the range of possibility, thus
giving rise to graduations (‘more or less’ probable) that are meaningless in the logic of
uncertainty.’’ In his book, de Finetti gives us warnings: ‘‘The calculus of probability can
say absolutely nothing about reality,’’ and in referring to the dangers implicit in attempts to
confuse certainty with high probability, he states

We have to stress this point because these attempts assume many forms and are always
dangerous. In one sentence: to make a mistake of this kind leaves one inevitably faced with all
sorts of fallacious arguments and contradictions whenever an attempt is made to state, on the
basis of probabilistic considerations, that something must occur, or that its occurrence confirms
or disproves some probabilistic assumptions.

In a discussion about the use of such vague terms as ‘‘very probable’’ or ‘‘practically
certain,’’ or ‘‘almost impossible,’’ de Finetti states:

The field of probability and statistics is then transformed into a Tower of Babel, in which
only the most naive amateur claims to understand what he says and hears, and this because,
in a language devoid of convention, the fundamental distinctions between what is certain and
what is not, and between what is impossible and what is not, are abolished. Certainty and
impossibility then become confused with high or low degrees of a subjective probability, which
is itself denied precisely by this falsification of the language. On the contrary, the preservation
of a clear, terse distinction between certainty and uncertainty, impossibility and possibility, is
the unique and essential precondition for making meaningful statements (which could be either
right or wrong), whereas the alternative transforms every sentence into a nonsense.

THE UTILITY OF FUZZY SYSTEMS

Several sources have shown and proven that fuzzy systems are universal approximators
[Kosko, 1994; Ying et al., 1999]. These proofs stem from the isomorphism between two
algebras: an abstract algebra (one dealing with groups, fields, and rings) and a linear algebra
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(one dealing with vector spaces, state vectors, and transition matrices) and the structure
of a fuzzy system, which is comprised of an implication between actions and conclusions
(antecedents and consequents). The reason for this isomorphism is that both entities (algebra
and fuzzy systems) involve a mapping between elements of two or more domains. Just as
an algebraic function maps an input variable to an output variable, a fuzzy system maps
an input group to an output group; in the latter these groups can be linguistic propositions
or other forms of fuzzy information. The foundation on which fuzzy systems theory rests
is a fundamental theorem from real analysis in algebra known as the Stone–Weierstrass
theorem, first developed in the late nineteenth century by Weierstrass [1885], then simplified
by Stone [1937].

In the coming years it will be the consequence of this isomorphism that will make
fuzzy systems more and more popular as solution schemes, and it will make fuzzy systems
theory a routine offering in the classroom as opposed to its previous status as a ‘‘new, but
curious technology.’’ Fuzzy systems, or whatever label scientists eventually come to call it
in the future, will be a standard course in any science or engineering curriculum. It contains
all of what algebra has to offer, plus more, because it can handle all kinds of information
not just numerical quantities. More on this similarity between abstract or linear algebras
and fuzzy systems is discussed in Chapter 9 on rule-reduction methods.

While fuzzy systems are shown to be universal approximators to algebraic functions,
it is not this attribute that actually makes them valuable to us in understanding new or
evolving problems. Rather, the primary benefit of fuzzy systems theory is to approximate
system behavior where analytic functions or numerical relations do not exist. Hence, fuzzy
systems have high potential to understand the very systems that are devoid of analytic
formulations: complex systems. Complex systems can be new systems that have not been
tested, they can be systems involved with the human condition such as biological or medical
systems, or they can be social, economic, or political systems, where the vast arrays of
inputs and outputs could not all possibly be captured analytically or controlled in any
conventional sense. Moreover, the relationship between the causes and effects of these
systems is generally not understood, but often can be observed.

Alternatively, fuzzy systems theory can have utility in assessing some of our more
conventional, less complex systems. For example, for some problems exact solutions are not
always necessary. An approximate, but fast, solution can be useful in making preliminary
design decisions, or as an initial estimate in a more accurate numerical technique to save
computational costs, or in the myriad of situations where the inputs to a problem are vague,
ambiguous, or not known at all. For example, suppose we need a controller to bring an
aircraft out of a vertical dive. Conventional controllers cannot handle this scenario as they
are restricted to linear ranges of variables; a dive situation is highly nonlinear. In this case,
we could use a fuzzy controller, which is adept at handling nonlinear situations albeit in
an imprecise fashion, to bring the plane out of the dive into a more linear range, then hand
off the control of the aircraft to a conventional, linear, highly accurate controller. Examples
of other situations where exact solutions are not warranted abound in our daily lives. For
example, in the following quote from a popular science fiction movie,

C-3PO: Sir, the possibility of successfully navigating an asteroid field is approximately
3,720 to 1!

Han Solo: Never tell me the odds!
Characters in the movie Star Wars: The Empire Strikes Back (Episode V), 1980
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we have an illustration of where the input information (the odds of navigating through
an asteroid field) is useless, so how does one make a decision in the presence of this
information?

Hence, fuzzy systems are very useful in two general contexts: (1) in situations
involving highly complex systems whose behaviors are not well understood, and (2) in
situations where an approximate, but fast, solution is warranted.

As pointed out by Ben-Haim [2001], there is a distinction between models of systems
and models of uncertainty. A fuzzy system can be thought of as an aggregation of both
because it attempts to understand a system for which no model exists, and it does so
with information that can be uncertain in a sense of being vague, or fuzzy, or imprecise,
or altogether lacking. Systems whose behaviors are both understood and controllable are
of the kind which exhibit a certain robustness to spurious changes. In this sense, robust
systems are ones whose output (such as a decision system) does not change significantly
under the influence of changes in the inputs, because the system has been designed to
operate within some window of uncertain conditions. It is maintained that fuzzy systems
too are robust. They are robust because the uncertainties contained in both the inputs and
outputs of the system are used in formulating the system structure itself, unlike conventional
systems analysis which first poses a model, based on a collective set of assumptions needed
to formulate a mathematical form, then uncertainties in each of the parameters of that
mathematical abstraction are considered.

The positing of a mathematical form for our system can be our first mistake, and
any subsequent uncertainty analysis of this mathematical abstraction could be misleading.
We call this the Optimist’s dilemma: find out how a chicken clucks, by first ‘‘assuming
a spherical chicken.’’ Once the sphericity of the chicken has been assumed, there are all
kinds of elegant solutions that can be found; we can predict any number of sophisticated
clucking sounds with our model. Unfortunately when we monitor a real chicken it does not
cluck the way we predict. The point being made here is that there are few physical and no
mathematical abstractions that can be made to solve some of our complex problems, so we
need new tools to deal with complexity; fuzzy systems and their associated developments
can be one of these newer tools.

LIMITATIONS OF FUZZY SYSTEMS

However, this is not to suggest that we can now stop looking for additional tools.
Realistically, even fuzzy systems, as they are posed now, can be described as shallow
models in the sense that they are primarily used in deductive reasoning. This is the kind
of reasoning where we infer the specific from the general. For example, in the game of
tic-tac-toe there are only a few moves for the entire game; we can deduce our next move
from the previous move, and our knowledge of the game. It is this kind of reasoning that
we also called shallow reasoning, since our knowledge, as expressed linguistically, is of a
shallow and meager kind. In contrast to this is the kind of reasoning that is inductive, where
we infer the general from the particular; this method of inference is called deep, because
our knowledge is of a deep and substantial kind – a game of chess would be closer to an
inductive kind of model.

We should understand the distinction between using mathematical models to account
for observed data, and using mathematical models to describe the underlying process by
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which the observed data are generated or produced by nature [Arciszewski et al., 2003].
Models of systems where the behavior can be observed, and whose predictions can only
account for these observed data, are said to be shallow, as they do not account for the
underlying realities. Deep models, those of the inductive kind, are alleged to capture
the physical process by which nature has produced the results we have observed. In his
Republic (360 BC), Plato suggests the idea that things that are perceived are only imperfect
copies of the true reality that can only be comprehended by pure thought. Plato was fond
of mathematics, and he saw in its very precise structure of logic idealized abstraction and
separation from the material world. He thought of these things being so important, that
above the doorway to his Academy was placed the inscription ‘‘Let no one ignorant of
mathematics enter here.’’ In Plato’s doctrine of forms, he argued that the phenomenal
world was a mere shadowy image of the eternal, immutable real world, and that matter was
docile and disorderly, governed by a Mind that was the source of coherence, harmony, and
orderliness. He argued that if man was occupied with the things of the senses, then he could
never gain true knowledge. In his work the Phaedo he declares that as mere mortals we
cannot expect to attain absolute truth about the universe, but instead must be content with
developing a descriptive picture – a model [Barrow, 2000].

Centuries later, Galileo was advised by his inquisitors that he must not say that his
mathematical models were describing the realities of nature, but rather that they simply
were adequate models of the observations he made with his telescope [Drake, 1957]; hence,
that they were solely deductive. In this regard, models that only attempt to replicate some
phenomenological behavior are considered shallow models, or models of the deductive
kind, and they lack the knowledge needed for true understanding of a physical process. The
system that emerges under inductive reasoning will have connections with both evolution
and complexity. How do humans reason in situations that are complicated or ill-defined?
Modern psychology tells us that as humans we are only moderately good at deductive
logic, and we make only moderate use of it. But we are superb at seeing or recognizing
or matching patterns – behaviors that confer obvious evolutionary benefits. In problems of
complication then, we look for patterns; and we simplify the problem by using these to
construct temporary internal models or hypotheses or schemata to work with [Bower and
Hilgard, 1981]. We carry out localized deductions based on our current hypotheses and
we act on these deductions. Then, as feedback from the environment comes in, we may
strengthen or weaken our beliefs in our current hypotheses, discarding some when they
cease to perform, and replacing them as needed with new ones. In other words, where we
cannot fully reason or lack full definition of the problem, we use simple models to fill the
gaps in our understanding; such behavior is inductive.

Some sophisticated models may, in fact, be a complex weave of deductive and
inductive steps. But, even our so-called ‘‘deep models’’ may not be deep enough. An
illustration of this comes from a recent popular decision problem, articulated as the El Farol
problem by W. Brian Arthur [1994]. This problem involves a decision-making scenario in
which inductive reasoning is assumed and modeled, and its implications are examined. El
Farol is a bar in Santa Fe, New Mexico, where on one night of the week in particular there
is popular Irish music offered. Suppose N bar patrons decide independently each week
whether to go to El Farol on this certain night. For simplicity, we set N = 100. Space in the
bar is limited, and the evening is enjoyable if things are not too crowded – specifically, if
fewer than 60% of the possible 100 are present. There is no way to tell the number coming
for sure in advance, therefore a bar patron goes – deems it worth going – if he expects fewer
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than 60 to show up, or stays home if he expects more than 60 to go; there is no need that
utilities differ much above and below 60. Choices are unaffected by previous visits; there
is no collusion or prior communication among the bar patrons; and the only information
available is the numbers who came in past weeks. Of interest is the dynamics of the number
of bar patrons attending from week to week.

There are two interesting features of this problem. First, if there were an obvious model
that all bar patrons could use to forecast attendance and on which to base their decisions,
then a deductive solution would be possible. But no such model exists in this case. Given
the numbers attending in the recent past, a large number of expectational models might be
reasonable and defensible. Thus, not knowing which model other patrons might choose, a
reference patron cannot choose his in a well-defined way. There is no deductively rational
solution – no ‘‘correct’’ expectational model. From the patrons’ viewpoint, the problem
is ill-defined and they are propelled into a realm of induction. Second, any commonality
of expectations gets disintegrated: if everyone believes few will go, then all will go. But
this would invalidate that belief. Similarly, if all believe most will go, nobody will go,
invalidating that belief. Expectations will be forced to differ, but not in a methodical,
predictive way.

Scientists have long been uneasy with the assumption of perfect, deductive rationality
in decision contexts that are complicated and potentially ill-defined. The level at which
humans can apply perfect rationality is surprisingly modest. Yet it has not been clear how
to deal with imperfect or bounded rationality. From the inductive example given above
(El Farol problem), it would be easy to suggest that as humans in these contexts we use
inductive reasoning: we induce a variety of working hypotheses, act upon the most credible,
and replace hypotheses with new ones if they cease to work. Such reasoning can be modeled
in a variety of ways. Usually this leads to a rich psychological world in which peoples’ ideas
or mental models compete for survival against other peoples’ ideas or mental models – a
world that is both evolutionary and complex. And, while this seems the best course of
action for modeling complex questions and problems, this text stops short of that longer
term goal with only a presentation of simple deductive models, of the rule-based kind, that
are introduced and illustrated in Chapters 5–8.

THE ALLUSION: STATISTICS AND RANDOM PROCESSES

The uninitiated often claim that fuzzy set theory is just another form of probability theory
in disguise. This statement, of course, is simply not true (Appendix A formally rejects
this claim with an axiomatic discussion of both probability theory and fuzzy logic). Basic
statistical analysis is founded on probability theory or stationary random processes, whereas
most experimental results contain both random (typically noise) and nonrandom processes.
One class of random processes, stationary random processes, exhibits the following three
characteristics: (1) The sample space on which the processes are defined cannot change from
one experiment to another; that is, the outcome space cannot change. (2) The frequency
of occurrence, or probability, of an event within that sample space is constant and cannot
change from trial to trial or experiment to experiment. (3) The outcomes must be repeatable
from experiment to experiment. The outcome of one trial does not influence the outcome
of a previous or future trial. There are more general classes of random processes than the
class mentioned here. However, fuzzy sets are not governed by these characteristics.
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Stationary random processes are those that arise out of chance, where the chances
represent frequencies of occurrence that can be measured. Problems like picking colored
balls out of an urn, coin and dice tossing, and many card games are good examples of
stationary random processes. How many of the decisions that humans must make every
day could be categorized as random? How about the uncertainty in the weather – is this
random? How about your uncertainty in choosing clothes for the next day, or which car to
buy, or your preference in colors – are these random uncertainties? How about your ability
to park a car; is this a random process? How about the risk in whether a substance consumed
by an individual now will cause cancer in that individual 15 years from now; is this a form
of random uncertainty? Although it is possible to model all of these forms of uncertainty
with various classes of random processes, the solutions may not be reliable. Treatment of
these forms of uncertainty using fuzzy set theory should also be done with caution. One
needs to study the character of the uncertainty, then choose an appropriate approach to
develop a model of the process. Features of a problem that vary in time and space should
be considered. For example, when the weather report suggests that there is a 60% chance
of rain tomorrow, does this mean that there has been rain on tomorrow’s date for 60 of the
last 100 years? Does it mean that somewhere in your community 60% of the land area will
receive rain? Does it mean that 60% of the time it will be raining and 40% of the time it will
not be raining? Humans often deal with these forms of uncertainty linguistically, such as,
‘‘It will likely rain tomorrow.’’ And with this crude assessment of the possibility of rain,
humans can still make appropriately accurate decisions about the weather.

Random errors will generally average out over time, or space. Nonrandom errors,
such as some unknown form of bias (often called a systematic error) in an experiment,
will not generally average out and will likely grow larger with time. The systematic errors
generally arise from causes about which we are ignorant, for which we lack information, or
that we cannot control. Distinguishing between random and nonrandom errors is a difficult
problem in many situations, and to quantify this distinction often results in the illusion
that the analyst knows the extent and character of each type of error. In all likelihood
nonrandom errors can increase without bounds. Moreover, variability of the random kind
cannot be reduced with additional information, although it can be quantified. By contrast,
nonrandom uncertainty, which too can be quantified with various theories, can be reduced
with the acquisition of additional information.

It is historically interesting that the word statistics is derived from the now obsolete
term statist, which means an expert in statesmanship. Statistics were the numerical facts
that statists used to describe the operations of states. To many people, statistics, and other
recent methods to represent uncertainty like evidence theory and fuzzy set theory, are still
the facts by which politicians, newspapers, insurance sellers, and other broker occupations
approach us as potential customers for their services or products! The air of sophistication
that these methods provide to an issue should not be the basis for making a decision; it
should be made only after a good balance has been achieved between the information
content in a problem and the proper representation tool to assess it.

Popular lore suggests that the various uncertainty theories allow engineers to fool
themselves in a highly sophisticated way when looking at relatively incoherent heaps of
data (computational or experimental), as if this form of deception is any more palatable
than just plain ignorance. All too often, scientists and engineers are led to use these
theories as a crutch to explain vagaries in their models or in their data. For example, in
probability applications the assumption of independent random variables is often assumed
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to provide a simpler method to prescribe joint probability distribution functions. An
analogous assumption, called noninteractive sets, is used in fuzzy applications to develop
joint membership functions from individual membership functions for sets from different
universes of discourse. Should one ignore apparently aberrant information, or consider all
information in the model whether or not it conforms to the engineers’ preconceptions?
Additional experiments to increase understanding cost money, and yet, they might increase
the uncertainty by revealing conflicting information. It could best be said that statistics
alone, or fuzzy sets alone, or evidence theory alone, are individually insufficient to explain
many of the imponderables that people face every day. Collectively they could be very
powerful. A poem by J. V. Cunningham [1971] titled ‘‘Meditation on Statistical Method’’
provides a good lesson in caution for any technologist pondering the thought that ignoring
uncertainty (again, using statistics because of the era of the poem) in a problem will
somehow make its solution seem more certain.

Plato despair!
We prove by norms
How numbers bear
Empiric forms,

How random wrongs
Will average right
If time be long
And error slight;

But in our hearts
Hyperbole
Curves and departs
To infinity.

Error is boundless.
Nor hope nor doubt,
Though both be groundless,
Will average out.

UNCERTAINTY AND INFORMATION

Only a small portion of the knowledge (information) for a typical problem might be
regarded as certain, or deterministic. Unfortunately, the vast majority of the material
taught in engineering classes is based on the presumption that the knowledge involved
is deterministic. Most processes are neatly and surreptitiously reduced to closed-form
algorithms – equations and formulas. When students graduate, it seems that their biggest
fear upon entering the real world is ‘‘forgetting the correct formula.’’ These formulas
typically describe a deterministic process, one where there is no uncertainty in the physics
of the process (i.e., the right formula) and there is no uncertainty in the parameters of
the process (i.e., the coefficients are known with impunity). It is only after we leave the
university, it seems, that we realize we were duped in academe, and that the information
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we have for a particular problem virtually always contains uncertainty. For how many of
our problems can we say that the information content is known absolutely, i.e., with no
ignorance, no vagueness, no imprecision, no element of chance? Uncertain information can
take on many different forms. There is uncertainty that arises because of complexity; for
example, the complexity in the reliability network of a nuclear reactor. There is uncertainty
that arises from ignorance, from various classes of randomness, from the inability to perform
adequate measurements, from lack of knowledge, or from vagueness, like the fuzziness
inherent in our natural language.

The nature of uncertainty in a problem is a very important point that engineers
should ponder prior to their selection of an appropriate method to express the uncertainty.
Fuzzy sets provide a mathematical way to represent vagueness and fuzziness in humanistic
systems. For example, suppose you are teaching your child to bake cookies and you want
to give instructions about when to take the cookies out of the oven. You could say to take
them out when the temperature inside the cookie dough reaches 375◦F, or you could advise
your child to take them out when the tops of the cookies turn light brown. Which instruction
would you give? Most likely, you would use the second of the two instructions. The first
instruction is too precise to implement practically; in this case precision is not useful. The
vague term light brown is useful in this context and can be acted upon even by a child.
We all use vague terms, imprecise information, and other fuzzy data just as easily as we
deal with situations governed by chance, where probability techniques are warranted and
very useful. Hence, our sophisticated computational methods should be able to represent
and manipulate a variety of uncertainties. Other representations of uncertainties due to
ambiguity, nonspecificity, beliefs, and ignorance are introduced in Chapter 15.

FUZZY SETS AND MEMBERSHIP

The foregoing sections discuss the various elements of uncertainty. Making decisions about
processes that contain nonrandom uncertainty, such as the uncertainty in natural language,
has been shown to be less than perfect. The idea proposed by Lotfi Zadeh suggested that
set membership is the key to decision making when faced with uncertainty. In fact, Zadeh
made the following statement in his seminal paper of 1965:

The notion of a fuzzy set provides a convenient point of departure for the construction of a
conceptual framework which parallels in many respects the framework used in the case of
ordinary sets, but is more general than the latter and, potentially, may prove to have a much
wider scope of applicability, particularly in the fields of pattern classification and information
processing. Essentially, such a framework provides a natural way of dealing with problems in
which the source of imprecision is the absence of sharply defined criteria of class membership
rather than the presence of random variables.

As an example, we can easily assess whether someone is over 6 feet tall. In a binary
sense, the person either is or is not, based on the accuracy, or imprecision, of our measuring
device. For example, if ‘‘tall’’ is a set defined as heights equal to or greater than 6 feet, a
computer would not recognize an individual of height 5′11.999′′ as being a member of the
set ‘‘tall.’’ But how do we assess the uncertainty in the following question: Is the person
nearly 6 feet tall? The uncertainty in this case is due to the vagueness or ambiguity of the
adjective nearly. A 5′11′′ person could clearly be a member of the set of ‘‘nearly 6 feet tall’’
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people. In the first situation, the uncertainty of whether a person, whose height is unknown,
is 6 feet or not is binary; the person either is or is not, and we can produce a probability
assessment of that prospect based on height data from many people. But the uncertainty of
whether a person is nearly 6 feet is nonrandom. The degree to which the person approaches
a height of 6 feet is fuzzy. In reality, ‘‘tallness’’ is a matter of degree and is relative. Among
peoples of the Tutsi tribe in Rwanda and Burundi a height for a male of 6 feet is considered
short. So, 6 feet can be tall in one context and short in another. In the real (fuzzy) world,
the set of tall people can overlap with the set of not-tall people, an impossibility when one
follows the precepts of classical binary logic (this is discussed in Chapter 5).

This notion of set membership, then, is central to the representation of objects within
a universe by sets defined on the universe. Classical sets contain objects that satisfy precise
properties of membership; fuzzy sets contain objects that satisfy imprecise properties of
membership, i.e., membership of an object in a fuzzy set can be approximate. For example,
the set of heights from 5 to 7 feet is precise (crisp); the set of heights in the region around
6 feet is imprecise, or fuzzy. To elaborate, suppose we have an exhaustive collection of
individual elements (singletons) x, which make up a universe of information (discourse),
X. Further, various combinations of these individual elements make up sets, say A, on the
universe. For crisp sets an element x in the universe X is either a member of some crisp
set A or not. This binary issue of membership can be represented mathematically with the
indicator function,

χA(x) =
{

1, x ∈ A
0, x �∈ A

(1.1)

where the symbol χA(x) gives the indication of an unambiguous membership of element x

in set A, and the symbols ∈ and �∈ denote contained in and not contained in, respectively.
For our example of the universe of heights of people, suppose set A is the crisp set of
all people with 5.0 ≤ x ≤ 7.0 feet, shown in Fig. 1.1a. A particular individual, x1, has a
height of 6.0 feet. The membership of this individual in crisp set A is equal to 1, or full
membership, given symbolically as χA(x1) = 1. Another individual, say, x2, has a height
of 4.99 feet. The membership of this individual in set A is equal to 0, or no membership,
hence χA(x2) = 0, also seen in Fig. 1.1a. In these cases the membership in a set is binary,
either an element is a member of a set or it is not.

Zadeh extended the notion of binary membership to accommodate various ‘‘degrees
of membership’’ on the real continuous interval [0, 1], where the endpoints of 0 and 1

1 1

5 6 7

5 6 7

5 6 7

χAχ χHµ

A

0 0

(a) (b)
x x

FIGURE 1.1
Height membership functions for (a) a crisp set A and (b) a fuzzy set H.
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conform to no membership and full membership, respectively, just as the indicator function
does for crisp sets, but where the infinite number of values in between the endpoints can
represent various degrees of membership for an element x in some set on the universe.
The sets on the universe X that can accommodate ‘‘degrees of membership’’ were termed
by Zadeh as ‘‘fuzzy sets.’’ Continuing further on the example on heights, consider a set
H consisting of heights near 6 feet. Since the property near 6 feet is fuzzy, there is not a
unique membership function for H. Rather, the analyst must decide what the membership
function, denoted µH, should look like. Plausible properties of this function might be (1)
normality (µH(6) = 1), (2) monotonicity (the closer H is to 6, the closer µH is to 1), and (3)
symmetry (numbers equidistant from 6 should have the same value of µH) [Bezdek, 1993].
Such a membership function is illustrated in Fig. 1.1b. A key difference between crisp and
fuzzy sets is their membership function; a crisp set has a unique membership function,
whereas a fuzzy set can have an infinite number of membership functions to represent it.
For fuzzy sets, the uniqueness is sacrificed, but flexibility is gained because the membership
function can be adjusted to maximize the utility for a particular application.

James Bezdek provided one of the most lucid comparisons between crisp and fuzzy
sets [Bezdek, 1993]. It bears repeating here. Crisp sets of real objects are equivalent to,
and isomorphically described by, a unique membership function, such as χA in Fig. 1.1a.
But there is no set-theoretic equivalent of ‘‘real objects’’ corresponding to χA. Fuzzy sets
are always functions, which map a universe of objects, say X, onto the unit interval [0,
1]; that is, the fuzzy set H is the function µH that carries X into [0, 1]. Hence, every
function that maps X onto [0, 1] is a fuzzy set. Although this statement is true in a formal
mathematical sense, many functions that qualify on the basis of this definition cannot be
suitable fuzzy sets. But they become fuzzy sets when, and only when, they match some
intuitively plausible semantic description of imprecise properties of the objects in X.

The membership function embodies the mathematical representation of membership
in a set, and the notation used throughout this text for a fuzzy set is a set symbol with a tilde
underscore, say A∼ , where the functional mapping is given by

µA∼
(x) ∈ [0, 1] (1.2)

and the symbol µA∼
(x) is the degree of membership of element x in fuzzy set A∼ . Therefore,

µA∼
(x) is a value on the unit interval that measures the degree to which element x belongs

to fuzzy set A∼ ; equivalently, µA∼
(x) = degree to which x ∈ A∼ .

CHANCE VERSUS FUZZINESS

Suppose you are a basketball recruiter and are looking for a ‘‘very tall’’ player for the center
position on a men’s team. One of your information sources tells you that a hot prospect in
Oregon has a 95% chance of being over 7 feet tall. Another of your sources tells you that
a good player in Louisiana has a high membership in the set of ‘‘very tall’’ people. The
problem with the information from the first source is that it is a probabilistic quantity. There
is a 5% chance that the Oregon player is not over 7 feet tall and could, conceivably, be
someone of extremely short stature. The second source of information would, in this case,
contain a different kind of uncertainty for the recruiter; it is a fuzziness due to the linguistic
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qualifier ‘‘very tall’’ because if the player turned out to be less than 7 feet tall there is still
a high likelihood that he would be quite tall.

Another example involves a personal choice. Suppose you are seated at a table on
which rest two glasses of liquid. The liquid in the first glass is described to you as having
a 95% chance of being healthful and good. The liquid in the second glass is described
as having a 0.95 membership in the class of ‘‘healthful and good’’ liquids. Which glass
would you select, keeping in mind that the first glass has a 5% chance of being filled with
nonhealthful liquids, including poisons [Bezdek, 1993]?

What philosophical distinction can be made regarding these two forms of information?
Suppose we are allowed to measure the basketball players’ heights and test the liquids in
the glasses. The prior probability of 0.95 in each case becomes a posterior probability of 1.0
or 0; that is, either the player is or is not over 7 feet tall and the liquid is either benign or not.
However, the membership value of 0.95, which measures the extent to which the player’s
height is over 7 feet, or the drinkability of the liquid is ‘‘healthful and good,’’ remains 0.95
after measuring or testing. These two examples illustrate very clearly the difference in the
information content between chance and fuzziness.

This brings us to the clearest distinction between fuzziness and chance. Fuzziness
describes the lack of distinction of an event, whereas chance describes the uncertainty in
the occurrence of the event. The event will occur or not occur; but is the description of the
event clear enough to measure its occurrence or nonoccurrence? Consider the following
geometric questions, which serve to illustrate our ability to address fuzziness (lack of
distinctiveness) with certain mathematical relations. The geometric shape in Fig. 1.2a can
resemble a disk, a cylinder, or a rod, depending on the aspect ratio of d/h. For d/h � 1
the shape of the object approaches a long rod; in fact, as d/h → 0 the shape approaches a
line. For d/h 	 1 the object approaches the shape of a flat disk; as d/h → ∞ the object
approaches a circular area. For other values of this aspect ratio, e.g., for d/h ≈ 1, the shape
is typical of what we would call a ‘‘right circular cylinder.’’ See Fig. 1.2b.

The geometric shape in Fig. 1.3a is an ellipse, with parameters a and b. Under
what conditions of these two parameters will a general elliptic shape become a circle?
Mathematically, we know that a circle results when a/b = 1, and hence this is a specific,
crisp geometric shape. We know that when a/b � 1 or a/b 	 1 we clearly have an
elliptic shape; and as a/b → ∞, a line segment results. Using this knowledge, we can

h0

D

C
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d

h
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FIGURE 1.2
Relationship between (a) mathematical terms and (b) fuzzy linguistic terms.



SETS AS POINTS IN HYPERCUBES 17

b

a
1.0

1.0 a
b

a
b

µ

a = base
b = height

(b)(a)

0
0

FIGURE 1.3
Figure 1.3 The (a) geometric shape and (b) membership function for an approximate circle.

develop a description of the membership function to describe the geometric set we call
an ‘‘approximate circle.’’ Without a theoretical development, the following expression
describing a Gaussian curve (for this membership function all points on the real line have
nonzero membership; this can be an advantage or disadvantage depending on the nature
of the problem) offers a good approximation for the membership function of the fuzzy set
‘‘approximate circle,’’ denoted C∼:

µC∼

(a

b

)
= exp

[
−3

(a

b
− 1

)2
]

(1.3)

Figure 1.3b is a plot of the membership function given in Eq. (1.3). As the elliptic ratio
a/b approaches a value of unity, the membership value approaches unity; for a/b = 1 we
have an unambiguous circle. As a/b → ∞ or a/b → 0, we get a line segment; hence, the
membership of the shape in the fuzzy set C∼ approaches zero, because a line segment is not
very similar in shape to a circle. In Fig. 1.3b we see that as we get farther from a/b = 1 our
membership in the set ‘‘ approximate circle’’ gets smaller and smaller. All values of a/b

that have a membership value of unity are called the prototypes; in this case a/b = 1 is the
only prototype for the set ‘‘approximate circle,’’ because at this value it is exactly a circle.

Suppose we were to place in a bag a large number of generally elliptical two-
dimensional shapes and ask the question: What is the probability of randomly selecting
an ‘‘approximate circle’’ from the bag? We could not answer this question without first
assessing the two different kinds of uncertainty. First, we would have to address the issue
of fuzziness in the meaning of the term ‘‘approximate circle’’ by selecting a value of
membership, above which we would be willing to call the shape an approximate circle;
for example, any shape with a membership value above 0.9 in the fuzzy set ‘‘approximate
circle’’ would be considered a circle. Second, we would have to know the proportion of the
shapes in the bag that have membership values above 0.9. The first issue is one of assessing
fuzziness and the second relates to the frequencies required to address questions of chance.

SETS AS POINTS IN HYPERCUBES

There is an interesting geometric analog for illustrating the idea of set membership [Kosko,
1992]. Heretofore we have described a fuzzy set A∼ defined on a universe X. For a universe
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with only one element, the membership function is defined on the unit interval [0,1]; for
a two-element universe, the membership function is defined on the unit square; and for a
three-element universe, the membership function is defined on the unit cube. All of these
situations are shown in Fig. 1.4. For a universe of n elements we define the membership on
the unit hypercube, In = [0, 1]n.

The endpoints on the unit interval in Fig. 1.4a, and the vertices of the unit square and
the unit cube in Figs. 1.4b and 1.4c, respectively, represent the possible crisp subsets, or
collections, of the elements of the universe in each figure. This collection of possible crisp
(nonfuzzy) subsets of elements in a universe constitutes the power set of the universe. For
example, in Fig. 1.4c the universe comprises three elements, X = {x1, x2, x3}. The point
(0, 0, 1) represents the crisp subset in 3-space, where x1 and x2 have no membership and

1
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= (0) X = {x1} = (1)

(a)

X = {x1, x2} = (1, 1){x2} = (0, 1)
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FIGURE 1.4
‘‘Sets as points’’ [Kosko, 1992]: (a) one-element universe, (b) two-element universe, (c) three-element
universe.



REFERENCES 19

element x3 has full membership, i.e., the subset {x3}; the point (1, 1, 0) is the crisp subset
where x1 and x2 have full membership and element x3 has no membership, i.e., the subset
{x1, x2}; and so on for the other six vertices in Fig. 1.4c. In general, there are 2n subsets in
the power set of a universe with n elements; geometrically, this universe is represented by
a hypercube in n-space, where the 2n vertices represent the collection of sets constituting
the power set. Two points in the diagrams bear special note, as illustrated in Fig. 1.4c. In
this figure the point (1, 1, 1), where all elements in the universe have full membership, is
called the whole set, X, and the point (0, 0, 0), where all elements in the universe have no
membership, is called the null set, ∅.

The centroids of each of the diagrams in Fig. 1.4 represent single points where the
membership value for each element in the universe equals 1

2 . For example, the point ( 1
2 , 1

2 )

in Fig. 1.4b is in the midpoint of the square. This midpoint in each of the three figures is a
special point – it is the set of maximum ‘‘fuzziness.’’ A membership value of 1

2 indicates
that the element belongs to the fuzzy set as much as it does not – that is, it holds equal
membership in both the fuzzy set and its complement. In a geometric sense, this point is the
location in the space that is farthest from any of the vertices and yet equidistant from all of
them. In fact, all points interior to the vertices of the spaces represented in Fig. 1.4 represent
fuzzy sets, where the membership value of each variable is a number between 0 and 1. For
example, in Fig. 1.4b, the point ( 1

4 , 3
4 ) represents a fuzzy set where variable x1 has a 0.25

degree of membership in the set and variable x2 has a 0.75 degree of membership in the set.
It is obvious by inspection of the diagrams in Fig. 1.4 that, although the number of subsets
in the power set is enumerated by the 2n vertices, the number of fuzzy sets on the universe
is infinite, as represented by the infinite number of points on the interior of each space.

Finally, the vertices of the cube in Fig. 1.4c are the identical coordinates found in the
value set, V{P(X)}, developed in Example 2.4 of the next chapter.

SUMMARY

This chapter has discussed models with essentially two different kinds of information: fuzzy
membership functions, which represent similarities of objects to nondistinct properties, and
probabilities, which provide knowledge about relative frequencies. The value of either of
these kinds of information in making decisions is a matter of preference; popular, but
controversial, contrary views have been offered [Ross et al., 2002]. Fuzzy models are not
replacements for probability models. As seen in Fig. 1.1, every crisp set is fuzzy, but
the converse does not hold. The idea that crisp sets are special forms of fuzzy sets was
illustrated graphically in the section on sets as points, where crisp sets are represented by
the vertices of a unit hypercube. All other points within the unit hypercube, or along its
edges, are graphically analogous to a fuzzy set. Fuzzy models are not that different from
more familiar models. Sometimes they work better, and sometimes they do not. After all,
the efficacy of a model in solving a problem should be the only criterion used to judge that
model. Lately, a growing body of evidence suggests that fuzzy approaches to real problems
are an effective alternative to previous, traditional methods.
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PROBLEMS

1.1. Develop a reasonable membership function for the following fuzzy sets based on height
measured in centimeters:
(a) ‘‘Tall’’
(b) ‘‘Short’’
(c) ‘‘Not short’’

1.2. Develop a membership function for laminar and turbulent flow for a typical flat plate with a
sharp leading edge in a typical air stream. Transition usually takes place between Reynolds
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numbers (Re) of 2 × 105 and 3 × 106. An Re of 5 × 105 is usually considered the point of
turbulent flow for this situation.

1.3. Develop a reasonable membership function for a square, based on the geometric properties of
a rectangle. For this problem use L as the length of the longer side and l as the length of the
smaller side.

1.4. For the cylindrical shapes shown in Fig. 1.2, develop a membership function for each of the
following shapes using the ratio d/h, and discuss the reason for any overlapping among the
three membership functions:
(a) Rod
(b) Cylinder
(c) Disk

1.5. The question of whether a glass of water is half-full or half-empty is an age-old philosophical
issue. Such descriptions of the volume of liquid in a glass depend on the state of mind of
the person asked the question. Develop membership functions for the fuzzy sets ‘‘half-full,’’
‘‘full,’’ ‘‘empty,’’ and ‘‘half-empty’’ using percent volume as the element of information.
Assume the maximum volume of water in the glass is V0. Discuss whether the terms ‘‘half-full’’
and ‘‘half-empty’’ should have identical membership functions. Does your answer solve this
ageless riddle?

1.6. Landfills are a primary source of methane, a greenhouse gas. Landfill caps, called biocaps,
are designed to minimize methane emission by maximizing methane oxidation; these caps are
classified as ‘‘best’’ if they are capable of oxidizing 80% of the methane that originates in
the landfill’s interior. Complete oxidation was found to be difficult to establish. Develop a
reasonable membership function of the percent methane oxidation to show the performance of
the biocap and emissions of methane.

1.7. Industry A discharges wastewater into a nearby river. Wastewater contains high biological
oxygen demand (BOD) and other inorganic contaminants. The discharge rate of rivers and
wastewater is constant through the year. From research, it has been found that BOD values not
exceeding 250 mg/L do not cause any harmful effect to aquatic ecosystems. However, BOD
values higher than 250 mg/L have significant impact. Draw both a crisp and fuzzy membership
function to show the effects of the BOD value on aquatic ecosystems.

1.8. A fuzzy set for a major storm event in Calgary, Alberta, could be described as a rainstorm in a
subdivision that raised the level of the storm-water pond to within 70% of its design capacity.
The membership function for a major storm set could be described as having full membership
when 70% of the pond volume has been reached but varying from zero membership to full
membership at 40% capacity and 70% capacity, respectively. Draw a typical membership
function as it is described.

1.9. In Alberta a waste is orally toxic if it has an oral toxicity (LD50) of less than 5000 mg/kg.
Develop and draw a crisp and a fuzzy membership function for the oral toxicity.

1.10. Using the ratios of internal angles or sides of a hexagon, draw the membership diagrams for
‘‘regular’’ and ‘‘irregular’’ hexagons.

1.11. Develop algorithms for the following membership function shapes:
(a) Triangular
(b) Gamma function
(c) Quadratic S-function
(d) Trapezoid
(e) Gaussian
(f ) Exponential-wire function

1.12. In soil mechanics soils are classified based on the size of their particles as clay, silt, or sand
(clays having the smallest particles and sands having the largest particles). Though silts have
larger particles than clays, it is often difficult to distinguish between these two soil types; silts
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and sands present the same problem. Develop membership functions for these three soil types,
in terms of their grain size, S.

1.13. A sour natural gas stream is contacted with a lean amine solution in an absorber; this allows the
amine to remove the sour component in the natural gas producing a rich amine solution and a
‘‘sales gas’’ which is the natural gas with a much lower sour gas concentration than the feed gas
as shown in Fig. P1.13. Concentrations above C2, which is the pipeline specification for sour
gas concentration, are considered to have full membership in the set of ‘‘high concentrations.’’
A concentration below C1, which is the lower limit of sour gas concentration that can be
detected by analysis instrumentation, is considered to have full membership in the set of
‘‘low concentrations.’’ Sketch a membership function for the absorber ‘‘sales gas’’ sour gas
concentration as a function of concentration, C; show the points C1 and C2.

Lean amine

A
b
s
o
r
b
e
r

Sour gas Rich amine

‘‘Sales gas’’

FIGURE P1.13

1.14. A circular column loaded axially is assumed to be eccentric when the load is acting at 5% of
the axis, depending on the diameter of the column, d as shown in Fig. P1.14. We have the
following conditions: e/d = 0.05 eccentric; e/d < 0.05 not-very-eccentric; e/d > 0.05, very
eccentric. Develop a membership function for ‘‘eccentricity’’ on the scale of e/d ratios.

e

d

FIGURE P1.14
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1.15. A rectangular sheet of perimeter 2L + 2h is to be rolled into a cylinder with height, h. Classify
the cylinder as a function of the rectangular sheet as being a rod, cylinder, or disk by developing
membership functions for these shapes.

1.16. Enumerate the nonfuzzy subsets of the power set for a universe with n = 4 elements, i.e.,
X = {x1,x2,x3,x4}, and indicate their coordinates as the vertices on a 4-cube.

1.17. Probability distributions can be shown to exist on certain planes that intersect the regions
shown in Fig. 1.4. Draw the points, lines, and planes on which probability distributions exist
for the one-, two-, and three-parameter cases shown in Fig. 1.4.



CHAPTER

2
CLASSICAL
SETS AND
FUZZY SETS

Philosophical objections may be raised by the logical implications of building a mathematical
structure on the premise of fuzziness, since it seems (at least superficially) necessary to require
that an object be or not be an element of a given set. From an aesthetic viewpoint, this may
be the most satisfactory state of affairs, but to the extent that mathematical structures are
used to model physical actualities, it is often an unrealistic requirement.. . . Fuzzy sets have
an intuitively plausible philosophical basis. Once this is accepted, analytical and practical
considerations concerning fuzzy sets are in most respects quite orthodox.

James Bezdek
Professor, Computer Science, 1981

As alluded to in Chapter 1, the universe of discourse is the universe of all available
information on a given problem. Once this universe is defined we are able to define certain
events on this information space. We will describe sets as mathematical abstractions of
these events and of the universe itself. Figure 2.1a shows an abstraction of a universe of
discourse, say X, and a crisp (classical) set A somewhere in this universe. A classical set
is defined by crisp boundaries, i.e., there is no uncertainty in the prescription or location
of the boundaries of the set, as shown in Fig. 2.1a where the boundary of crisp set A is
an unambiguous line. A fuzzy set, on the other hand, is prescribed by vague or ambiguous
properties; hence its boundaries are ambiguously specified, as shown by the fuzzy boundary
for set A∼ in Fig. 2.1b.

In Chapter 1 we introduced the notion of set membership, from a one-dimensional
viewpoint. Figure 2.1 again helps to explain this idea, but from a two-dimensional perspec-
tive. Point a in Fig. 2.1a is clearly a member of crisp set A; point b is unambiguously
not a member of set A. Figure 2.1b shows the vague, ambiguous boundary of a fuzzy set
A∼ on the same universe X: the shaded boundary represents the boundary region of A∼ . In
the central (unshaded) region of the fuzzy set, point a is clearly a full member of the set.

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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a

b

A

X (Universe of discourse)

a

b

X (Universe of discourse)

A~

(a) (b)

c

FIGURE 2.1
Diagrams for (a) crisp set boundary and (b) fuzzy set boundary.

Outside the boundary region of the fuzzy set, point b is clearly not a member of the fuzzy
set. However, the membership of point c, which is on the boundary region, is ambiguous.
If complete membership in a set (such as point a in Fig. 2.1b) is represented by the number
1, and no-membership in a set (such as point b in Fig. 2.1b) is represented by 0, then point
c in Fig. 2.1b must have some intermediate value of membership (partial membership in
fuzzy set A∼) on the interval [0,1]. Presumably the membership of point c in A∼ approaches
a value of 1 as it moves closer to the central (unshaded) region in Fig. 2.1b of A∼ , and
the membership of point c in A∼ approaches a value of 0 as it moves closer to leaving the
boundary region of A∼ .

In this chapter, the precepts and operations of fuzzy sets are compared with those of
classical sets. Several good books are available for reviewing this basic material [see for
example, Dubois and Prade, 1980; Klir and Folger, 1988; Zimmermann, 1991; Klir and
Yuan, 1995]. Fuzzy sets embrace virtually all (with one exception, as will be seen) of the
definitions, precepts, and axioms that define classical sets. As indicated in Chapter 1, crisp
sets are a special form of fuzzy sets; they are sets without ambiguity in their membership
(i.e., they are sets with unambiguous boundaries). It will be shown that fuzzy set theory is
a mathematically rigorous and comprehensive set theory useful in characterizing concepts
(sets) with natural ambiguity. It is instructive to introduce fuzzy sets by first reviewing the
elements of classical (crisp) set theory.

CLASSICAL SETS

Define a universe of discourse, X, as a collection of objects all having the same character-
istics. The individual elements in the universe X will be denoted as x. The features of the
elements in X can be discrete, countable integers or continuous valued quantities on the
real line. Examples of elements of various universes might be as follows:

The clock speeds of computer CPUs
The operating currents of an electronic motor
The operating temperature of a heat pump (in degrees Celsius)
The Richter magnitudes of an earthquake
The integers 1 to 10
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Most real-world engineering processes contain elements that are real and non-negative.
The first four items just named are examples of such elements. However, for purposes
of modeling, most engineering problems are simplified to consider only integer values of
the elements in a universe of discourse. So, for example, computer clock speeds might be
measured in integer values of megahertz and heat pump temperatures might be measured
in integer values of degrees Celsius. Further, most engineering processes are simplified
to consider only finite-sized universes. Although Richter magnitudes may not have a
theoretical limit, we have not historically measured earthquake magnitudes much above
9; this value might be the upper bound in a structural engineering design problem. As
another example, suppose you are interested in the stress under one leg of the chair in
which you are sitting. You might argue that it is possible to get an infinite stress on one
leg of the chair by sitting in the chair in such a manner that only one leg is supporting you
and by letting the area of the tip of that leg approach zero. Although this is theoretically
possible, in reality the chair leg will either buckle elastically as the tip area becomes very
small or yield plastically and fail because materials that have infinite strength have not
yet been developed. Hence, choosing a universe that is discrete and finite or one that is
continuous and infinite is a modeling choice; the choice does not alter the characterization
of sets defined on the universe. If elements of a universe are continuous, then sets defined
on the universe will be composed of continuous elements. For example, if the universe of
discourse is defined as all Richter magnitudes up to a value of 9, then we can define a set
of ‘‘destructive magnitudes,’’ which might be composed (1) of all magnitudes greater than
or equal to a value of 6 in the crisp case or (2) of all magnitudes ‘‘approximately 6 and
higher’’ in the fuzzy case.

A useful attribute of sets and the universes on which they are defined is a metric
known as the cardinality, or the cardinal number. The total number of elements in a universe
X is called its cardinal number, denoted nx , where x again is a label for individual elements
in the universe. Discrete universes that are composed of a countably finite collection of
elements will have a finite cardinal number; continuous universes comprised of an infinite
collection of elements will have an infinite cardinality. Collections of elements within a
universe are called sets, and collections of elements within sets are called subsets. Sets and
subsets are terms that are often used synonymously, since any set is also a subset of the
universal set X. The collection of all possible sets in the universe is called the whole set.

For crisp sets A and B consisting of collections of some elements in X, the following
notation is defined:

x ∈ X ⇒ x belongs to X
x ∈ A ⇒ x belongs to A
x �∈ A ⇒ x does not belong to A

For sets A and B on X, we also have

A ⊂ B ⇒ A is fully contained in B (if x ∈ A, then x ∈ B)
A ⊆ B ⇒ A is contained in or is equivalent to B
(A ↔ B) ⇒ A ⊆ B and B ⊆ A (A is equivalent to B)

We define the null set, ∅, as the set containing no elements, and the whole set, X, as
the set of all elements in the universe. The null set is analogous to an impossible event, and
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the whole set is analogous to a certain event. All possible sets of X constitute a special set
called the power set, P(X). For a specific universe X, the power set P(X) is enumerated in
the following example.

Example 2.1. We have a universe comprised of three elements, X = {a, b, c}, so the cardinal
number is nx = 3. The power set is

P(X) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
The cardinality of the power set, denoted nP(X), is found as

nP(X) = 2nX = 23 = 8

Note that if the cardinality of the universe is infinite, then the cardinality of the power set is
also infinity, i.e., nX = ∞ ⇒ nP(X) = ∞.

Operations on Classical Sets

Let A and B be two sets on the universe X. The union between the two sets, denoted A ∪ B,
represents all those elements in the universe that reside in (or belong to) the set A, the set
B, or both sets A and B. (This operation is also called the logical or; another form of the
union is the exclusive or operation. The exclusive or will be described in Chapter 5.) The
intersection of the two sets, denoted A ∩ B, represents all those elements in the universe
X that simultaneously reside in (or belong to) both sets A and B. The complement of a
set A, denoted A, is defined as the collection of all elements in the universe that do not
reside in the set A. The difference of a set A with respect to B, denoted A | B, is defined
as the collection of all elements in the universe that reside in A and that do not reside in B
simultaneously. These operations are shown below in set-theoretic terms.

Union A ∪ B = {x | x ∈ A or x ∈ B} (2.1)

Intersection A ∩ B = {x | x ∈ A and x ∈ B} (2.2)

Complement A = {x | x �∈ A, x ∈ X} (2.3)

Difference A | B = {x | x ∈ A and x �∈ B} (2.4)

These four operations are shown in terms of Venn diagrams in Figs. 2.2–2.5.

A

B

FIGURE 2.2
Union of sets A and B (logical or).
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A

B

FIGURE 2.3
Intersection of sets A and B.

A

FIGURE 2.4
Complement of set A.

A

B

FIGURE 2.5
Difference operation A | B.

Properties of Classical (Crisp) Sets

Certain properties of sets are important because of their influence on the mathematical
manipulation of sets. The most appropriate properties for defining classical sets and showing
their similarity to fuzzy sets are as follows:

Commutativity A ∪ B = B ∪ A

A ∩ B = B ∩ A (2.5)
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Associativity A ∪ (B ∪ C) = (A ∪ B) ∪ C

A ∩ (B ∩ C) = (A ∩ B) ∩ C (2.6)

Distributivity A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (2.7)

Idempotency A ∪ A = A

A ∩ A = A (2.8)

Identity A ∪ ∅ = A

A ∩ X = A

A ∩ ∅ = ∅ (2.9)

A ∪ X = X

Transitivity If A ⊆ B and B ⊆ C, then A ⊆ C (2.10)

Involution A = A (2.11)

The double-cross-hatched area in Fig. 2.6 is a Venn diagram example of the asso-
ciativity property for intersection, and the double-cross-hatched areas in Figs. 2.7 and 2.8

(a) (b)

A B B

CC

A

FIGURE 2.6
Venn diagrams for (a) (A ∩ B) ∩ C and (b) A ∩ (B ∩ C).

(a) (b)

A B B

CC

A

FIGURE 2.7
Venn diagrams for (a) (A ∪ B) ∩ C and (b) (A ∩ C) ∪ (B ∩ C).
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(a) (b)

A B B

CC

A

= A    C = B    C

FIGURE 2.8
Venn diagrams for (a) (A ∩ B) ∪ C and (b) (A ∪ C) ∩ (B ∪ C).

are Venn diagram examples of the distributivity property for various combinations of the
intersection and union properties.

Two special properties of set operations are known as the excluded middle axioms
and De Morgan’s principles. These properties are enumerated here for two sets A and B.
The excluded middle axioms are very important because these are the only set operations
described here that are not valid for both classical sets and fuzzy sets. There are two
excluded middle axioms (given in Eqs. (2.12)). The first, called the axiom of the excluded
middle, deals with the union of a set A and its complement; the second, called the axiom of
contradiction, represents the intersection of a set A and its complement.

Axiom of the excluded middle A ∪ A = X (2.12a)

Axiom of the contradiction A ∩ A = ∅ (2.12b)

De Morgan’s principles are important because of their usefulness in proving tautolo-
gies and contradictions in logic, as well as in a host of other set operations and proofs. De
Morgan’s principles are displayed in the shaded areas of the Venn diagrams in Figs. 2.9
and 2.10 and described mathematically in Eq. (2.13).

A ∩ B = A ∪ B (2.13a)

A ∪ B = A ∩ B (2.13b)

In general, De Morgan’s principles can be stated for n sets, as provided here for
events, Ei :

E1 ∪ E2 ∪ · · · ∪ En = E1 ∩ E2 ∩ · · · ∩ En (2.14a)

E1 ∩ E2 ∩ · · · ∩ En = E1 ∪ E2 ∪ · · · ∪ En (2.14b)

From the general equations, Eqs. (2.14), for De Morgan’s principles we get a duality
relation: the complement of a union or an intersection is equal to the intersection or union,
respectively, of the respective complements. This result is very powerful in dealing with
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A

B

FIGURE 2.9
De Morgan’s principle (A ∩ B).

A

B

FIGURE 2.10
De Morgan’s principle (A ∪ B).

Load

Arch members

FIGURE 2.11
A two-member arch.

set structures since we often have information about the complement of a set (or event), or
the complement of combinations of sets (or events), rather than information about the sets
themselves.

Example 2.2. A shallow arch consists of two slender members as shown in Fig. 2.11.
If either member fails, then the arch will collapse. If E1 = survival of member 1 and
E2 = survival of member 2, then survival of the arch = E1 ∩ E2, and, conversely, collapse
of the arch = E1 ∩ E2. Logically, collapse of the arch will occur if either of the members fails,
i.e., when E1 ∪ E2. Therefore,

E1 ∩ E2 = E1 ∪ E2

which is an illustration of De Morgan’s principle.
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FIGURE 2.12
Hydraulic hose system.

As Eq. (2.14) suggests, De Morgan’s principles are very useful for compound events,
as illustrated in the following example.

Example 2.3. For purposes of safety, the fluid supply for a hydraulic pump C in an airplane
comes from two redundant source lines, A and B. The fluid is transported by high-pressure
hoses consisting of branches 1, 2, and 3, as shown in Fig. 2.12. Operating specifications
for the pump indicate that either source line alone is capable of supplying the necessary
fluid pressure to the pump. Denote E1 = failure of branch 1, E2 = failure of branch 2, and
E3 = failure of branch 3. Then insufficient pressure to operate the pump would be caused by
(E1 ∩ E2) ∪ E3, and sufficient pressure would be the complement of this event. Using De
Morgan’s principles, we can calculate the condition of sufficient pressure to be

(E1 ∩ E2) ∪ E3 = (E1 ∪ E2) ∩ E3

in which (E1 ∪ E2) means the availability of pressure at the junction, and E3 means the absence
of failure in branch 3.

Mapping of Classical Sets to Functions

Mapping is an important concept in relating set-theoretic forms to function-theoretic
representations of information. In its most general form it can be used to map elements or
subsets on one universe of discourse to elements or sets in another universe. Suppose X and
Y are two different universes of discourse (information). If an element x is contained in X
and corresponds to an element y contained in Y, it is generally termed a mapping from X
to Y, or f : X → Y. As a mapping, the characteristic (indicator) function χA is defined by

χA(x) =
{

1, x ∈ A
0, x /∈ A

(2.15)

where χA expresses ‘‘membership’’ in set A for the element x in the universe. This
membership idea is a mapping from an element x in universe X to one of the two elements
in universe Y, i.e., to the elements 0 or 1, as shown in Fig. 2.13.

For any set A defined on the universe X, there exists a function-theoretic set, called a
value set, denoted V(A), under the mapping of the characteristic function, χ . By convention,
the null set ∅ is assigned the membership value 0 and the whole set X is assigned the
membership value 1.
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FIGURE 2.13
Membership function is a mapping for crisp set A.

Example 2.4. Continuing with the example (Example 2.1) of a universe with three elements,
X = {a, b, c}, we desire to map the elements of the power set of X, i.e., P(X), to a universe, Y,
consisting of only two elements (the characteristic function),

Y = {0, 1}

As before, the elements of the power set are enumerated.

P(X) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

Thus, the elements in the value set V(A) as determined from the mapping are

V{P(X)} = {{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1}}

For example, the third subset in the power set P(X) is the element b. For this subset there is no
a, so a value of 0 goes in the first position of the data triplet; there is a b, so a value of 1 goes in
the second position of the data triplet; and there is no c, so a value of 0 goes in the third position
of the data triplet. Hence, the third subset of the value set is the data triplet, {0, 1, 0}, as already
seen. The value set has a graphical analog that is described in Chapter 1 in the section ‘‘Sets
as Points in Hypercubes.’’

Now, define two sets, A and B, on the universe X. The union of these two sets in terms
of function-theoretic terms is given as follows (the symbol ∨ is the maximum operator and
∧ is the minimum operator):

Union A ∪ B −→ χA∪B(x) = χA(x) ∨ χB(x) = max(χA(x), χB(x)) (2.16)

The intersection of these two sets in function-theoretic terms is given by

Intersection A ∩ B −→ χA∩B(x) = χA(x) ∧ χB(x) = min(χA(x), χB(x)) (2.17)

The complement of a single set on universe X, say A, is given by

Complement A −→ χA(x) = 1 − χA(x) (2.18)

For two sets on the same universe, say A and B, if one set (A) is contained in another set
(B), then

Containment A ⊆ B −→ χA(x) ≤ χB(x) (2.19)
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Function-theoretic operators for union and intersection (other than maximum and
minimum, respectively) are discussed in the literature [Gupta and Qi, 1991].

FUZZY SETS

In classical, or crisp, sets the transition for an element in the universe between membership
and nonmembership in a given set is abrupt and well-defined (said to be ‘‘crisp’’). For an
element in a universe that contains fuzzy sets, this transition can be gradual. This transition
among various degrees of membership can be thought of as conforming to the fact that the
boundaries of the fuzzy sets are vague and ambiguous. Hence, membership of an element
from the universe in this set is measured by a function that attempts to describe vagueness
and ambiguity.

A fuzzy set, then, is a set containing elements that have varying degrees of membership
in the set. This idea is in contrast with classical, or crisp, sets because members of a crisp set
would not be members unless their membership was full, or complete, in that set (i.e., their
membership is assigned a value of 1). Elements in a fuzzy set, because their membership
need not be complete, can also be members of other fuzzy sets on the same universe.

Elements of a fuzzy set are mapped to a universe of membership values using a
function-theoretic form. As mentioned in Chapter 1 (Eq. (1.2)), fuzzy sets are denoted in
this text by a set symbol with a tilde understrike; so, for example, A∼ would be the fuzzy set A.
This function maps elements of a fuzzy set A∼ to a real numbered value on the interval 0 to 1.
If an element in the universe, say x, is a member of fuzzy set A∼ , then this mapping is given
by Eq. (1.2), or µA∼

(x) ∈ [0,1]. This mapping is shown in Fig. 2.14 for a typical fuzzy set.
A notation convention for fuzzy sets when the universe of discourse, X, is discrete

and finite, is as follows for a fuzzy set A∼ :

A∼ =
{

µA∼
(x1)

x1
+

µA∼
(x2)

x2
+ · · ·

}
=

{∑
i

µA∼
(xi)

xi

}
(2.20)

When the universe, X, is continuous and infinite, the fuzzy set A∼ is denoted by

A∼ =
{∫ µA∼

(x)

x

}
(2.21)

In both notations, the horizontal bar is not a quotient but rather a delimiter. The numerator
in each term is the membership value in set A∼ associated with the element of the universe

1

µ

x

A~

0

FIGURE 2.14
Membership function for fuzzy set A∼ .
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indicated in the denominator. In the first notation, the summation symbol is not for algebraic
summation but rather denotes the collection or aggregation of each element; hence the ‘‘+’’
signs in the first notation are not the algebraic ‘‘add’’ but are an aggregation or collection
operator. In the second notation the integral sign is not an algebraic integral but a continuous
function-theoretic aggregation operator for continuous variables. Both notations are due to
Zadeh [1965].

Fuzzy Set Operations

Define three fuzzy sets A∼ , B∼, and C∼ on the universe X. For a given element x of the
universe, the following function-theoretic operations for the set-theoretic operations of
union, intersection, and complement are defined for A∼ , B∼, and C∼ on X:

Union µA∼∪B∼
(x) = µA∼

(x) ∨ µB∼
(x) (2.22)

Intersection µA∼∩B∼
(x) = µA∼

(x) ∧ µB∼
(x) (2.23)

Complement µA∼
(x) = 1 − µA∼

(x) (2.24)

Venn diagrams for these operations, extended to consider fuzzy sets, are shown in
Figs. 2.15–2.17. The operations given in Eqs. (2.22)–(2.24) are known as the standard
fuzzy operations. There are many other fuzzy operations, and a discussion of these is given
later in this chapter.

Any fuzzy set A∼ defined on a universe X is a subset of that universe. Also by definition,
just as with classical sets, the membership value of any element x in the null set ∅ is 0,

1

x

A~ B~

µ

0

FIGURE 2.15
Union of fuzzy sets A∼ and B∼.

1

µ

x

A~ B~

0

FIGURE 2.16
Intersection of fuzzy sets A∼ and B∼.
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FIGURE 2.17
Complement of fuzzy set A∼ .

and the membership value of any element x in the whole set X is 1. Note that the null set
and the whole set are not fuzzy sets in this context (no tilde understrike). The appropriate
notation for these ideas is as follows:

A∼ ⊆ X ⇒ µA∼
(x) ≤ µX(x) (2.25a)

For all x ∈ X, µ∅(x) = 0 (2.25b)

For all x ∈ X, µX(x) = 1 (2.25c)

The collection of all fuzzy sets and fuzzy subsets on X is denoted as the fuzzy power
set P(X)∼ . It should be obvious, based on the fact that all fuzzy sets can overlap, that the
cardinality, nP(X), of the fuzzy power set is infinite; that is, nP(X) = ∞.

De Morgan’s principles for classical sets also hold for fuzzy sets, as denoted by these
expressions:

A∼ ∩ B∼ = A∼ ∪ B∼ (2.26a)

A∼ ∪ B∼ = A∼ ∩ B∼ (2.26b)

As enumerated before, all other operations on classical sets also hold for fuzzy sets,
except for the excluded middle axioms. These two axioms do not hold for fuzzy sets since
they do not form part of the basic axiomatic structure of fuzzy sets (see Appendix A); since
fuzzy sets can overlap, a set and its complement can also overlap. The excluded middle
axioms, extended for fuzzy sets, are expressed by

A∼ ∪ A∼ �= X (2.27a)

A∼ ∩ A∼ �= ∅ (2.27b)

Extended Venn diagrams comparing the excluded middle axioms for classical (crisp) sets
and fuzzy sets are shown in Figs. 2.18 and 2.19, respectively.

Properties of Fuzzy Sets

Fuzzy sets follow the same properties as crisp sets. Because of this fact and because the
membership values of a crisp set are a subset of the interval [0,1], classical sets can be
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FIGURE 2.18
Excluded middle axioms for crisp sets. (a) Crisp set A and its complement; (b) crisp A ∪ A = X
(axiom of excluded middle); (c) crisp A ∩ A = ∅ (axiom of contradiction).
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FIGURE 2.19
Excluded middle axioms for fuzzy sets. (a) Fuzzy set A∼ and its complement; (b) fuzzy A∼ ∪ A∼ �= X

(axiom of excluded middle); (c) fuzzy A ∩ A �= ∅ (axiom of contradiction).

thought of as a special case of fuzzy sets. Frequently used properties of fuzzy sets are listed
below.

Commutativity A∼ ∪ B∼ = B∼ ∪ A∼
A∼ ∩ B∼ = B∼ ∩ A∼ (2.28)

Associativity A∼ ∪
(

B∼ ∪ C∼
)

= (
A∼ ∪ B∼

) ∪ C∼

A∼ ∩
(

B∼ ∩ C∼
)

= (
A∼ ∩ B∼

) ∩ C∼ (2.29)
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Distributivity A∼ ∪
(

B∼ ∩ C∼
)

= (
A∼ ∪ B∼

) ∩
(

A∼ ∪ C∼
)

A∼ ∩
(

B∼ ∪ C∼
)

= (
A∼ ∩ B∼

) ∪
(

A∼ ∩ C∼
)

(2.30)

Idempotency A∼ ∪ A∼ = A∼ and A∼ ∩ A∼ = A∼ (2.31)

Identity A∼ ∪ ∅ = A∼ and A∼ ∩ X = A∼
A∼ ∩ ∅ = ∅ and A∼ ∪ X = X (2.32)

Transitivity If A∼ ⊆ B∼ and B∼ ⊆ C∼, then A∼ ⊆ C∼ (2.33)

Involution A∼ = A∼ (2.34)

Example 2.5. Consider a simple hollow shaft of approximately 1 m radius and wall thickness
1/(2π) m. The shaft is built by stacking a ductile section, D, of the appropriate cross section
over a brittle section, B, as shown in Fig. 2.20. A downward force P and a torque T are
simultaneously applied to the shaft. Because of the dimensions chosen, the nominal shear stress
on any element in the shaft is T (pascals) and the nominal vertical component of stress in the
shaft is P (pascals). We also assume that the failure properties of both B and D are not known
with any certainty.

We define the fuzzy set A∼ to be the region in (P ,T ) space for which material D is ‘‘safe’’
using as a metric the failure function µA = f ([P 2 + 4T 2]1/2). Similarly, we define the set B∼
to be the region in (P ,T ) space for which material B is ‘‘safe,’’ using as a metric the failure
function µB = g(P − β|T |), where β is an assumed material parameter. The functions f and
g will, of course, be membership functions on the interval [0, 1]. Their exact specification is
not important at this point. What is useful, however, prior to specifying f and g, is to discuss
the basic set operations in the context of this problem. This discussion is summarized below:

1. A∼ ∪ B∼ is the set of loadings for which one expects that either material B or material D will
be ‘‘safe.’’

2. A∼ ∩ B∼ is the set of loadings for which one expects that both material B and material D are
‘‘safe.’’

3. A∼ and B∼ are the sets of loadings for which material D and material B are unsafe, respectively.

2π 
1

Radius R = 1m
Wall thickness =        m

D

B

P

T

(a) (b)

FIGURE 2.20
(a) Axial view and (b) cross-sectional view of example hollow shaft.
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4. A∼ | B∼ is the set of loadings for which the ductile material is safe but the brittle material is in
jeopardy.

5. B∼ | A∼ is the set of loadings for which the brittle material is safe but the ductile material is in
jeopardy.

6. De Morgan’s principle A∼ ∩ B∼ = A∼ ∪ B∼ asserts that the loadings that are not safe with respect
to both materials are the union of those that are unsafe with respect to the brittle material
with those that are unsafe with respect to the ductile material.

7. De Morgan’s principle A∼ ∪ B∼ = A∼ ∩ B∼ asserts that the loads that are safe for neither material
D nor material B are the intersection of those that are unsafe for material D with those that
are unsafe for material B.

To illustrate these ideas numerically, let’s say we have two discrete fuzzy sets, namely,

A∼ =
{

1

2
+ 0.5

3
+ 0.3

4
+ 0.2

5

}
and B∼ =

{
0.5

2
+ 0.7

3
+ 0.2

4
+ 0.4

5

}

We can now calculate several of the operations just discussed (membership for element 1 in
both A∼ and B∼ is implicitly 0):

Complement A∼ =
{

1

1
+ 0

2
+ 0.5

3
+ 0.7

4
+ 0.8

5

}

B∼ =
{

1

1
+ 0.5

2
+ 0.3

3
+ 0.8

4
+ 0.6

5

}

Union A∼ ∪ B∼ =
{

1

2
+ 0.7

3
+ 0.3

4
+ 0.4

5

}

Intersection A∼ ∩ B∼ =
{

0.5

2
+ 0.5

3
+ 0.2

4
+ 0.2

5

}

Difference A∼ | B∼ = A∼ ∩ B∼ =
{

0.5

2
+ 0.3

3
+ 0.3

4
+ 0.2

5

}

B∼ | A∼ = B∼ ∩ A∼ =
{

0

2
+ 0.5

3
+ 0.2

4
+ 0.4

5

}

De Morgan′s A∼ ∪ B∼ = A∼ ∩ B∼ =
{

1

1
+ 0

2
+ 0.3

3
+ 0.7

4
+ 0.6

5

}
principles

A∼ ∩ B∼ = A∼ ∪ B∼ =
{

1

1
+ 0.5

2
+ 0.5

3
+ 0.8

4
+ 0.8

5

}

Example 2.6. Continuing from the chemical engineering case described in Problem 1.13 of
Chapter 1, suppose the selection of an appropriate analyzer to monitor the ‘‘sales gas’’ sour
gas concentration is important. This selection process can be complicated by the fact that one
type of analyzer, say A, does not provide an average suitable pressure range but it does give a
borderline value of instrument dead time; in contrast another analyzer, say B, may give a good
value of process dead time but a poor pressure range. Suppose for this problem we consider
three analyzers: A, B and C.

Let

P∼ =
{

0.7

A
+ 0.3

B
+ 0.9

C

}
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represent the fuzzy set showing the pressure range suitability of analyzers A, B, and C (a
membership of 0 is not suitable, a value of 1 is excellent).

Also let

OT∼ =
{

0.5

A
+ 0.9

B
+ 0.4

C

}

represent the fuzzy set showing the instrument dead time suitability of analyzers A, B, and C
(again, 0 is not suitable and 1 is excellent).

P∼ and OT∼ will show the analyzers that are not suitable for pressure range and instrument
dead time, respectively:

P∼ =
{

0.3

A
+ 0.7

B
+ 0.1

C

}
and OT∼ =

{
0.5

A
+ 0.1

B
+ 0.6

C

}
,

therefore P ∩ OT∼ =
{

0.3

A
+ 0.1

B
+ 0.1

C

}

P∼ ∪ OT∼ will show which analyzer is most suitable in either category:

P∼ ∪ OT∼ =
{

0.7

A
+ 0.9

B
+ 0.9

C

}

P∼ ∩ OT∼ will show which analyzer is suitable in both categories:

P∼ ∩ OT∼ =
{

0.5

A
+ 0.3

B
+ 0.4

C

}

Example 2.7. One of the crucial manufacturing operations associated with building the
external fuel tank for the Space Shuttle involves the spray-on foam insulation (SOFI) process,
which combines two critical component chemicals in a spray gun under high pressure and a
precise temperature and flow rate. Control of these parameters to near setpoint values is crucial
for satisfying a number of important specification requirements. Specification requirements
consist of aerodynamic, mechanical, chemical, and thermodynamic properties.

Fuzzy characterization techniques could be employed to enhance initial screening
experiments; for example, to determine the critical values of both flow and temperature. The
true levels can only be approximated in the real world. If we target a low flow rate for 48
lb/min, it may be 38 to 58 lb/min. Also, if we target a high temperature for 135◦F, it may be
133 to 137◦F.

How the imprecision of the experimental setup influences the variabilities of key process
end results could be modeled using fuzzy set methods, e.g., high flow with high temperature,
low flow with low temperature, etc. Examples are shown in Fig. 2.21, for low flow rate and
high temperature.

Suppose we have a fuzzy set for flow, normalized on a universe of integers [1, 2, 3, 4,
5] and a fuzzy set for temperature, normalized on a universe of integers [1, 2, 3, 4], as follows:

F∼ =
{

0

1
+ 0.5

2
+ 1

3
+ 0.5

4
+ 0

5

}
and D∼ =

{
0

2
+ 1

3
+ 0

4

}

Further suppose that we are interested in how flow and temperature are related in a pairwise
sense; we could take the intersection of these two sets. A three-dimensional image should be
constructed when we take the union or intersection of sets from two different universes. For
example, the intersection of F∼ and D∼ is given in Fig. 2.22. The idea of combining membership
functions from two different universes in an orthogonal form, as indicated in Fig. 2.22, is
associated with what is termed noninteractive fuzzy sets, and this will be described below.
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Flow rate (lb/min)

Low flow rate
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µ

(b)

Temperature (°F)

High temperature

133 135 137

FIGURE 2.21
Foam insulation membership function for (a) low flow rate and (b) high temperature.
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FIGURE 2.22
Three-dimensional image of the intersection of two fuzzy sets, i.e., F∼ ∩ D∼ .

Noninteractive Fuzzy Sets

Later in the text, in Chapter 8 on simulation, we will make reference to noninteractive
fuzzy sets. Noninteractive sets in fuzzy set theory can be thought of as being analogous to
independent events in probability theory. They always arise in the context of relations or
in n-dimensional mappings [Zadeh, 1975; Bandemer and Näther, 1992]. A noninteractive
fuzzy set can be defined as follows. Suppose we define a fuzzy set A∼ on the Cartesian
space X = X1 × X2. The set A∼ is separable into two noninteractive fuzzy sets, called its
orthogonal projections, if and only if

A∼ = PrX1(A∼) × PrX2(A∼) (2.35a)

where

µPrX1 (A∼)(x1) = max
x2∈X2

µA∼
(x1, x2), ∀x1 ∈ X1 (2.35b)

µPrX2 (A∼)(x2) = max
x1∈X1

µA∼
(x1, x2), ∀x2 ∈ X2 (2.35c)

are the membership functions for the projections of A∼ on universes X1 and X2, respec-
tively. Hence, if Eq. (2.35a) holds for a fuzzy set, the membership functions µPrX1 (A∼)(x1)
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µ
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1
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x2
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(a) (b)

FIGURE 2.23
Fuzzy sets: (a) interactive and (b) noninteractive.

and µPrX2 (A∼)(x2) describe noninteractive fuzzy sets, i.e., the projections are noninteractive
fuzzy sets.

Separability or noninteractivity of fuzzy set A∼ describes a kind of independence of the
components (x1 and x2): A∼ can be uniquely reconstructed by its projections; the components
of the fuzzy set A∼ can vary without consideration of the other components. As an example,
the two-dimensional planar fuzzy set shown in Fig. 2.22 comprises noninteractive fuzzy
sets (F∼ and D∼), because it was constructed by the Cartesian product (intersection in this
case) of the two fuzzy sets F∼ and D∼ , whereas a two-dimensional fuzzy set comprising
curved surfaces will be nonseparable, i.e., its components will be interactive. Interactive
components are characterized by the fact that variation of one component depends on the
values of the other components. See Fig. 2.23.

Alternative Fuzzy Set Operations

The operations on fuzzy sets listed as Eqs. (2.22–2.24) are called the standard fuzzy
operations. These operations are the same as those for classical sets, when the range
of membership values is restricted to the unit interval. However, these standard fuzzy
operations are not the only operations that can be applied to fuzzy sets. For each of the
three standard operations, there exists a broad class of functions whose members can
be considered fuzzy generalizations of the standard operations. Functions that qualify as
fuzzy intersections and fuzzy unions are usually referred to in the literature as t-norms
and t-conorms (or s-norms), respectively [e.g., Klir and Yuan, 1995; Klement et al., 2000].
These t-norms and t-conorms are so named because they were originally introduced as
triangular norms and triangular conorms, respectively, by Menger [1942] in his study of
statistical metric spaces.

The standard fuzzy operations have special significance when compared to all of the
other t-norms and t-conorms. The standard fuzzy intersection, min operator, when applied
to a fuzzy set produces the largest membership value of all the t-norms, and the standard
fuzzy union, max operator, when applied to a fuzzy set produces the smallest membership
value of all the t-conorms. These features of the standard fuzzy intersection and union are



REFERENCES 43

significant because they both prevent the compounding of errors in the operands [Klir and
Yuan, 1995]. Most of the alternative norms lack this significance.

Aggregation operations on fuzzy sets are operations by which several fuzzy sets
are combined in a desirable way to produce a single fuzzy set. For example, suppose
a computer’s performance in three test trials is described as excellent, very good, and
nominal, and each of these linguistic labels is represented by a fuzzy set on the universe
[0, 100]. Then, a useful aggregation operation would produce a meaningful expression, in
terms of a single fuzzy set, of the overall performance of the computer. The standard fuzzy
intersections and unions qualify as aggregation operations on fuzzy sets and, although they
are defined for only two arguments, the fact that they have a property of associativity
provides a mechanism for extending their definitions to three or more arguments. Other
common aggregation operations, such as averaging operations and ordered weighted
averaging operations, can be found in the literature [see Klir and Yuan, 1995]. The
averaging operations have their own range that happens to fill the gap between the largest
intersection (the min operator) and the smallest union (the max operator). These averaging
operations on fuzzy sets have no counterparts in classical set theory and, because of this,
extensions of fuzzy sets into fuzzy logic allows for the latter to be much more expressive
in natural categories revealed by empirical data or required by intuition [Belohlavek et al.,
2002].

SUMMARY

In this chapter we have developed the basic definitions for, properties of, and operations on
crisp sets and fuzzy sets. It has been shown that the only basic axioms not common to both
crisp and fuzzy sets are the two excluded middle axioms; however, these axioms are not
part of the axiomatic structure of fuzzy set theory (see Appendix A). All other operations
detailed here are common to both crisp and fuzzy sets; however, other operations such as
aggregation and averaging operators that are allowed in fuzzy sets have no counterparts
in classical set theory. For many situations in reasoning, the excluded middle axioms
present constraints on reasoning (see Chapters 5 and 15). Aside from the difference of set
membership being an infinite-valued idea as opposed to a binary-valued quantity, fuzzy
sets are handled and treated in the same mathematical form as are crisp sets. The principle
of noninteractivity between sets was introduced and is analogous to the assumption of
independence in probability modeling. Noninteractive fuzzy sets will become a necessary
idea in fuzzy systems simulation when inputs from a variety of universes are aggregated in
a collective sense to propagate an output; Chapters 5 and 8 will discuss this propagation
process in more detail. Finally, it was pointed out that there are many other operations,
called norms, that can be used to extend fuzzy intersections, unions, and complements, but
such extensions are beyond the scope of this text.
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PROBLEMS

2.1. Typical membership functions for laminar and turbulent flow for a flat plate with a sharp leading
edge in a typical air stream are shown in Fig. P2.1. Transition between laminar and turbulent
flow usually takes place between Reynolds numbers of 2 × 105 and 3 × 106. An Re = 5 × 105

is usually considered the point of turbulent flow for this situation. Find the intersection and
union for the two flows.

m turbulent

m laminar

1.0

2 × 105 5 × 105 3 × 106 Re

FIGURE P2.1

2.2. In neighborhoods there may be several storm-water ponds draining to a single downstream
trunk sewer. In this neighborhood the city monitors all ponds for height of water caused by
storm events. For two storms (labeled A and B) identified as being significant based on rainfall
data collected at the airport, determine the corresponding performance of the neighborhood
storm-water ponds.
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Suppose the neighborhood has five ponds, i.e., X = [1, 2, 3, 4, 5], and suppose that significant
pond storage membership is 1.0 for any pond that is 70% or more to full depth. For storm A∼
the pond performance set is

A∼ =
{

0.6

1
+ 0.3

2
+ 0.9

3
+ 1

4
+ 1

5

}

For storm B∼ the pond performance set is

B∼ =
{

0.8

1
+ 0.4

2
+ 0.9

3
+ 0.7

4
+ 1

5

}

(a) To assess the impacts on pond performance suppose only two ponds can be monitored
due to budget constraints. Moreover, data from the storms indicate that there may be a
difference in thunderburst locations around this neighborhood. Which two of the five ponds
should be monitored?

(b) Determine the most conservative estimate of pond performance (i.e., find A∼ ∪ B∼).
2.3. Methane biofilters can be used to oxidize methane using biological activities. It has become

necessary to compare performance of two test columns, A and B. The methane outflow level at
the surface, in nondimensional units of X = {50, 100, 150, 200], was detected and is tabulated
below against the respective methane inflow into each test column. The following fuzzy sets
represent the test columns:

A∼ =
{

0.15

50
+ 0.25

100
+ 0.5

150
+ 0.7

200

}
B∼ =

{
0.2

50
+ 0.3

100
+ 0.6

150
+ 0.65

200

}

Calculate the union, intersection, and the difference for the test columns.
2.4. Given a set of measurements of the magnetic field near the surface of a person’s head, we

want to locate the electrical activity in the person’s brain that would give rise to the measured
magnetic field. This is called the inverse problem, and it has no unique solution. One approach
is to model the electrical activity as dipoles and attempt to find one to four dipoles that would
produce a magnetic field closely resembling the measured field. For this problem we will model
the procedure a neuroscientist would use in attempting to fit a measured magnetic field using
either one or two dipoles. The scientist uses a reduced chi-square statistic to determine how
good the fit is. If R = 1.0, the fit is exact. If R ≥ 3, the fit is bad. Also a two-dipole model must
have a lower R than a one-dipole model to give the same amount of confidence in the model.
The range of R will be taken as R = {1.0, 1.5, 2.0, 2.5, 3.0} and we define the following fuzzy
sets for D1 = the one-dipole model and D2 = the two-dipole model:

D∼1
=

{
1

1.0
+ 0.75

1.5
+ 0.3

2.0
+ 0.15

2.5
+ 0

3.0

}

D∼2
=

{
1

1.0
+ 0.6

1.5
+ 0.2

2.0
+ 0.1

2.5
+ 0

3.0

}

For these two fuzzy sets, find the following:
(a) D∼1 ∪ D∼2

(b) D∼1 ∩ D∼2

(c) D∼1

(d) D∼2
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(e) D∼1 | D∼2

(f ) D∼1 ∪ D∼2

2.5. In determining corporate profitability, many construction companies must make decisions
based upon the particular client’s spending habits, such as the amount the client spends and
their capacity for spending. Many of these attributes are fuzzy. A client which spends a ‘‘large
amount’’ is considered to be ‘‘profitable’’ to the construction company. A ‘‘large’’ amount
of spending is a fuzzy variable, as is a ‘‘profitable’’ return. These two fuzzy sets should have
some overlap, but they should not be defined on an identical range.

A∼ = {‘‘large’’ spenders}
B∼ = {‘‘profitable’’ clients}

For the two fuzzy sets shown in Fig. P2.5, find the following properties graphically:

1.0

0
5,000 10,000 50,000 100,000

Dollars

µ
B
~

A
~

(Not to scale)

FIGURE P2.5

(a) A∼ ∪ B∼: all clients deemed profitable or who are large spenders.
(b) A∼ ∩ B∼: all clients deemed profitable and large spenders.

(c) A∼ and B∼: those clients (i) deemed not profitable, and (ii) deemed not large spenders
(separately).

(d) A∼ | B∼: entities deemed profitable clients, but not large spenders.

(e) A∼ ∪ B∼ = A∼ ∩ B∼ (De Morgan’s principle).
2.6. Suppose you are a soils engineer. You wish to track the movement of soil particles under strain

in an experimental apparatus that allows viewing of the soil motion. You are building pattern
recognition software to allow a computer to monitor and detect the motions. However, there are
two difficulties in ‘‘teaching’’ your software to view the motion: (1) the tracked particle can be
occluded by another particle; (2) your segmentation algorithm can be inadequate. One way to
handle the occlusion is to assume that the area of the occluded particle is smaller than the area
of the unoccluded particle. Therefore, when the area is changing you know that the particle is
occluded. However, the segmentation algorithm also makes the area of the particle shrink if
the edge detection scheme in the algorithm cannot do a good job because of poor illumination
in the experimental apparatus. In other words, the area of the particle becomes small as a
result of either occlusion or bad segmentation. You define two fuzzy sets on a universe of
nondimensional particle areas, X = [0, 1, 2, 3, 4]: A∼ is a fuzzy set whose elements belong to
the occlusion, and B∼ is a fuzzy set whose elements belong to inadequate segmentation. Let

A∼ =
{

0.1

0
+ 0.4

1
+ 1

2
+ 0.3

3
+ 0.2

4

}

B∼ =
{

0.2

0
+ 0.5

1
+ 1

2
+ 0.4

3
+ 0.1

4

}
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Find the following:
(a) A∼ ∪ B∼
(b) A∼ ∩ B∼
(c) A∼
(d) B∼
(e) A∼ ∩ B∼
(f ) A∼ ∪ B∼

2.7. You are asked to select an implementation technology for a numerical processor. Computation
throughput is directly related to clock speed. Assume that all implementations will be in the
same family (e.g., CMOS). You are considering whether the design should be implemented
using medium-scale integration (MSI) with discrete parts, field-programmable array parts
(FPGA), or multichip modules (MCM). Define the universe of potential clock frequencies as
X = {1, 10, 20, 40, 80, 100} MHz; and define MSI, FPGA, and MCM as fuzzy sets of clock
frequencies that should be implemented in each of these technologies, where the following
table defines their membership values:

Clock frequency, MHz MSI FPGA MCM

1 1 0.3 0
10 0.7 1 0
20 0.4 1 0.5
40 0 0.5 0.7
80 0 0.2 1

100 0 0 1

Representing the three sets as MSI = M∼ , FPGA = F∼, and MCM = C∼, find the following:
(a) M∼ ∪ F∼
(b) M∼ ∩ F∼
(c) M∼
(d) F∼
(e) C∼ ∩ F∼
(f ) M∼ ∩ C∼

2.8. We want to compare two sensors based upon their detection levels and gain settings. For a
universe of discourse of gain settings, X = {0, 20, 40, 60, 80, 100}, the sensor detection levels
for the monitoring of a standard item provides typical membership functions to represent the
detection levels for each of the sensors; these are given below in standard discrete form:

S∼1 =
{

0

0
+ 0.5

20
+ 0.65

40
+ 0.85

60
+ 1.0

80
+ 1.0

100

}

S∼2 =
{

0

0
+ 0.45

20
+ 0.6

40
+ 0.8

60
+ 0.95

80
+ 1.0

100

}

Find the following membership functions using standard fuzzy operations:
(a) µS∼1∪S∼2(x)

(b) µS∼1∩S∼2(x)

(c) µS∼1
(x)

(d) µS∼2
(x)

(e) µS∼1∪S∼1
(x)

(f ) µS∼1∩S∼1
(x)
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2.9. For flight simulator data the determination of certain changes in operating conditions of the
aircraft is made on the basis of hard breakpoints in the Mach region. Let us define a fuzzy set to
represent the condition of ‘‘near’’ a Mach number of 0.74. Further, define a second fuzzy set
to represent the condition of ‘‘in the region of’’ a Mach number of 0.74. In typical simulation
data a Mach number of 0.74 is a hard breakpoint.

A∼ = near Mach 0.74 =
{

0

0.730
+ 0.8

0.735
+ 1

0.740
+ 0.6

0.745
+ 0

0.750

}

B∼ = in the region of Mach 0.74 =
{

0

0.730
+ 0.4

0.735
+ 0.8

0.740
+ 1

0.745
+ 0.6

0.750

}

For these two fuzzy sets find the following:
(a) A∼ ∪ B∼
(b) A∼ ∩ B∼
(c) A∼
(d) A∼ | B∼
(e) A∼ ∪ B∼
(f ) A∼ ∩ B∼

2.10. A system component is tested on a drop table in the time domain, t , to shock loads of haversine
pulses of various acceleration amplitudes, ẍ, as shown in Fig. P2.10a. After the test the
component is evaluated for damage. Define two fuzzy sets, ‘‘Passed’’ = P∼ and ‘‘Failed’’ = F∼.
Of course, failed and passed are fuzzy notions, since failure to the component might be some
partial level between the extremes of pass and fail. These sets are defined on a linear scale of
accelerations, |ẍ|, which is the magnitude of the input pulse (see Fig. P2.10b). We define the
following set operations:

ẍ| |

t

Amplitude

(a)

FIGURE P2.10a

(b)

P

F
| |ẍ~

~

FIGURE P2.10b

(a) F∼ ∪ P∼ = {|ẍ|}: the universe of input shock level results.
(b) F∼ ∩ P∼: the portion of the universe where the component could both fail and pass.
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(c) F∼: portion of universe that definitely passed.
(d) P∼: portion of universe that definitely failed.
(e) F∼ | P∼: the portion of the failed set that definitely failed.
Define suitable membership functions for the two fuzzy sets F∼ and P∼ and determine the
operations just described.

2.11. Suppose an engineer is addressing a problem in the power control of a mobile cellular
telephone transmitting to its base station. Let MP∼ be the medium-power fuzzy set, and HP∼ be
the high-power set. Let the universe of discourse be comprised of discrete units of dB · m,
i.e., X = {0, 1, 2, . . . , 10}. The membership functions for these two fuzzy sets are shown in
Fig. P2.11. For these two fuzzy sets, demonstrate union, intersection, complement, and the
difference.

0 5 10

1

0 5 10

1

0 0
x x

MP
~

HP
~

µ µ

FIGURE P2.11

2.12. Consider a local area network (LAN) of interconnected workstations that communicate using
Ethernet protocols at a maximum rate of 10 Mbit/s. Traffic rates on the network can be
expressed as the peak value of the total bandwidth (BW) used; and the two fuzzy variables,
‘‘Quiet’’ and ‘‘Congested,’’ can be used to describe the perceived loading of the LAN. If the
discrete universal set X = {0, 1, 2, 5, 7, 9, 10} represents bandwidth usage, in Mbit/s, then the
membership functions of the fuzzy sets Quiet Q∼ and Congested C∼ are as shown in Fig. P2.12.

µ(x)

1.0

0

x, Mbit/s

0 1 2 3 4 5 6 7 8 9 10

Quiet

Congested

FIGURE P2.12

For these two fuzzy sets, graphically determine the union, intersection, complement of each,
difference Q∼ | C∼, and both De Morgan’s principles.

2.13. An engineer is asked to develop a glass break detector/discriminator for use with residential
alarm systems. The detector should be able to distinguish between the breaking of a pane of a
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glass (a window) and a drinking glass. From analysis it has been determined that the sound of a
shattering window pane contains most of its energy at frequencies centered about 4 kHz whereas
the sound of a shattering drinking glass contains most of its energy at frequencies centered
about 8 kHz. The spectra of the two shattering sounds overlap. The membership functions for
the window pane and the glass are given as µA∼

(x) and µB∼
(x), respectively. Illustrate the basic

operations of union, intersection, complement, and difference for the following membership
functions:

x = 0, 1, . . . , 10 σ = 2 µA∼
= 4 µB∼

= 8 µA∼
(x) = exp

[−(x − µA∼
)2

2σ 2

]

µB∼
(x) = exp

[−(x − µB∼
)2

2σ 2

]

2.14. Samples of a new microprocessor IC chip are to be sent to several customers for beta testing.
The chips are sorted to meet certain maximum electrical characteristics, say frequency and
temperature rating, so that the ‘‘best’’ chips are distributed to preferred customer 1. Suppose
that each sample chip is screened and all chips are found to have a maximum operating
frequency in the range 7–15 MHz at 20◦C. Also, the maximum operating temperature range
(20◦C ±�T ) at 8 MHz is determined. Suppose there are eight sample chips with the following
electrical characteristics:

Chip number

1 2 3 4 5 6 7 8

fmax, MHz 6 7 8 9 10 11 12 13
�Tmax, ◦C 0 0 20 40 30 50 40 60

The following fuzzy sets are defined:

A∼ = set of ‘‘fast’’ chips = chips with f max ≥ 12 MHz

=
{

0

1
+ 0

2
+ 0

3
+ 0

4
+ 0.2

5
+ 0.6

6
+ 1

7
+ 1

8

}
B∼ = set of ‘‘slow’’ chips = chips with f max ≥ 8 MHz

=
{

0.1

1
+ 0.5

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8

}
C∼ = set of ‘‘cold’’ chips = chips with �Tmax ≥ 10◦C

=
{

0

1
+ 0

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8

}
D∼ = set of ‘‘hot’’ chips = chips with �Tmax ≥ 50◦C

=
{

0

1
+ 0

2
+ 0

3
+ 0.5

4
+ 0.1

5
+ 1

6
+ 0.5

7
+ 1

8

}

It is seen that the units for operating frequencies and temperatures are different; hence, the associated
fuzzy sets could be considered from different universes and operations on combinations of them
would involve the Cartesian product. However, both sets of universes have been transformed to a
different universe, simply the universe of countable integers from 1 to 8. Based on a single universe,
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use these four fuzzy sets to illustrate various set operations. For example, the following operations
relate the sets of ‘‘fast’’ and ‘‘hot’’ chips:

(a) A∼ ∪ D∼
(b) A∼ ∩ D∼
(c) A∼
(d) A∼ | D∼
(e) A∼ ∪ D∼
(f ) A∼ ∩ D∼



CHAPTER

3
CLASSICAL
RELATIONS
AND FUZZY
RELATIONS

. . . assonance means getting the rhyme wrong.

Michael Caine as Professor Bryant in the movie
Educating Rita, 1983

This chapter introduces the notion of a relation as the basic idea behind numerous operations
on sets such as Cartesian products, composition of relations, and equivalence properties. Like
a set, a relation is of fundamental importance in all engineering, science, and mathematically
based fields. It is also associated with graph theory, a subject of wide impact in design and
data manipulation. Relations can be also be used to represent similarity, a notion that is
important to many different technologies and, as expressed in the humorous metaphorical
quote above, a concept that is a key ingredient in our natural language and its many uses, e.g.,
its use in poems. The American Heritage Dictionary defines assonance as ‘‘approximate
agreement or partial similarity’’; assonance is an example of a prototypical fuzzy concept.

Understanding relations is central to the understanding of a great many areas addressed
in this textbook. Relations are intimately involved in logic, approximate reasoning, rule-
based systems, nonlinear simulation, synthetic evaluation, classification, pattern recognition,
and control. Relations will be referred to repeatedly in this text in many different applications
areas. Relations represent mappings for sets just as mathematical functions do; relations are
also very useful in representing connectives in logic (see Chapter 5).

This chapter begins by describing Cartesian products as a means of producing
ordered relationships among sets. Following this is an introduction to classical (crisp)
relations – structures that represent the presence or absence of correlation, interaction, or

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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propinquity between the elements of two or more crisp sets; in this case, a set could also be
the universe. There are only two degrees of relationship between elements of the sets in a
crisp relation: the relationships ‘‘completely related’’ and ‘‘not related,’’ in a binary sense.
Basic operations, properties, and the cardinality of relations are explained and illustrated.
Two composition methods to relate elements of three or more universes are illustrated.

Fuzzy relations are then developed by allowing the relationship between elements
of two or more sets to take on an infinite number of degrees of relationship between the
extremes of ‘‘completely related’’ and ‘‘not related.’’ In this sense, fuzzy relations are
to crisp relations as fuzzy sets are to crisp sets; crisp sets and relations are constrained
realizations of fuzzy sets and relations. Operations, properties, and cardinality of fuzzy
relations are introduced and illustrated, as are Cartesian products and compositions of fuzzy
relations. Some engineering examples are given to illustrate various issues associated with
relations. The reader can consult the literature for more details on relations [e.g., Gill, 1976;
Dubois and Prade, 1980; Kandel, 1985; Klir and Folger, 1988; Zadeh, 1971].

This chapter contains a section on tolerance and equivalence relations – both classical
and fuzzy – which is introduced for use in later chapters of the book. Both tolerance and
equivalence relations are illustrated with some examples. Finally, the chapter concludes
with a section on value assignments, which discusses various methods to develop the
elements of relations, and a list of additional composition operators. These assignment
methods are discussed, and a few examples are given in the area of similarity methods.

CARTESIAN PRODUCT

An ordered sequence of r elements, written in the form (a1, a2, a3, . . . , ar ), is called an
ordered r-tuple; an unordered r-tuple is simply a collection of r elements without restrictions
on order. In a ubiquitous special case where r = 2, the r-tuple is referred to as an ordered
pair. For crisp sets A1, A2, . . . , Ar , the set of all r-tuples (a1, a2, a3, . . . , ar ), where a1 ∈ A1,
a2 ∈ A2, and ar ∈ Ar , is called the Cartesian product of A1, A2, . . . , Ar , and is denoted by
A1 × A2 × · · · × Ar . The Cartesian product of two or more sets is not the same thing as the
arithmetic product of two or more sets. The latter will be dealt with in Chapter 12, when
the extension principle is introduced.

When all the Ar are identical and equal to A, the Cartesian product A1 × A2 × · · · × Ar

can be denoted as Ar .

Example 3.1. The elements in two sets A and B are given as A = {0, 1} and B = {a, b, c}.
Various Cartesian products of these two sets can be written as shown:

A × B = {(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)}
B × A = {(a, 0), (a, 1), (b, 0), (b, 1), (c, 0), (c, 1)}
A × A = A2 = {(0, 0), (0, 1), (1, 0), (1, 1)}
B × B = B2 = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}

CRISP RELATIONS

A subset of the Cartesian product A1 × A2 × · · · × Ar is called an r-ary relation over
A1, A2, . . . , Ar . Again, the most common case is for r = 2; in this situation the relation is
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a subset of the Cartesian product A1 × A2 (i.e., a set of pairs, the first coordinate of which
is from A1 and the second from A2). This subset of the full Cartesian product is called a
binary relation from A1 into A2. If three, four, or five sets are involved in a subset of the full
Cartesian product, the relations are called ternary, quaternary, and quinary, respectively.
In this text, whenever the term relation is used without qualification, it is taken to mean a
binary relation.

The Cartesian product of two universes X and Y is determined as

X × Y = {(x, y) | x ∈ X, y ∈ Y} (3.1)

which forms an ordered pair of every x ∈ X with every y ∈ Y, forming unconstrained
matches between X and Y. That is, every element in universe X is related completely to
every element in universe Y. The strength of this relationship between ordered pairs of
elements in each universe is measured by the characteristic function, denoted χ , where a
value of unity is associated with complete relationship and a value of zero is associated
with no relationship, i.e.,

χX×Y(x, y) =
{

1, (x, y) ∈ X × Y
0, (x, y) /∈ X × Y

(3.2)

One can think of this strength of relation as a mapping from ordered pairs of the
universe, or ordered pairs of sets defined on the universes, to the characteristic function.
When the universes, or sets, are finite the relation can be conveniently represented by a
matrix, called a relation matrix. An r-ary relation can be represented by an r-dimensional
relation matrix. Hence, binary relations can be represented by two-dimensional matrices
(used throughout this text).

An example of the strength of relation for the unconstrained case is given in the
Sagittal diagram shown in Fig. 3.1 (a Sagittal diagram is simply a schematic depicting
points as elements of universes, and lines as relationships between points, or it can be
a pictorial of the elements as nodes which are connected by directional lines, as seen in
Fig. 3.8). Lines in the Sagittal diagram and values of unity in the relation matrix

R =



a b c

1 1 1 1
2 1 1 1
3 1 1 1




correspond to the ordered pairs of mappings in the relation. Here, the elements in the two
universes are defined as X = {1, 2, 3} and Y = {a, b, c}.

1

2

3

a

b

c

X Y

FIGURE 3.1
Sagittal diagram of an unconstrained relation.
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A more general crisp relation, R, exists when matches between elements in two
universes are constrained. Again, the characteristic function is used to assign values of
relationship in the mapping of the Cartesian space X × Y to the binary values of (0, 1):

χR(x, y) =
{

1, (x, y) ∈ R
0, (x, y) /∈ R

(3.3)

Example 3.2. In many biological models, members of certain species can reproduce only with
certain members of another species. Hence, only some elements in two or more universes have
a relationship (nonzero) in the Cartesian product. An example is shown in Fig. 3.2 for two
two-member species, i.e., for X = {1, 2} and for Y = {a, b}. In this case the locations of zeros
in the relation matrix

R = {(1, a), (2, b)} R ⊂ X × Y

and the absence of lines in the Sagittal diagram correspond to pairs of elements between the
two universes where there is ‘‘no relation’’; that is, the strength of the relationship is zero.

Special cases of the constrained and the unconstrained Cartesian product for sets where
r = 2 (i.e., for A2) are called the identity relation and the universal relation, respectively.
For example, for A = {0, 1, 2} the universal relation, denoted UA, and the identity relation,
denoted IA, are found to be

UA = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}
IA = {(0, 0), (1, 1), (2, 2)}

Example 3.3. Relations can also be defined for continuous universes. Consider, for example,
the continuous relation defined by the following expression:

R = {(x, y) | y ≥ 2x, x ∈ X, y ∈ Y}

which is also given in function-theoretic form using the characteristic function as

χR(x, y) =
{

1, y ≥ 2x
0, y < 2x

Graphically, this relation is equivalent to the shaded region shown in Fig. 3.3.

Cardinality of Crisp Relations

Suppose n elements of the universe X are related (paired) to m elements of the universe
Y. If the cardinality of X is nX and the cardinality of Y is nY, then the cardinality of the

1

2

a

b

X Y

FIGURE 3.2
Relation matrix and Sagittal diagram for a constrained relation.
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y = 2x

x0

y

FIGURE 3.3
Relation corresponding to the expression y ≥ 2x.

relation, R, between these two universes is nX×Y = nX ∗ nY. The cardinality of the power
set describing this relation, P(X × Y), is then nP(X×Y) = 2(nXnY).

Operations on Crisp Relations

Define R and S as two separate relations on the Cartesian universe X × Y, and define the
null relation and the complete relation as the relation matrices O∼ and E∼, respectively. An
example of a 4 × 4 form of the O∼ and E∼ matrices is given here:

O =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 E =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




The following function-theoretic operations for the two crisp relations (R, S) can now
be defined.

Union R ∪ S −→ χR∪S(x, y) : χR∪S(x, y) = max[χR(x, y), χS(x, y)] (3.4)

Intersection R ∩ S −→ χR∩S(x, y) : χR∩S(x, y) = min[χR(x, y), χS(x, y)] (3.5)

Complement R −→ χR(x, y) : χR(x, y) = 1 − χR(x, y) (3.6)

Containment R ⊂ S −→ χR(x, y) : χR(x, y) ≤ χS(x, y) (3.7)

Identity ∅ −→ O and X −→ E (3.8)

Properties of Crisp Relations

The properties of commutativity, associativity, distributivity, involution, and idempotency
all hold for crisp relations just as they do for classical set operations. Moreover, De Morgan’s
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principles and the excluded middle axioms also hold for crisp (classical) relations just as they
do for crisp (classical) sets. The null relation, O, and the complete relation, E, are analogous
to the null set, ∅, and the whole set, X, respectively, in the set-theoretic case (see Chapter 2).

Composition

Let R be a relation that relates, or maps, elements from universe X to universe Y, and let S
be a relation that relates, or maps, elements from universe Y to universe Z.

A useful question we seek to answer is whether we can find a relation, T, that relates
the same elements in universe X that R contains to the same elements in universe Z that S
contains. It turns out we can find such a relation using an operation known as composition.
For the Sagittal diagram in Fig. 3.4, we see that the only ‘‘path’’ between relation R and
relation S is the two routes that start at x1 and end at z2 (i.e., x1 − y1 − z2 and x1 − y3 − z2).
Hence, we wish to find a relation T that relates the ordered pair (x1, z2), i.e., (x1, z2) ∈ T.
In this example,

R = {(x1, y1), (x1, y3), (x2, y4)}
S = {(y1, z2), (y3, z2)}

There are two common forms of the composition operation; one is called the
max–min composition and the other the max–product composition. (Five other forms of
the composition operator are available for certain logic issues; these are described at the end
of this chapter.) The max–min composition is defined by the set-theoretic and membership
function-theoretic expressions

T = R◦S

χT(x, z) =
∨
y∈Y

(χR(x, y) ∧ χS(y, z))
(3.9)

and the max–product (sometimes called max–dot) composition is defined by the set-
theoretic and membership function-theoretic expressions

T = R◦S

χT(x, z) =
∨
y∈Y

(χR(x, y) • χS(y, z))
(3.10)

x1

x2

x3

y1

y2

y3

y4

z1

z2

X Y Z

FIGURE 3.4
Sagittal diagram relating elements of three universes.
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Tensile force Tensile force

FIGURE 3.5
Chain strength analogy for max–min composition.

There is a very interesting physical analogy for the max–min composition operator.
Figure 3.5 illustrates a system comprising several chains placed together in a parallel
fashion. In the system, each chain comprises a number of chain links. If we were to take one
of the chains out of the system, place it in a tensile test machine, and exert a large tensile
force on the chain, we would find that the chain would break at its weakest link. Hence,
the strength of one chain is equal to the strength of its weakest link; in other words, the
minimum (∧) strength of all the links in the chain governs the strength of the overall chain.
Now, if we were to place the entire chain system in a tensile device and exert a tensile force
on the chain system, we would find that the chain system would continue to carry increasing
loads until the last chain in the system broke. That is, weaker chains would break with an
increasing load until the strongest chain was left alone, and eventually it would break; in
other words, the maximum (∨) strength of all the chains in the chain system would govern
the overall strength of the chain system. Each chain in the system is analogous to the min
operation in the max–min composition, and the overall chain system strength is analogous
to the max operation in the max–min composition.

Example 3.4. The matrix expression for the crisp relations shown in Fig. 3.4 can be found
using the max–min composition operation. Relation matrices for R and S would be expressed as

R =
[ y1 y2 y3 y4

x1 1 0 1 0
x2 0 0 0 1
x3 0 0 0 0

]
and S =




z1 z2

y1 0 1
y2 0 0
y3 0 1
y4 0 0




The resulting relation T would then be determined by max–min composition, Eq. (3.9), or
max–product composition, Eq. (3.10). (In the crisp case these forms of the composition
operators produce identical results; other forms of this operator, such as those listed at the end
of this chapter, will not produce identical results.) For example,

µT(x1, z1) = max[min(1, 0), min(0, 0), min(1, 0), min(0, 0)] = 0

µT(x1, z2) = max[min(1, 1), min(0, 0), min(1, 1), min(0, 0)] = 1

and for the rest,

T =
[ z1 z2

x1 0 1
x2 0 0
x3 0 0

]

FUZZY RELATIONS

Fuzzy relations also map elements of one universe, say X, to those of another universe, say Y,
through the Cartesian product of the two universes. However, the ‘‘strength’’ of the relation
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between ordered pairs of the two universes is not measured with the characteristic function,
but rather with a membership function expressing various ‘‘degrees’’ of strength of the
relation on the unit interval [0,1]. Hence, a fuzzy relation R∼ is a mapping from the Cartesian
space X × Y to the interval [0,1], where the strength of the mapping is expressed by the
membership function of the relation for ordered pairs from the two universes, or µR∼

(x, y).

Cardinality of Fuzzy Relations

Since the cardinality of fuzzy sets on any universe is infinity, the cardinality of a fuzzy
relation between two or more universes is also infinity.

Operations on Fuzzy Relations

Let R∼ and S∼ be fuzzy relations on the Cartesian space X × Y. Then the following operations
apply for the membership values for various set operations:

Union µR∼∪S∼
(x, y) = max(µR∼

(x, y), µS∼
(x, y)) (3.11)

Intersection µR∼∩S∼
(x, y) = min(µR∼

(x, y), µS∼
(x, y)) (3.12)

Complement µR∼
(x, y) = 1 − µR∼

(x, y) (3.13)

Containment R∼ ⊂ S∼ ⇒ µR∼
(x, y) ≤ µS∼

(x, y) (3.14)

Properties of Fuzzy Relations

Just as for crisp relations, the properties of commutativity, associativity, distributivity,
involution, and idempotency all hold for fuzzy relations. Moreover, De Morgan’s principles
hold for fuzzy relations just as they do for crisp (classical) relations, and the null relation, O,
and the complete relation, E, are analogous to the null set and the whole set in set-theoretic
form, respectively. Fuzzy relations are not constrained, as is the case for fuzzy sets in
general, by the excluded middle axioms. Since a fuzzy relation R∼ is also a fuzzy set, there
is overlap between a relation and its complement; hence,

R∼ ∪ R∼ �= E

R∼ ∩ R∼ �= O

As seen in the foregoing expressions, the excluded middle axioms for relations do not result,
in general, in the null relation, O, or the complete relation, E.

Fuzzy Cartesian Product and Composition

Because fuzzy relations in general are fuzzy sets, we can define the Cartesian product to be
a relation between two or more fuzzy sets. Let A∼ be a fuzzy set on universe X and B∼ be a
fuzzy set on universe Y; then the Cartesian product between fuzzy sets A∼ and B∼ will result
in a fuzzy relation R∼, which is contained within the full Cartesian product space, or

A∼ × B∼ = R∼ ⊂ X × Y (3.15)
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where the fuzzy relation R∼ has membership function

µR∼
(x, y) = µA∼×B∼

(x, y) = min
(
µA∼

(x), µB∼
(y)

)
(3.16)

The Cartesian product defined by A∼ × B∼ = R∼, Eq. (3.15), is implemented in the same
fashion as is the cross product of two vectors. Again, the Cartesian product is not the same
operation as the arithmetic product. In the case of two-dimensional relations (r = 2), the
former employs the idea of pairing of elements among sets, whereas the latter uses actual
arithmetic products between elements of sets. Each of the fuzzy sets could be thought of as
a vector of membership values; each value is associated with a particular element in each
set. For example, for a fuzzy set (vector) A∼ that has four elements, hence column vector of
size 4 × 1, and for a fuzzy set (vector) B∼ that has five elements, hence a row vector size of
1 × 5, the resulting fuzzy relation, R∼, will be represented by a matrix of size 4 × 5, i.e., R∼
will have four rows and five columns. This result is illustrated in the following example.

Example 3.5. Suppose we have two fuzzy sets, A∼ defined on a universe of three discrete
temperatures, X = {x1, x2, x3}, and B∼ defined on a universe of two discrete pressures, Y =
{y1, y2}, and we want to find the fuzzy Cartesian product between them. Fuzzy set A∼ could
represent the ‘‘ambient’’ temperature and fuzzy set B∼ the ‘‘near optimum’’ pressure for a certain
heat exchanger, and the Cartesian product might represent the conditions (temperature–pressure
pairs) of the exchanger that are associated with ‘‘efficient’’ operations. For example, let

A∼ = 0.2

x1
+ 0.5

x2
+ 1

x3
and B∼ = 0.3

y1
+ 0.9

y2

Note that A∼ can be represented as a column vector of size 3 × 1 and B∼ can be represented by
a row vector of 1 × 2. Then the fuzzy Cartesian product, using Eq. (3.16), results in a fuzzy
relation R∼ (of size 3 × 2) representing ‘‘efficient’’ conditions, or

A∼ × B∼ = R∼ =
[ y1 y2

x1 0.2 0.2
x2 0.3 0.5
x3 0.3 0.9

]

Fuzzy composition can be defined just as it is for crisp (binary) relations. Suppose
R∼ is a fuzzy relation on the Cartesian space X × Y, S∼ is a fuzzy relation on Y × Z, and T∼
is a fuzzy relation on X × Z; then fuzzy max–min composition is defined in terms of the
set-theoretic notation and membership function-theoretic notation in the following manner:

T∼ = R∼◦S∼

µT∼
(x, z) =

∨
y∈Y

(µR∼
(x, y) ∧ µS∼

(y, z)) (3.17a)

and fuzzy max–product composition is defined in terms of the membership function-
theoretic notation as

µT∼
(x, z) =

∨
y∈Y

(µR∼
(x, y) • µS∼

(y, z)) (3.17b)
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It should be pointed out that neither crisp nor fuzzy compositions are commutative in
general; that is,

R∼◦S∼ �= S∼◦R∼ (3.18)

Equation (3.18) is general for any matrix operation, fuzzy or otherwise, that must satisfy
consistency between the cardinal counts of elements in respective universes. Even for
the case of square matrices, the composition converse, represented by Eq. (3.18), is not
guaranteed.

Example 3.6. Let us extend the information contained in the Sagittal diagram shown in
Fig. 3.4 to include fuzzy relationships for X × Y (denoted by the fuzzy relation R∼) and Y × Z
(denoted by the fuzzy relation S∼). In this case we change the elements of the universes to,

X = {x1, x2}, Y = {y1, y2}, and Z = {z1, z2, z3}
Consider the following fuzzy relations:

R∼ =
[ y1 y2

x1 0.7 0.5
x2 0.8 0.4

]
and S∼ =

[ z1 z2 z3

y1 0.9 0.6 0.2
y2 0.1 0.7 0.5

]

Then the resulting relation, T∼, which relates elements of universe X to elements of universe Z,
i.e., defined on Cartesian space X × Z, can be found by max–min composition, Eq. (3.17a), to
be, for example,

µT∼
(x1, z1) = max[min(0.7, 0.9), min(0.5, 0.1)] = 0.7

and the rest,

T∼ =
[ z1 z2 z3

x1 0.7 0.6 0.5
x2 0.8 0.6 0.4

]

and by max–product composition, Eq. (3.17b), to be, for example,

µT∼
(x2, z2) = max[(0.8 · 0.6), (0.4 · 0.7)] = 0.48

and the rest,

T∼ =
[ z1 z2 z3

x1 0.63 0.42 0.25
x2 0.72 0.48 0.20

]

We now illustrate the use of relations with fuzzy sets for three examples from the
fields of medicine, electrical, and civil engineering.

Example 3.7. A certain type of virus attacks cells of the human body. The infected cells can be
visualized using a special microscope. The microscope generates digital images that medical
doctors can analyze and identify the infected cells. The virus causes the infected cells to have
a black spot, within a darker grey region (Fig. 3.6).

A digital image process can be applied to the image. This processing generates two
variables: the first variable, P, is related to black spot quantity (black pixels), and the second
variable, S, is related to the shape of the black spot, i.e., if they are circular or elliptic. In these
images it is often difficult to actually count the number of black pixels, or to identify a perfect
circular cluster of pixels; hence, both these variables must be estimated in a linguistic way.
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FIGURE 3.6
An infected cell shows black spots with different shapes in a micrograph.

Suppose that we have two fuzzy sets, P∼ which represents the number of black pixels
(e.g., none with black pixels, C1, a few with black pixels, C2, and a lot of black pixels, C3),
and S∼ which represents the shape of the black pixel clusters, e.g., S1 is an ellipse and S2 is a
circle. So we have

P∼ =
{

0.1

C1
+ 0.5

C2
+ 1.0

C3

}
and S∼ =

{
0.3

S1
+ 0.8

S2

}

and we want to find the relationship between quantity of black pixels in the virus and the shape
of the black pixel clusters. Using a Cartesian product between P∼ and S∼ gives

R∼ = P∼ × S∼ =
[ S1 S2

C1 0.1 0.1
C2 0.3 0.5
C3 0.3 0.8

]

Now, suppose another microscope image is taken and the number of black pixels is slightly
different; let the new black pixel quantity be represented by a fuzzy set, P∼

′:

P∼
′ =

{
0.4

C1
+ 0.7

C2
+ 1.0

C3

}

Using max–min composition with the relation R∼ will yield a new value for the fuzzy set of
pixel cluster shapes that are associated with the new black pixel quantity:

S∼
′ = P∼

′◦R∼ = [
0.4 0.7 1.0

] ◦
[

0.1 0.1
0.3 0.5
0.3 0.8

]
= [

0.3 0.8
]

Example 3.8. Suppose we are interested in understanding the speed control of the DC (direct
current) shunt motor under no-load condition, as shown diagrammatically in Fig. 3.7. Initially,
the series resistance Rse in Fig. 3.7 should be kept in the cut-in position for the following
reasons:

1. The back electromagnetic force, given by Eb = kNφ, where k is a constant of proportion-
ality, N is the motor speed, and φ is the flux (which is proportional to input voltage, V ), is
equal to zero because the motor speed is equal to zero initially.

2. We have V = Eb + Ia(Ra + Rse), therefore Ia = (V − Eb)/(Ra + Rse), where Ia is the
armature current and Ra is the armature resistance. Since Eb is equal to zero initially, the
armature current will be Ia = V/(Ra + Rse), which is going to be quite large initially and
may destroy the armature.
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FIGURE 3.7
A DC shunt motor system.

On the basis of both cases 1 and 2, keeping the series resistance Rse in the cut-in position
will restrict the speed to a very low value. Hence, if the rated no-load speed of the motor is
1500 rpm, then the resistance in series with the armature, or the shunt resistance Rsh, has to be
varied.

Two methods provide this type of control: armature control and field control. For
example, in armature control, suppose that φ (flux) is maintained at some constant value; then
motor speed N is proportional to Eb.

If Rse is decreased step by step from its high value, Ia (armature current) increases.
Hence, this method increases Ia. On the other hand, as Ia is increased the motor speed
N increases. These two possible approaches to control could have been done manually or
automatically. Either way, however, results in at least two problems, presuming we do not
want to change the design of the armature:

What should be the minimum and maximum level of Rse?

What should be the minimum and maximum value of Ia?

Now let us suppose that load on the motor is taken into consideration. Then the problem
of control becomes two-fold. First, owing to fluctuations in the load, the armature current may
change, resulting in change in the motor speed. Second, as a result of changes in speed, the
armature resistance control must be accomplished in order to maintain the motor’s rated speed.
Such control issues become very important in applications involving electric trains and a large
number of consumer appliances making use of small batteries to run their motors.

We wish to use concepts of fuzzy sets to address this problem. Let R∼se be a fuzzy set
representing a number of possible values for series resistance, say sn values, given by

R∼se = {Rs1, Rs2, Rs3, . . . , Rsn
}

and let I∼a be a fuzzy set having a number of possible values of the armature current, say m

values, given by

I∼a = {I1, I2, I3, . . . , Im}
The fuzzy sets R∼se and I∼a can be related through a fuzzy relation, say R∼, which would

allow for the establishment of various degrees of relationship between pairs of resistance and
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current. In this way, the resistance–current pairings could conform to the modeler’s intuition
about the trade-offs involved in control of the armature.

Let N∼ be another fuzzy set having numerous values for the motor speed, say v values,
given by

N∼ = {N1, N2, N3, . . . , Nv}
Now, we can determine another fuzzy relation, say S∼, to relate current to motor speed, i.e., I∼a

to N∼ .
Using the operation of composition, we could then compute a relation, say T∼, to be used

to relate series resistance to motor speed, i.e., R∼se to N∼ . The operations needed to develop these
relations are as follows – two fuzzy cartesian products and one composition:

R∼ = R∼se × I∼a

S∼ = I∼a × N∼
T∼ = R∼◦S∼

Suppose the membership functions for both series resistance R∼se and armature current I∼a

are given in terms of percentages of their respective rated values, i.e.,

µRse(%se) = 0.3

30
+ 0.7

60
+ 1.0

100
+ 0.2

120
and

µIa(%a) = 0.2

20
+ 0.4

40
+ 0.6

60
+ 0.8

80
+ 1.0

100
+ 0.1

120
and the membership value for N∼ is given in units of motor speed in rpm,

µN(rpm) = 0.33

500
+ 0.67

1000
+ 1.0

1500
+ 0.15

1800
The following relations then result from use of the Cartesian product to determine R∼

and S∼:

R∼ =



20 40 60 80 100 120
30 0.2 0.3 0.3 0.3 0.3 0.1
60 0.2 0.4 0.6 0.7 0.7 0.1
100 0.2 0.4 0.6 0.8 1 0.1
120 0.2 0.2 0.2 0.2 0.2 0.1




and

S∼ =




500 1000 1500 1800
20 0.2 0.2 0.2 0.15
40 0.33 0.4 0.4 0.15
60 0.33 0.6 0.6 0.15
80 0.33 0.67 0.8 0.15
100 0.33 0.67 1 0.15
120 0.1 0.1 0.1 0.1




For example, µR∼
(60, 40) = min(0.7, 0.4) = 0.4, µR∼

(100, 80) = min(1.0, 0.8) = 0.8, and µS∼
(80, 1000) = min(0.8, 0.67) = 0.67.

The following relation results from a max–min composition for T∼:

T∼ = R∼◦S∼ =



500 1000 1500 1800
30 0.3 0.3 0.3 0.15
60 0.33 0.67 0.7 0.15
100 0.33 0.67 1 0.15
120 0.2 0.2 0.2 0.15
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For instance,

µT∼
(60, 1500) = max[min(0.2, 0.2), min(0.4, 0.4), min(0.6, 0.6),

min(0.7, 0.8), min(0.7, 1.0), min(0.1, 0.1)]

= max[0.2, 0.4, 0.6, 0.7, 0.7, 0.1] = 0.7

Example 3.9. In the city of Calgary, Alberta, there are a significant number of neighborhood
ponds that store overland flow from rainstorms and release the water downstream at a controlled
rate to reduce or eliminate flooding in downstream areas. To illustrate a relation using the
Cartesian product let us compare the level in the neighborhood pond system based on a
1-in-100 year storm volume capacity with the closest three rain gauge stations that measure
total rainfall.

Let A∼ = Pond system relative depths based on 1-in-100 year capacity (assume the
capacities of four ponds are p1, p2, p3, and p4, and all combine to form one outfall to the trunk
sewer). Let B∼ = Total rainfall for event based on 1-in-100 year values from three different rain
gage stations, g1, g2, and g3. Suppose we have the following specific fuzzy sets:

A∼ = 0.2

p1
+ 0.6

p2
+ 0.5

p3
+ 0.9

p4

B∼ = 0.4

g1
+ 0.7

g2
+ 0.8

g3

The Cartesian product of these two fuzzy sets could then be formed:

A∼ × B∼ = C∼ =



g1 g2 g3

p1 0.2 0.2 0.2
p2 0.4 0.6 0.6
p3 0.4 0.5 0.5
p4 0.4 0.7 0.8




The meaning of this Cartesian product would be to relate the rain gauge’s prediction of large
storms to the actual pond performance during rain events. Higher values indicate designs and
station information that could model and control flooding in a reasonable way. Lower relative
values may indicate a design problem or a nonrepresentative gauge location.

To illustrate composition for the same situation let us try to determine if the rainstorms
are widespread or localized. Let us compare the results from a pond system well removed from
the previous location during the same storm.

Suppose we have a relationship between the capacity of five more ponds within a new
pond system (p5, . . . , p9) and the rainfall data from the original rainfall gauges (g1, g2, and
g3). This relation is given by

D∼ =



p5 p6 p7 p8 p9

g1 0.3 0.6 0.5 0.2 0.1
g2 0.4 0.7 0.5 0.3 0.3
g3 0.2 0.6 0.8 0.9 0.8




Let E∼ be a fuzzy max–min composition for the two ponding systems:

E∼ = C∼◦D∼ =



p5 p6 p7 p8 p9

p1 0.2 0.2 0.2 0.2 0.1
p2 0.4 0.6 0.6 0.6 0.6
p3 0.4 0.5 0.5 0.5 0.5
p4 0.4 0.7 0.8 0.8 0.8




For example,

µE∼
(p2, p7) = max [min (0.4, 0.5), min (0.6, 0.5), min (0.6, 0.8)] = 0.6
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This new relation, E∼, actually represents the character of the rainstorm for the two geographically
separated pond systems: the first system from the four ponds, p1, . . . , p4 and the second system
from the ponds p5, . . . , p9. If the numbers in this relation are large, it means that the rainstorm
was widespread, whereas if the numbers are closer to zero, then the rainstorm is more localized
and the original rain gauges are not a good predictor for both systems.

TOLERANCE AND EQUIVALENCE RELATIONS

Relations can exhibit various useful properties, a few of which will be discussed here.
As mentioned in the introduction of this chapter, relations can be used in graph theory
[Gill, 1976; Zadeh, 1971]. Consider the simple graphs in Fig. 3.8. This figure describes
a universe of three elements, which are labeled as the vertices of this graph, 1, 2, and 3,
or in set notation, X = {1, 2, 3}. The useful properties we wish to discuss are reflexivity,
symmetry, and transitivity (there are other properties of relations that are the antonyms
of these three, i.e., irreflexivity, asymmetry, and nontransitivity; these, and an additional
property of antisymmetry, will not be discussed in this text). When a relation is reflexive
every vertex in the graph originates a single loop, as shown in Fig. 3.8a. If a relation is
symmetric, then in the graph for every edge pointing (the arrows on the edge lines in
Fig. 3.8b) from vertex i to vertex j (i, j = 1, 2, 3), there is an edge pointing in the opposite
direction, i.e., from vertex j to vertex i. When a relation is transitive, then for every pair of
edges in the graph, one pointing from vertex i to vertex j and the other from vertex j to
vertex k (i, j, k = 1, 2, 3), there is an edge pointing from vertex i directly to vertex k, as
seen in Fig. 3.8c (e.g., an arrow from vertex 1 to vertex 2, an arrow from vertex 2 to vertex
3, and an arrow from vertex 1 to vertex 3).

Crisp Equivalence Relation

A relation R on a universe X can also be thought of as a relation from X to X. The relation R is
an equivalence relation if it has the following three properties: (1) reflexivity, (2) symmetry,
and (3) transitivity. For example, for a matrix relation the following properties will hold:

Reflexivity (xi, xi) ∈ R or χR(xi, xi) = 1 (3.19a)

Symmetry (xi, xj ) ∈ R −→ (xj , xi) ∈ R (3.19b)

1

3

1

2 3 2 3

(a) (b) (c)

1

2

FIGURE 3.8
Three-vertex graphs for properties of (a) reflexivity, (b) symmetry, (c) transitivity [Gill, 1976].
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or χR(xi, xj ) = χR(xj , xi)

Transitivity (xi, xj ) ∈ R and (xj , xk) ∈ R −→ (xi, xk) ∈ R (3.19c)

or χR(xi, xj ) and χR(xj , xk) = 1 −→ χR(xi, xk) = 1

The most familiar equivalence relation is that of equality among elements of a set.
Other examples of equivalence relations include the relation of parallelism among lines in
plane geometry, the relation of similarity among triangles, the relation ‘‘works in the same
building as’’ among workers of a given city, and others.

Crisp Tolerance Relation

A tolerance relation R (also called a proximity relation) on a universe X is a relation that
exhibits only the properties of reflexivity and symmetry. A tolerance relation, R, can be
reformed into an equivalence relation by at most (n − 1) compositions with itself, where n

is the cardinal number of the set defining R, in this case X, i.e.,

Rn−1
1 = R1◦R1◦ · · · ◦R1 = R (3.20)

Example 3.10. Suppose in an airline transportation system we have a universe composed of
five elements: the cities Omaha, Chicago, Rome, London, and Detroit. The airline is studying
locations of potential hubs in various countries and must consider air mileage between cities
and takeoff and landing policies in the various countries. These cities can be enumerated as the
elements of a set, i.e.,

X = {x1, x2, x3, x4, x5} = {Omaha, Chicago, Rome, London, Detroit}
Further, suppose we have a tolerance relation, R1, that expresses relationships among these
cities:

R1 =




1 1 0 0 0
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1




This relation is reflexive and symmetric. The graph for this tolerance relation would involve
five vertices (five elements in the relation), as shown in Fig. 3.9. The property of reflexivity

1

2

3 4

5

FIGURE 3.9
Five-vertex graph of tolerance relation (reflexive and symmetric) in Example 3.10.
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1

2

3 4

5

FIGURE 3.10
Five-vertex graph of equivalence relation (reflexive, symmetric, transitive) in Example 3.10.

(diagonal elements equal unity) simply indicates that a city is totally related to itself. The
property of symmetry might represent proximity: Omaha and Chicago (x1 and x2) are close (in
a binary sense) geographically, and Chicago and Detroit (x2 and x5) are close geographically.
This relation, R1, does not have properties of transitivity, e.g.,

(x1, x2) ∈ R1 (x2, x5) ∈ R1 but (x1, x5) /∈ R1

R1 can become an equivalence relation through one (1 ≤ n, where n = 5) composition.
Using Eq. (3.20), we get

R1◦R1 =




1 1 0 0 1
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
1 1 0 0 1


 = R

Now, we see in this matrix that transitivity holds, i.e., (x1, x5) ∈ R1, and R is an
equivalence relation. Although the point is not important here, we will see in Chapter 11 that
equivalence relations also have certain special properties useful in classification. For instance,
in this example the equivalence relation expressed in the foregoing R matrix could represent
cities in separate countries. Inspection of the matrix shows that the first, second, and fifth
columns are identical, i.e., Omaha, Chicago, and Detroit are in the same class; and columns the
third and fourth are unique, indicating that Rome and London are cities each in their own class;
these three different classes could represent distinct countries. The graph for this equivalence
relation would involve five vertices (five elements in the relation), as shown in Fig. 3.10.

FUZZY TOLERANCE AND EQUIVALENCE RELATIONS

A fuzzy relation, R∼, on a single universe X is also a relation from X to X. It is a fuzzy
equivalence relation if all three of the following properties for matrix relations define it:

Reflexivity µR∼
(xi, xi) = 1 (3.21a)

Symmetry µR∼
(xi, xj ) = µR∼

(xj , xi) (3.21b)

Transitivity µR∼
(xi, xj ) = λ1 and µR∼

(xj , xk) = λ2 −→ µR∼
(xi, xk) = λ (3.21c)

where λ ≥ min[λ1, λ2].
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Looking at the physical analog (see Fig. 3.5) of a composition operation, we see it
comprises a parallel system of chains, where each chain represents a particular path through
the chain system. The physical analogy behind transitivity is that the shorter the chain, the
stronger the relation (the stronger is the chain system). In particular, the strength of the link
between two elements must be greater than or equal to the strength of any indirect chain
involving other elements, i.e., Eq. (3.21c) [Dubois and Prade, 1980].

It can be shown that any fuzzy tolerance relation, R∼1, that has properties of reflexivity
and symmetry can be reformed into a fuzzy equivalence relation by at most (n − 1)

compositions, just as a crisp tolerance relation can be reformed into a crisp equivalence
relation. That is,

R∼
n−1
1 = R∼1◦R∼1◦ · · · ◦R∼1 = R∼ (3.22)

Example 3.11. Suppose, in a biotechnology experiment, five potentially new strains of bacteria
have been detected in the area around an anaerobic corrosion pit on a new aluminum–lithium
alloy used in the fuel tanks of a new experimental aircraft. In order to propose methods to
eliminate the biocorrosion caused by these bacteria, the five strains must first be categorized.
One way to categorize them is to compare them to one another. In a pairwise comparison, the
following ‘‘similarity’’ relation, R∼1, is developed. For example, the first strain (column 1) has
a strength of similarity to the second strain of 0.8, to the third strain a strength of 0 (i.e., no
relation), to the fourth strain a strength of 0.1, and so on. Because the relation is for pairwise
similarity it will be reflexive and symmetric. Hence,

R∼1 =




1 0.8 0 0.1 0.2
0.8 1 0.4 0 0.9
0 0.4 1 0 0

0.1 0 0 1 0.5
0.2 0.9 0 0.5 1




is reflexive and symmetric. However, it is not transitive, e.g.,

µR∼
(x1, x2) = 0.8, µR∼

(x2, x5) = 0.9 ≥ 0.8

but

µR∼
(x1, x5) = 0.2 ≤ min(0.8, 0.9)

One composition results in the following relation:

R∼
2
1 = R∼1◦R∼1 =




1 0.8 0.4 0.2 0.8
0.8 1 0.4 0.5 0.9
0.4 0.4 1 0 0.4
0.2 0.5 0 1 0.5
0.8 0.9 0.4 0.5 1




where transitivity still does not result; for example,

µR∼
2(x1, x2) = 0.8 ≥ 0.5 and µR∼

2(x2, x4) = 0.5

but

µR∼
2(x1, x4) = 0.2 ≤ min(0.8, 0.5)
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Finally, after one or two more compositions, transitivity results:

R∼
3
1 = R∼

4
1 = R∼ =




1 0.8 0.4 0.5 0.8
0.8 1 0.4 0.5 0.9
0.4 0.4 1 0.4 0.4
0.5 0.5 0.4 1 0.5
0.8 0.9 0.4 0.5 1




R∼
3
1(x1, x2) = 0.8 ≥ 0.5

R∼
3
1(x2, x4) = 0.5 ≥ 0.5

R∼
3
1(x1, x4) = 0.5 ≥ 0.5

Graphs can be drawn for fuzzy equivalence relations, but the arrows in the graphs
between vertices will have various ‘‘strengths,’’ i.e., values on the interval [0, 1]. Once the
fuzzy relation R∼ in Example 3.11 is an equivalence relation, it can be used in categorizing
the various bacteria according to preestablished levels of confidence. These levels of
confidence will be illustrated with a method called ‘‘alpha cuts’’ in Chapter 4, and the
categorization idea will be illustrated using classification in Chapter 11.

There is an interesting graphical analog for fuzzy equivalence relations. An inspection
of a three-dimensional plot of the preceding equivalence relation, R∼

3
1, is shown in Fig. 3.11.

In this graph, which is a plot of the membership values of the equivalence relation, we can
see that, if it were a watershed, there would be no location where water would pool, or be
trapped. In fact, every equivalence relation will produce a surface on which water cannot
be trapped; the converse is not true in general, however. That is, there can be relations
that are not equivalence relations but whose three-dimensional surface representations will
not trap water. An example of the latter is given in the original tolerance relation, R∼1, of
Example 3.11.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

FIGURE 3.11
Three-dimensional representation of an equivalence relation.
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0.0

µ

(a) (b)

FIGURE 3.12
Two-dimensional contours of (a) tolerance relation R∼

2
1 and (b) equivalence relation R∼

3
1.

Another way to show this same information is to construct a two-dimensional contour
of the relation using various contour levels; these correspond to different degrees of
membership. The graphic in Fig. 3.12 shows contour plots for the tolerance relation, R∼

2
1,

and the equivalence level, R∼
3
1. The contours in Fig. 3.12a would trap water (the lightest

areas are inside other darker areas), whereas water would not be trapped in the contour
diagram of Fig. 3.12b.

VALUE ASSIGNMENTS

An appropriate question regarding relations is: Where do the membership values that are
contained in a relation come from? The answer to this question is that there are at least
seven different ways to develop the numerical values that characterize a relation:

1. Cartesian product
2. Closed-form expression
3. Lookup table
4. Linguistic rules of knowledge
5. Classification
6. Automated methods from input/output data
7. Similarity methods in data manipulation

The first way is the one that has been illustrated so far in this chapter – to calculate
relations from the Cartesian product of two or more fuzzy sets. A second way is through
simple observation of a physical process. For a given set of inputs we observe a process
yielding a set of outputs. If there is no variation between specific input – output pairs we
may be led to model the process with a crisp relation. Moreover, if no variability exists,
one might be able to express the relation as a closed-form algorithm of the form Y = f (X),
where X is a vector of inputs and Y is a vector of outputs. If some variability exists,
membership values on the interval [0, 1] may lead us to develop a fuzzy relation from a
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third approach – the use of a lookup table. Fuzzy relations can also be assembled from
linguistic knowledge, expressed as if – then rules. Such knowledge may come from experts,
from polls, or from consensus building. This fourth method is illustrated in more detail in
Chapters 5 and 8. Relations also arise from notions of classification where issues associated
with similarity are central to determining relationships among patterns or clusters of data.
The ability to develop relations in classification, the fifth method, is developed in more
detail in Chapter 11. The sixth method involves the development of membership functions
from procedures used on input and output data which could be observed and measured from
some complex process; this method is the subject of Chapter 7.

One of the most prevalent forms of determining the values in relations, and which
is simpler than the sixth method, is through manipulations of data, the seventh method
mentioned. The more robust a data set, the more accurate the relational entities are in
establishing relationships among elements of two or more data sets. This seventh way
for determining value assignments for relations is actually a family of procedures termed
similarity methods [see Zadeh, 1971; or Dubois and Prade, 1980]. All of these methods
attempt to determine some sort of similar pattern or structure in data through various metrics.
There are many of these methods available, but the two most prevalent will be discussed here.

Cosine Amplitude

A useful method is the cosine amplitude method. As with all the following methods, this
similarity metric makes use of a collection of data samples, n data samples in particular. If
these data samples are collected they form a data array, X,

X = {x1, x2, . . . , xn}
Each of the elements, xi , in the data array X is itself a vector of length m, i.e.,

xi = {xi1 , xi2 , . . . , xim}
Hence, each of the data samples can be thought of as a point in m-dimensional space, where
each point needs m coordinates for a complete description. Each element of a relation, rij ,
results from a pairwise comparison of two data samples, say xi and xj , where the strength
of the relationship between data sample xi and data sample xj is given by the membership
value expressing that strength, i.e., rij = µR(xi, yj ). The relation matrix will be of size
n × n and, as will be the case for all similarity relations, the matrix will be reflexive and
symmetric – hence a tolerance relation. The cosine amplitude method calculates rij in the
following manner, and guarantees, as do all the similarity methods, that 0 ≤ rij ≤ 1:

rij =

∣∣∣∣∣
m∑

k=1

xikxjk

∣∣∣∣∣√√√√(
m∑

k=1

x2
ik

) (
m∑

k=1

x2
jk

) , where i, j = 1, 2, . . . , n (3.23)

Close inspection of Eq. (3.23) reveals that this method is related to the dot product for the
cosine function. When two vectors are colinear (most similar), their dot product is unity;
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when the two vectors are at right angles to one another (most dissimilar), their dot product
is zero.

Example 3.12 [Ross, 1995]. Five separate regions along the San Andreas fault in California
have suffered damage from a recent earthquake. For purposes of assessing payouts from
insurance companies to building owners, the five regions must be classified as to their damage
levels. Expression of the damage in terms of relations will prove helpful.

Surveys are conducted of the buildings in each region. All of the buildings in each region
are described as being in one of three damage states: no damage, medium damage, and serious
damage. Each region has each of these three damage states expressed as a percentage (ratio) of
the total number of buildings. Hence, for this problem n = 5 and m = 3. The following table
summarizes the findings of the survey team:

Regions x1 x2 x3 x4 x5

xi1 –Ratio with no damage 0.3 0.2 0.1 0.7 0.4
xi2 –Ratio with medium damage 0.6 0.4 0.6 0.2 0.6
xi3 –Ratio with serious damage 0.1 0.4 0.3 0.1 0.0

We wish to use the cosine amplitude method to express these data as a fuzzy relation.
Equation (3.23) for an element in the fuzzy relation, rij , thus takes on the specific form

rij =

∣∣∣∣∣
3∑

k=1

xikxjk

∣∣∣∣∣√√√√(
3∑

k=1

x2
ik

)(
3∑

k=1

x2
jk

)

For example, for i = 1 and j = 2 we get

r12 = 0.3 × 0.2 + 0.6 × 0.4 + 0.1 × 0.4[(
0.32 + 0.62 + 0.12

) (
0.22 + 0.42 + 0.42

)]1/2
= 0.34

[0.46 × 0.36]1/2
= 0.836

Computing the other elements of the relation results in the following tolerance relation:

R∼1 =




1
0.836 1 sym
0.914 0.934 1
0.682 0.6 0.441 1
0.982 0.74 0.818 0.774 1




and two compositions of R∼1 produce the equivalence relation, R∼:

R∼ = R∼
3
1 =




1
0.914 1 sym
0.914 0.934 1
0.774 0.774 0.774 1
0.982 0.914 0.914 0.774 1




The tolerance relation, R∼1, expressed the pairwise similarity of damage for each of the regions;
the equivalence relation, R∼, also expresses this same information but additionally can be used
to classify the regions into categories with like properties (see Chapter 11).
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Max–Min Method

Another popular method, which is computationally simpler than the cosine amplitude
method, is known as the max–min method. Although the name sounds similar to the
max–min composition method, this similarity method is different from composition. It
is found through simple min and max operations on pairs of the data points, xij , and is
given by

rij =

m∑
k=1

min(xik, xjk)

m∑
k=1

max(xik, xjk)

, where i, j = 1, 2, . . . , n (3.24)

Example 3.13. If we reconsider Example 3.12, the min–max method will produce the follow-
ing result for i = 1, j = 2:

r12 =

3∑
k=1

[min(0.3, 0.2), min(0.6, 0.4), min(0.1, 0.4)]

3∑
k=1

[max(0.3, 0.2), max(0.6, 0.4), max(0.1, 0.4)]

= 0.2 + 0.4 + 0.1

0.3 + 0.6 + 0.4
= 0.538

Computing the other elements of the relation results in the following tolerance relation:

R∼1 =




1
0.538 1 sym
0.667 0.667 1
0.429 0.333 0.250 1
0.818 0.429 0.538 0.429 1




Other Similarity Methods

The list of other similarity methods is quite lengthy. Ross [1995] presents nine additional
similarity methods, and others can be found in the literature.

OTHER FORMS OF THE COMPOSITION OPERATION

Max–min and max–product (also referred to as max–dot) methods of composition of
fuzzy relations are the two most commonly used techniques. Many other techniques are
mentioned in the literature. Each method of composition of fuzzy relations reflects a special
inference machine and has its own significance and applications. The max–min method
is the one used by Zadeh in his original paper on approximate reasoning using natural
language if–then rules. Many have claimed, since Zadeh’s introduction, that this method
of composition effectively expresses the approximate and interpolative reasoning used by
humans when they employ linguistic propositions for deductive reasoning [Ross, 1995].

The following additional methods are among those proposed in the literature for
the composition operation B∼ = A∼◦R∼, where A∼ is the input, or antecedent defined on the
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universe X, B∼ is the output, or consequent defined on universe Y, and R∼ is a fuzzy relation
characterizing the relationship between specific inputs (x) and specific outputs (y):

min–max µB∼
(y) = min

x∈X
{max[µA∼

(x), µR∼
(x, y)]} (3.25)

max–max µB∼
(y) = max

x∈X
{max[µA∼

(x), µR∼
(x, y)]} (3.26)

min–min µB∼
(y) = min

x∈X
{min[µA∼

(x), µR∼
(x, y)]} (3.27)

max–average µB∼
(y) = 1

2 max
x∈X

[µA∼
(x) + µR∼

(x, y)] (3.28)

sum–product µB∼
(y) = f

{∑
x∈X

[µA∼
(x) · µR∼

(x, y)]

}
(3.29)

where f (·) is a logistic function (like a sigmoid or a step function) that limits the value
of the function within the interval [0, 1]. This composition method is commonly used in
applications of artificial neural networks for mapping between parallel layers in a multilayer
network.

It is left as an exercise for the reader (see Problems 3.26 and 3.27) to determine
the relationship among these additional forms of the composition operator for various
combinations of the membership values for µA∼

(x) and µR∼
(x, y).

SUMMARY

This chapter has shown some of the properties and operations of crisp and fuzzy relations.
There are many more, but these will provide a sufficient foundation for the rest of the
material in the text. The idea of a relation is most powerful; this modeling power will
be shown in subsequent chapters dealing with such issues as logic, nonlinear simulation,
classification, and control. The idea of composition was introduced, and it will be seen
in Chapter 12 that the composition of a relation is similar to a method used to extend
fuzziness into functions, called the extension principle. Tolerant and equivalent relations
hold some special properties, as will be illustrated in Chapter 11, when they are used in
similarity applications and classification applications, respectively. There are some very
interesting graphical analogies for relations as seen in some of the example problems (also
see Problem 3.9 at the end of the chapter). Finally, several similarity metrics were shown
to be useful in developing the relational strengths, or distances, within fuzzy relations from
data sets.
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PROBLEMS

General Relations

3.1. The provision of high-quality drinking water remains one of the greatest environmental
challenges for public health officials and water utilities worldwide. In order to ensure maximum
water quality in distribution networks, proper attention must be given to the pressure head at
nodal points (measured by pressure probes) and the demand consumption pattern (measured
by telemetry meters) along the whole length of the distribution network. Suppose we have two
fuzzy sets, P∼ defined on a universe of three discrete pressures {x1, x2, x3}, and D∼ defined on a
universe of two discrete demand consumptions {y1, y2}, where fuzzy set P∼ represents the near
optimum pressure for high-quality drinking water and P∼ represents the instantaneous demand
(water demand) obtained from a time-series demand forecasting. Thus, P∼ and D∼ represent the
variable inputs and water quality represents the output.

The Cartesian product represents the conditions (pressure–demand consumption) of the
distribution system that are associated with near maximum water quality.

Let

P∼ =
{

0.1

x1
+ 0.4

x2
+ 1

x3

}
and D∼ =

{
0.5

y1
+ 0.8

y2

}

Calculate the Cartesian product T∼ = P∼ × D∼ .
3.2. In a water treatment process, we use a biological process to remove biodegradable organic mat-

ter. The organic matter is measured as the biological oxygen demand (BOD), where the optimal
BOD of effluent should be less them 20 mg/L. Let B∼ represent a fuzzy set ‘‘good effluent’’ on
the universe of optical BOD values (20, 40, 60) as defined by the membership function

µB∼
= 0.5

60
+ 0.7

40
+ 1.0

20

The retention time is critical to a bioreactor; we try to find the retention time, measured in days.
Let T∼ represent a fuzzy set called ‘‘optimal retention time’’ on the universe of days (6, 8, 10)
as given by the membership function

µT∼
= 0.9

10
+ 0.7

8
+ 0.5

6

The utilization rate of organic food indicates the level of the treatment in the biological process,
and this rate is measured on a universe of fractions from 0 to 1, where 1 is optimal. Fuzzy set
U∼ will represent ‘‘high utilization rates,’’ as defined by the membership function

µU∼
= 1

0.9
+ 0.8

0.8
+ 0.6

0.7
+ 0.4

0.6

We can define the following relations:
R∼ = B∼ × T∼, which reflects how retention time affects BOD removal;
S∼ = T∼ × U∼ , which relates how retention time affects organic food consumption; and
W∼ = R∼◦S∼, which represents the BOD removal and food utilization.
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(a) Find R∼ and S∼ using Cartesian products.
(b) Find W∼ using max–min composition.
(c) Find W∼ using max–product composition.

3.3. Assume storm magnitudes are recorded on a rain gauge station within a 24 h period. We
will represent our assessment of the size of a storm on the universe of rainfall depths, hi ,
i = 1, 2, 3, where h3 > h2 > h1. The data on depths are based on statistical estimates acquired
from numerous rainfall records. The membership function representing the confidence in the
rainfall depth of a particular ‘‘moderate storm’’ F∼ is given by

F∼ =
{

0.4

h1
+ 0.9

h2
+ 0.6

h3

}

Suppose D∼ is a fuzzy set which represents the rainfall duration, ti (ti < 24 h), where t2 > t1 and
the duration can again be derived from statistics. The membership function of a ‘‘long duration
storm’’ might be

D∼ =
{

0.1

t1
+ 1.0

t2

}

(a) Find the Cartesian product F∼ × D∼ = G∼ , which provides a relation between rainfall depth
and duration.

(b) Then assume you have a fuzzy set of confidence in the measurement of the rainfall depth
due to factors such as wind, human error, instrument type, etc. Such a fuzzy set on the
universe of depths, say ‘‘high confidence in depth h2’’, could be

E∼ =
{

0.2

h1
+ 1.0

h2
+ 0.3

h3

}

Using a max–min composition find C∼ = E∼◦G∼ , which represents the best strength of the
estimate with respect to the storm duration.

3.4. A company sells a product called a video multiplexer, which multiplexes the video from 16
video cameras into a single video cassette recorder (VCR). The product has a motion detection
feature that can increase the frequency with which a given camera’s video is recorded to tape
depending on the amount of motion that is present. It does this by recording more information
from that camera at the expense of the amount of video that is recorded from the other 15
cameras. Define a universe X to be the speed of the objects that are present in the video of camera
1 (there are 16 cameras). For example, let X = {Low Speed, Medium Speed, High Speed} =
{LS, MS, HS}. Now, define a universe Y to represent the frequency with which the video
from camera 1 is recorded to a VCR tape, i.e., the record rate of camera 1. Suppose
Y = {Slow Record Rate, Medium Record Rate, Fast Record Rate} = {SRR, MRR, FRR}. Let
us now define a fuzzy set A∼ on X and a fuzzy set B∼ on Y, where A∼ represents a fuzzy
slow-moving object present in video camera 1, and B∼ represents a fuzzy slow record rate,
biased to the slow side. For example,

A∼ =
{

1

LS
+ 0.4

MS
+ 0.2

HS

}

B∼ =
{

1

SRR
+ 0.5

MRR
+ 0.25

FRR

}

(a) Find the fuzzy relation for the Cartesian product of A∼ and B∼, i.e., find R∼ = A∼ × B∼.
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(b) Suppose we introduce another fuzzy set, C∼, which represents a fuzzy fast-moving object
present in video camera 1, say, for example, the following:

C∼ =
{

0.1

LS
+ 0.3

MS
+ 1

HS

}

Find the relation between C∼ and B∼ using a Cartesian product, i.e., find S∼ = C∼ × B∼.
(c) Find C∼◦R∼ using max–min composition.
(d) Find C∼◦R∼ using max–product composition.
(e) Comment on the differences between the results of parts (c) and (d).

3.5. Three variables of interest in power transistors are the amount of current that can be switched,
the voltage that can be switched, and the cost. The following membership functions for power
transistors were developed from a hypothetical components catalog:

Average current (in amps) = I∼ =
{

0.4

0.8
+ 0.7

0.9
+ 1

1
+ 0.8

1.1
+ 0.6

1.2

}

Average voltage (in volts) = V∼ =
{

0.2

30
+ 0.8

45
+ 1

60
+ 0.9

75
+ 0.7

90

}

Note how the membership values in each set taper off faster toward the lower voltage and
currents. These two fuzzy sets are related to the ‘‘power’’ of the transistor. Power in electronics
is defined by an algebraic operation, P = V I , but let us deal with a general Cartesian
relationship between voltage and current, i.e., simply with P∼ = V∼ × I∼. Keep in mind that the
Cartesian product is different from the arithmetic product. The Cartesian product expresses the
relationship between Vi and Ij , where Vi and Ij are individual elements in the fuzzy sets V∼ and I∼.
(a) Find the fuzzy Cartesian product P∼ = V∼ × I∼.

Now let us define a fuzzy set for the cost C∼, in dollars, of a transistor, e.g.,

C∼ =
{

0.4

0.5
+ 1

0.6
+ 0.5

0.7

}

(b) Using a fuzzy Cartesian product, find T∼ = I∼× C∼. What would this relation, T∼, represent
physically?

(c) Using max–min composition, find E∼ = P∼◦T∼. What would this relation, E∼, represent
physically?

(d) Using max–product composition, find E∼ = P∼◦T∼.
3.6. The relationship between temperature and maximum operating frequency R depends on various

factors for a given electronic circuit. Let T∼ be a temperature fuzzy set (in degrees Fahrenheit)
and F∼ represent a frequency fuzzy set (in MHz) on the following universes of discourse:

T∼ = {−100,−50, 0, 50, 100} and F∼ = {8, 16, 25, 33}

Suppose a Cartesian product between T∼ and F∼ is formed that results in the following relation:

R∼ =




−100 −50 0 50 100

8 0.2 0.5 0.7 1 0.9
16 0.3 0.5 0.7 1 0.8
25 0.4 0.6 0.8 0.9 0.4
33 0.9 1 0.8 0.6 0.4
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The reliability of the electronic circuit is related to the maximum operating temperature.
Such a relation S∼ can be expressed as a Cartesian product between the reliability index,
M∼ = {1, 2, 4, 8, 16} (in dimensionless units), and the temperature, as in the following example:

S∼ =




1 2 4 8 16

−100 1 0.8 0.6 0.3 0.1
−50 0.7 1 0.7 0.5 0.4

0 0.5 0.6 1 0.8 0.8
50 0.3 0.4 0.6 1 0.9

100 0.9 0.3 0.5 0.7 1




Composition can be performed on any two or more relations with compatible row–column
consistency. To find a relationship between frequency and the reliability index, use
(a) max–min composition
(b) max–product composition

3.7. The formation of algal solutions and other biological colonies in surface waters is strongly
dependent on such factors as the pH of the water, the temperature, and oxygen content.
Relationships among these various factors enable environmental engineers to study issues
involving bioremediation using the algae. Suppose we define a set T of water temperatures
from a lake on the following discrete universe of temperatures in degrees Fahrenheit:

T = {50, 55, 60}
And suppose we define a universe O of oxygen content values in the water, as percent by
volume:

O = {1, 2, 6}
Suppose a Cartesian product is performed between specific fuzzy sets T∼ and O∼ defined on T
and Q to produce the following relation:

R∼ = T∼ × O∼ =



1 2 6

50 0.1 0.2 0.9
55 0.1 1 0.7
60 0.8 0.7 0.1




Now suppose we define another fuzzy set of temperatures, ‘‘about 55◦F,’’ with the following
membership values:

I∼T =
{

0.5

50
+ 1

55
+ 0.7

60

}

(a) Using max–min composition, find S∼ = I∼T◦(T∼ × O∼).
(b) Using max–product composition, find S∼ = I∼T◦R∼.

3.8. Relating earthquake intensity to ground acceleration is an imprecise science. Suppose we have
a universe of earthquake intensities (on the Mercalli scale), I = {5, 6, 7, 8, 9}, and a universe
of accelerations, A = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2}, in g. The following fuzzy relation, R∼, exists
on the Cartesian space I × A:

R∼ =




0.2 0.4 0.6 0.8 1.0 1.2

5 0.75 1 0.85 0.5 0.2 0
6 0.5 0.8 1 0.7 0.3 0
7 0.1 0.5 0.8 1 0.7 0.1
8 0 0.2 0.5 0.85 1 0.6
9 0 0 0.2 0.5 0.9 1
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If the fuzzy set ‘‘intensity about 7’’ is defined as

I∼7 =
{

0.1

5
+ 0.6

6
+ 1

7
+ 0.8

8
+ 0.2

9

}

determine the fuzzy membership of I∼7 on the universe of accelerations, A.
3.9. Given the continuous, noninteractive fuzzy sets A∼ and B∼ on universes X and Y, using Zadeh’s

notation for continuous fuzzy variables,

A∼ =
{∫

1 − 0.1|x|
x

}
for x ∈ [0,+10]

B∼ =
{∫

0.2|y|
y

}
for y ∈ [0,+5]

1

0 x

χAµ

1

0 y

χBµ

10510
0 0

~ ~

(a)

1

0 x

χA'µ

103
0

~

(b)

FIGURE P3.9

as seen in Fig. P3.9a:
(a) Construct a fuzzy relation R for the Cartesian product of A∼ and B∼.
(b) Use max–min composition to find B∼

′, given the fuzzy singleton A∼
′ = 1

3 (see Fig. P3.9b).
Hint: You can solve this problem graphically by segregating the Cartesian space into various
regions according to the min and max operations, or you can approximate the continuous fuzzy
variables as discrete variables and use matrix operations. In any case, sketch the solution.

3.10. Risk assessment of hazardous waste situations requires the assimilation of a great deal of
linguistic information. In this context, consider risk as being defined as ‘‘consequence of a
hazard’’ multiplied by ‘‘possibility of the hazard’’ (instead of the conventional ‘‘probability
of hazard’’). Consequence is the result of an unintended action on humans, equipment, or
facilities, or the environment. Possibility is the estimate of the likelihood that the unintended
action will occur. Consequence and possibility are dependent on several factors and therefore
cannot be determined with precision. We will use composition, then, to define risk; hence risk
= consequence ◦ possibility, or

R∼ = C∼◦P∼
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We will consider that the consequence is the logical intersection of the hazard mitigation and
the hazard source term (the source term defines the type of initiation, such as a smokestack
emitting a toxic gas, or a truck spill of a toxic organic); hence we define consequence =
mitigation ∩ source term, or

C∼ = M∼ ∩ ST∼

Since humans and their systems are ultimately responsible for preventing or causing non-natural
hazards, we define the possibility of a hazard as the logical intersection of human errors and
system vulnerabilities; hence possibility = human factors ∩ system reliabilities,

P∼ = H∼ ∩ S∼

From these postulates, show that the membership form of the risk, R∼, is given by the expression

µR∼
(x, y) = max{min(min[µM∼

(x, y), µST∼
(x, y)], min[µH∼

(x, y), µS∼
(x, y)])}

3.11. A new optical microscope camera uses a lookup table to relate voltage readings (which are
related to illuminance) to exposure time. To aid in the creation of this lookup table, we need to
determine how much time the camera should expose the pictures at a certain light level. Define
a fuzzy set ‘‘around 3 volts’’ on a universe of voltage readings in volts

V∼1×5 =
{

0.1

2.98
+ 0.3

2.99
+ 0.7

3
+ 0.4

3.01
+ 0.2

3.02

}
(volts)

and a fuzzy set ‘‘around 1/10 second’’ on a universe of exposure time in seconds

T∼1×6 =
{

0.1

0.05
+ 0.3

0.06
+ 0.3

0.07
+ 0.4

0.08
+ 0.5

0.09
+ 0.2

0.1

}
(seconds)

(a) Find R∼ = V∼ × T∼.
Now define a third universe of ‘‘stops.’’ In photography, stops are related to making the
picture some degree lighter or darker than the ‘‘average’’ exposed picture. Therefore, let
Universe of Stops = {−2,−1.5,−1, 0, .5, 1, 1.5, 2} (stops). We will define a fuzzy set on
this universe as

Z∼ = a little bit lighter =
{

0.1

0
+ 0.7

0.5
+ 0.3

1

}

(b) Find S∼ = T∼ × Z∼.
(c) Find M∼ = R∼◦S∼ by max–min composition.
(d) Find M∼ = R∼◦S∼ by max–product composition.

3.12. Music is not a precise science. Tactile movements by musicians on various instruments come
from years of practice, and such movements are very subjective and imprecise. When a guitar
player changes from an A chord to a C chord (major), his or her fingers have to move some
distance, which can be measured in terms of frets (e.g., 1 fret = 0.1). This change in finger
movement is described by the relation given in the following table. The table is for a six-string
guitar: xi is the string number, for i = 1, 2, . . . , 6. For example, −0.2 is two frets down and
0.3 is three frets up, where 0 is located at the top of the guitar fingerboard.

C chord

A chord x6 x5 x4 x3 x2 x1
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The finger positions on the guitar strings for the two chords can be given in terms of the
following membership functions:

C∼ chord =
{

0

x6
+ 0.3

x5
+ 0.2

x4
+ 0

x3
+ 0.1

x2
+ 0

x1

}

A∼ chord =
{

0

x6
+ 0

x5
+ 0.2

x4
+ 0.2

x3
+ 0.2

x2
+ 0

x1

}

Suppose the placement of fingers on the six strings for a G chord is given as

G∼ chord =
{

0.3

x6
+ 0.2

x5
+ 0

x4
+ 0

x3
+ 0

xx2
+ 0.3

x1

}

(a) Find the relation that expresses moving from an A chord to a G chord; call this R∼.
(b) Use max–product composition to determine C∼◦R∼.

3.13. In neuroscience research, it is often necessary to relate functional information to anatomical
information. One source of anatomical information for a subject is a series of magnetic
resonance imaging (MRI) pictures, composed of gray-level pixels, of the subject’s head. For
some applications, it is useful to segment (label) the brain into MRI slices (images along
different virtual planes through the brain). This procedure can be difficult to do using gray-level
values alone. A standard – or model – brain, combined with a distance criterion, can be used in
conjunction with the gray-level information to improve the segmentation process. Define the
following elements for the problem:
1. Normalized distance from the model (D∼)

D∼ =
{

1

0
+ 0.7

1
+ 0.3

2

}

2. Intensity range for the cerebral cortex (I∼C)

I∼C =
{

0.5

20
+ 1

30
+ 0.6

40

}

3. Intensity range for the medulla (I∼M)

I∼M =
{

0.7

20
+ 0.9

30
+ 0.4

40

}

Based on these membership functions, find the following:
(a) R∼ = I∼C × D∼
(b) Max–min composition of I∼M◦R∼
(c) Max–product composition of I∼M◦R∼

3.14. In the field of computer networking there is an imprecise relationship between the level
of use of a network communication bandwidth and the latency experienced in peer-to-peer
communications. Let X∼ be a fuzzy set of use levels (in terms of the percentage of full bandwidth
used) and Y∼ be a fuzzy set of latencies (in milliseconds) with the following membership
functions:

X∼ =
{

0.2

10
+ 0.5

20
+ 0.8

40
+ 1.0

60
+ 0.6

80
+ 0.1

100

}

Y∼ =
{

0.3

0.5
+ 0.6

1
+ 0.9

1.5
+ 1.0

4
+ 0.6

8
+ 0.3

20

}
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(a) Find the Cartesian product represented by the relation R∼ = X∼ × Y∼ .
Now, suppose we have a second fuzzy set of bandwidth usage given by

Z∼ =
{

0.3

10
+ 0.6

20
+ 0.7

40
+ 0.9

60
+ 1

80
+ 0.5

100

}

Find S∼ = Z∼1×6◦R∼6×6

(b) using max–min composition;
(c) using max–product composition.

3.15. High-speed rail monitoring devices sometimes make use of sensitive sensors to measure the
deflection of the earth when a rail car passes. These deflections are measured with respect
to some distance from the rail car and, hence, are actually very small angles measured
in microradians. Let a universe of deflections be A = {1, 2, 3, 4} where A is the angle in
microradians, and let a universe of distances be D = {1, 2, 5, 7} where D is distance in feet.
Suppose a relation between these two parameters has been determined as follows:

R∼ =




D1 D2 D3 D4

A1 1 0.3 0.1 0
A2 0.2 1 0.3 0.1
A3 0 0.7 1 0.2
A4 0 0.1 0.4 1




Now let a universe of rail car weights be W = {1, 2}, where W is the weight in units of 100,000
pounds. Suppose the fuzzy relation of W to A is given by

S∼ =




W1 W2

A1 1 0.4
A2 0.5 1
A3 0.3 0.1
A4 0 0




Using these two relations, find the relation, R∼
T◦S∼ = T∼ (note the matrix transposition here)

(a) using max–min composition;
(b) using max–product composition.

3.16. In the field of soil mechanics new research methods involving vision recognition systems are
being applied to soil masses to watch individual grains of soil as they translate and rotate under
confining pressures. In tracking the motion of the soil particles some problems arise with the
vision recognition software. One problem is called ‘‘occlusion,’’ whereby a soil particle that is
being tracked becomes partially or completely occluded from view by passing behind other soil
particles. Occlusion can also occur when a tracked particle is behind a mark on the camera’s
lens, or the tracked particle is partly out of sight of the camera. In this problem we will consider
only occlusions for the first two problems mentioned. Let us define a universe of parameters
for particle occlusion, say

X = {x1, x2, x3}
and a universe of parameters for lens mark occlusion, say

Y = {y1, y2, y3}
Then, define

A∼ =
{

0.1

x1
+ 0.9

x2
+ 0.0

x3

}



84 CLASSICAL RELATIONS AND FUZZY RELATIONS

as a specific fuzzy set for a tracked particle behind another particle, and let

B∼ =
{

0

y1
+ 1

y2
+ 0

y3

}

be a particular fuzzy set for an occlusion behind a lens mark.
(a) Find the relation, R∼ = A∼ × B∼, using a Cartesian product.
Let C∼ be another fuzzy set in which a tracked particle is behind a particle, e.g.,

C∼ =
{

0.3

x1
+ 1.0

x2
+ 0.0

x3

}

(b) Using max–min composition, find S∼ = C∼◦R∼.
3.17. A common way to control the outlet composition of a distillation column is by controlling the

temperature of one of the trays. In order for the system to be controlled properly, the set point
of the chosen tray must guarantee that the outlet composition of the distillation column (could
be the distillate, the bottoms, or a side stream) is under specifications for the expected range of
disturbances. Tray temperature is measured instead of outlet composition because it is hard to
measure online the fraction of a compound without dead time (e.g., common gas chromatographs
take minutes to make a reading), whereas temperature is easy, fast, and inexpensive to measure.
Steady state simulation runs are made for the expected disturbances in order to pick a tray from
the distillation column and a temperature value for the control scheme. The problem with this
methodology is that there is never a ‘‘best’’ tray temperature for all the disturbances.

Temperature
control

Bottoms 

Feed 

FIGURE P3.17
Distillation column.

For this problem, we define a distillation column (see Fig. P3.17) that separates light
hydrocarbons, propane, butane, and iso-butane. We also state that the composition of propane
in the bottoms must be ≤ 0.01 mole fraction, and that the distillation column is made of 20
trays counted from top to bottom.
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We define the set F∼ to represent three types of feed flows = {High flow, Medium flow,
Low flow}. Besides the bulk amount of the feed, another important factor is the comparison
in the feed of the key component. We will use propane (C3) as the key component. Define
the fuzzy set P∼ = {High C3, Low C3}. Finally, let us say that from previous raw studies, the
prospective trays to be chosen for control are reduced to the set T = {Tray14, Tray15, Tray16,
Tray17}, where fuzzy set T∼ refers to how well it keeps the column under specifications.

If we have the fuzzy sets

F∼ =
High flow
Med flow
Low flow


 0.1

0.7
0.4


 High C3 Low C3

P∼ = [
0.3 0.8

]

(a) Find the Cartesian product R∼ = F∼ × P∼.
(b) P∼ and T∼ are highly related. If we have

Tray14 Tray15 Tray16 Tray17

T∼ = [
0.1 0.3 0.8 0.7

]
then find the Cartesian product S∼ = P∼

T × T∼.
(c) Since outlet composition is not easily measured, it is still important to know how F∼ and T∼

are related. This knowledge can be acquired with a max–min composition; find C∼ = R∼◦S∼.

Value Assignments and Similarity

3.18. Pyrolysis is a widely used high-temperature reaction to produce ethylene and propylene.
When this product leaves the furnace reactor it is necessary to reduce their temperature as
quickly as possible in order to stop the reaction and avoid producing undesired products. This
‘‘quenching’’ of the products is made in equipment that works and looks just like any heat
exchanger, with the difference that a reaction is actually happening in the tubes. Very good
heat transfer is obtained when the tubes are clean, but coke deposition on the inner surface of
the tubes reduces the heat transfer coefficient by a considerable amount and it also increases
the pressure drop. Therefore, coke deposition in the pyrolysis of light hydrocarbons becomes
an important factor in the design of the equipment (usually, the equipment needs cleaning
every four months). An experiment was set in order to determine the coke deposition in the
exchangers built with 10 tubes for different conditions. The different conditions were:

X1 = low tube diameter

X2 = big tube diameter

X3 = tubes made of material 1

X4 = tubes made of material 2

X5 = high pressure

X6 = very high pressure

For every run, all of the 10 tubes were examined and distributed in four categories by
percentage. Not all the tubes were expected to get exactly the same amount of coke deposition
because there is never perfect distribution of the feed into the 10 tubes.
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The examination categories are: High deposition, Med–High deposition, Med deposition,
and Moderate deposition. The results are as follows:

X1 X2 X3 X4 X5 X6

High deposition 0.05 0.01 0.7 0.03 0 0.6
Med–High deposition 0.8 0.5 0.2 0.9 0 0.3
Med deposition 0.1 0.4 0.1 0.04 0.2 0.1
Moderate deposition 0.05 0.09 0 0.03 0.8 0

(a) It is desired to find the similarity among the six pyrolysis conditions; use the max–min
method to find the similarity.

(b) Use the cosine amplitude method to find the similarity.
3.19. A structural designer is considering four different kinds of structural beams (S1, . . . , S4) for a

new building. Laboratory experiments on the deflection resistance for these four different kinds
of beams have been performed, and the engineer wants to determine their suitability in the new
structure. The following data have been observed, based on the overall deflection capacity of
each bean type:

S1 S2 S3 S4

No deflection x1 0.4 0.6 0.5 0.9
Some deflection x2 0.5 0.3 0.5 0.1
Excessive deflection x3 0.1 0.1 0 0

Using the cosine amplitude method determine the similarity of the four beam types.
3.20. Given a particular stream gauge record from three gauging stations, g1 –g3, during major

rainstorms, we can count the years that have had storms with equal magnitude over different
periods to get a quantity used in the design of storm sewers: the number of years with similar
storms over a specified time period.

Gauge
g1 g2 g3

T1 = 10 years 0.00 0.10 0.10
T2 = 25 years 0.04 0.04 0.08
T3 = 50 years 0.02 0.04 0.06

Find the similarity relation, R∼, among the three gauges using the max–min method.
3.21. A certain type of virus attacks cells of human body, as explained in Example 3.7. The infected

cells can be visualized using a special microscope; the virus causes the infected cells to have
a black spot in the image as depicted in Fig. 3.6. The microscope generates digital images
that medical doctors can analyze to identify the infected cells. A physician analyzes different
samples of an infected organ (S) and classifies it as Not infected, Moderately infected, and
Seriously infected. Five samples were analyzed as given in the table below:

Samples S1 S2 S3 S4 S5

Not infected 0.6 0.3 0.1 0.9 0.8
Moderately infected 0.4 0.5 0.3 0.1 0.1
Seriously infected 0.0 0.2 0.6 0.0 0.1

Use the min–max method to find the similarity relation.
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3.22. In the statistical characterization of fractured reservoirs, the goal is to classify the geology
according to different kinds of fractures, which are mainly tectonic and regional fractures.
The purpose of this classification is to do critical simulation based on well data, seismic data,
and fracture pattern. After pattern recognition (using Cauchy–Euler detection algorithms or
other methods) and classification of the fracture images derived from the outcrops of fractured
reservoirs, a geological engineer can get different patterns corresponding to different fracture
morphologies. Suppose the engineer obtains five images (I1 . . . I5) from five different outcrops
of fractured reservoirs, and their percentage values corresponding to three kinds of fractures
(Tectonic fracture, Regional fracture, and Other fracture), as given below:

I1 I2 I3 I4 I5

Tectonic fracture 0.6 0.6 0.3 0.5 0.2
Regional fracture 0.3 0.1 0.2 0.2 0.6
Other fracture 0.1 0.3 0.5 0.3 0.2

Develop a similarity relation
(a) using the cosine amplitude method and
(b) using the max–min method.
(c) Since the similarity relation will be a tolerance relation, fund the associated equivalence

relation.
3.23. The latitude of the receiver can affect the positional accuracies of geo-positioning-system

(GPS) results because the GPS was designed primarily for operation close to the equator. The
accuracy of a GPS degrades as the distance from the equator increases. We define the following
fuzzy sets:
discrete set for position accuracies (P∼)
discrete set for latitude (L∼)
(a) Discuss the physical meaning of the relation R∼1 = P∼ × L∼.

Position accuracies of GPS are also affected by ionospheric effects. Ionospheric effects are
strongest at the magnetic equator and they weaken as the GPS gets closer to the poles. We
define a fuzzy discrete set for ionospheric effect (I∼).

(b) Discuss the physical meaning of the relation R∼2 = L∼ × I∼.
(c) Through composition we can relate the ionospheric effect with the position accuracies, i.e.,

by calculating IP∼ = R1∼
◦R2. Discuss the physical meaning of this composition.

(d) Five sets of GPS measurements were made and the quality of each range to a single
satellite was graded based on its elevation angle, in degrees. The quality ranged from poor
to acceptable and to high quality. The following table shows the distribution of GPS ranges
for each of the five sets of measurements. Using the max–min similarity method find the
fuzzy similarity relation for the five sets.

GPS measurement
1 2 3 4 5

Poor quality (0◦ –15◦) 0.2 0.3 0.4 0.5 0.4
Acceptable quality (10◦ –60◦) 0.6 0.6 0.5 0.5 0.6
High quality (50◦ –90◦) 0.2 0.1 0.1 0.0 0.0

(e) Find the equivalence relation of the matrix developed in part (d).
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3.24. Over the last decade Calgary, Alberta, has made use of a large number of storm-water ponds
to mitigate flooding during extreme rainfall events by reducing the peak flows in trunk sewers
or receiving waterways. The ponds have control structures that have data recorders monitoring
water levels during the storm events. More ponds are built as urban development occurs.
To determine the similarity of the pond performances within the city quadrants would be
useful in determining if citywide drainage policies work effectively. Let the regions of the
city be represented by the four quadrants (NW, NE, SW, SE). The ponds in the area can have
performance based on design capacities broken down into three categories of stormwater filling
levels: low, moderate, and high values based on expectations and percentage of ponds in the
category. The following table represents a recent storm event summary:

Location NW NE SW SE

xi1 –Ratio with low filling 0.3 0.2 0.1 0.7
xi2 –Ratio with moderate filling 0.6 0.4 0.6 0.2
xi3 –Ratio with high filling 0.1 0.4 0.3 0.1

(a) Use the cosine amplitude method to express these data as a fuzzy relation.
(b) Comment on the similarity of the ponds in the four quadrants of the city.
(c) Find the equivalence relation associated with the matrix calculated in part (b). How does

the equivalence relation differ, in terms of the physical significance, from the original
tolerance relation?

Equivalence Relations

3.25. The accompanying Sagittal diagrams (Fig. P3.25) show two relations on the universe, X =
{1, 2, 3}. Are these relations equivalence relations [Gill, 1976]?

2 3

1 1

2

(b)(a)

3

FIGURE P3.25
From [Gill, 1976].

Other Composition Operations

3.26. For Example 3.6 in this chapter, recalculate the fuzzy relation T∼ using
(i) Equation (3.25)

(ii) Equation (3.26)
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(iii) Equation (3.27)
(iv) Equation (3.28)
(v) Equation (3.29), where

f (•) =
{

1 − e−x, for x ≥ 0
ex − 1, for x ≤ 0

3.27. Fill in the following table using Eqs. (3.25)–(3.29) to determine values of the composition
B∼ = A∼◦R∼ for the fuzzy relation

R∼ =



y1 y2 y3

x1 0.1 0.2 0.3
x2 0.4 0.5 0.6
x3 0.7 0.8 0.9




Comment on the similarities and dissimilarities of the various composition methods with
respect to the various antecedents, A∼ .

A∼ B∼
[0.1 0.5 1.0]
[1.0 0.6 0.1]
[0.2 0.6 0.4]
[0.7 0.9 0.8]



CHAPTER

4
PROPERTIES OF
MEMBERSHIP
FUNCTIONS,
FUZZIFICATION, AND
DEFUZZIFICATION

‘‘Let’s consider your age, to begin with – how old are you?’’ ‘‘I’m seven and a half, exactly.’’
‘‘You needn’t say ‘exactually,’ ’’ the Queen remarked; ‘‘I can believe it without that. Now I’ll
give you something to believe. I’m just one hundred and one, five months, and a day.’’ ‘‘I can’t
believe that!’’ said Alice.
‘‘Can’t you?’’ the Queen said in a pitying tone. ‘‘Try again; draw a long breath, and shut
your eyes.’’ Alice laughed. ‘‘There’s no use trying,’’ she said; ‘‘one can’t believe impossible
things.’’

Lewis Carroll
Through the Looking Glass, 1871

It is one thing to compute, to reason, and to model with fuzzy information; it is another
to apply the fuzzy results to the world around us. Despite the fact that the bulk of the
information we assimilate every day is fuzzy, like the age of people in the Lewis Carroll
example above, most of the actions or decisions implemented by humans or machines are
crisp or binary. The decisions we make that require an action are binary, the hardware we
use is binary, and certainly the computers we use are based on binary digital instructions.
For example, in making a decision about developing a new engineering product the eventual
decision is to go forward with development or not; the fuzzy choice to ‘‘maybe go forward’’
might be acceptable in planning stages, but eventually funds are released for development
or they are not. In giving instructions to an aircraft autopilot, it is not possible to turn the
plane ‘‘slightly to the west’’; an autopilot device does not understand the natural language

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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of a human. We have to turn the plane by 15◦, for example, a crisp number. An electrical
circuit typically is either on or off, not partially on.

The bulk of this textbook illustrates procedures to ‘‘fuzzify’’ the mathematical and
engineering principles we have so long considered to be deterministic. But in various
applications and engineering scenarios there will be a need to ‘‘defuzzify’’ the fuzzy results
we generate through a fuzzy systems analysis. In other words, we may eventually find a
need to convert the fuzzy results to crisp results. For example, in classification and pattern
recognition (see Chapter 11) we may want to transform a fuzzy partition or pattern into a
crisp partition or pattern; in control (see Chapter 13) we may want to give a single-valued
input to a semiconductor device instead of a fuzzy input command. This ‘‘defuzzification’’
has the result of reducing a fuzzy set to a crisp single-valued quantity, or to a crisp set; of
converting a fuzzy matrix to a crisp matrix; or of making a fuzzy number a crisp number.

Mathematically, the defuzzification of a fuzzy set is the process of ‘‘rounding it
off’’ from its location in the unit hypercube to the nearest (in a geometric sense) vertex
(see Chapter 1). If one thinks of a fuzzy set as a collection of membership values, or a
vector of values on the unit interval, defuzzification reduces this vector to a single scalar
quantity – presumably to the most typical (prototype) or representative value. Various
popular forms of converting fuzzy sets to crisp sets or to single scalar values are introduced
later in this chapter.

FEATURES OF THE MEMBERSHIP FUNCTION

Since all information contained in a fuzzy set is described by its membership function, it is
useful to develop a lexicon of terms to describe various special features of this function. For
purposes of simplicity, the functions shown in the following figures will all be continuous,
but the terms apply equally for both discrete and continuous fuzzy sets. Figure 4.1 assists
in this description.

The core of a membership function for some fuzzy set A∼ is defined as that region of
the universe that is characterized by complete and full membership in the set A∼ . That is, the
core comprises those elements x of the universe such that µA∼

(x) = 1.
The support of a membership function for some fuzzy set A∼ is defined as that region

of the universe that is characterized by nonzero membership in the set A∼ . That is, the
support comprises those elements x of the universe such that µA∼

(x) > 0.

1

0 x

Core

Support

Boundary
Boundary

µ(x)µ

FIGURE 4.1
Core, support, and boundaries of a fuzzy set.
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FIGURE 4.2
Fuzzy sets that are normal (a) and subnormal (b).

The boundaries of a membership function for some fuzzy set A∼ are defined as
that region of the universe containing elements that have a nonzero membership but not
complete membership. That is, the boundaries comprise those elements x of the universe
such that 0 < µA∼

(x) < 1. These elements of the universe are those with some degree of
fuzziness, or only partial membership in the fuzzy set A∼ . Figure 4.1 illustrates the regions
in the universe comprising the core, support, and boundaries of a typical fuzzy set.

A normal fuzzy set is one whose membership function has at least one element x

in the universe whose membership value is unity. For fuzzy sets where one and only one
element has a membership equal to one, this element is typically referred to as the prototype
of the set, or the prototypical element. Figure 4.2 illustrates typical normal and subnormal
fuzzy sets.

A convex fuzzy set is described by a membership function whose membership values
are strictly monotonically increasing, or whose membership values are strictly monotoni-
cally decreasing, or whose membership values are strictly monotonically increasing then
strictly monotonically decreasing with increasing values for elements in the universe. Said
another way, if, for any elements x, y, and z in a fuzzy set A∼ , the relation x < y < z implies
that

µA∼
(y) ≥ min[µA∼

(x), µA∼
(z)] (4.1)

then A∼ is said to be a convex fuzzy set [Ross, 1995]. Figure 4.3 shows a typical convex
fuzzy set and a typical nonconvex fuzzy set. It is important to remark here that this definition
of convexity is different from some definitions of the same term in mathematics. In some
areas of mathematics, convexity of shape has to do with whether a straight line through any
part of the shape goes outside the boundaries of that shape. This definition of convexity is
not used here; Eq. (4.1) succinctly summarizes our definition of convexity.

1 1

x y z0 0

(a) (b)

x xx y z

Aµ(x) µ(x)
~

A
~

FIGURE 4.3
Convex, normal fuzzy set (a) and nonconvex, normal fuzzy set (b).
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FIGURE 4.4
The intersection of two convex fuzzy sets produces a convex fuzzy set.

A special property of two convex fuzzy sets, say A∼ and B∼, is that the intersection of
these two convex fuzzy sets is also a convex fuzzy set, as shown in Fig. 4.4. That is, for A∼
and B∼, which are both convex, A∼ ∩ B∼ is also convex.

The crossover points of a membership function are defined as the elements in
the universe for which a particular fuzzy set A∼ has values equal to 0.5, i.e., for which
µA∼

(x) = 0.5.
The height of a fuzzy set A∼ is the maximum value of the membership function, i.e.,

hgt(A∼) = max{µA∼
(x)}. If the hgt(A∼) < 1, the fuzzy set is said to be subnormal. The hgt(A∼)

may be viewed as the degree of validity or credibility of information expressed by A∼ [Klir
and Yuan, 1995].

If A∼ is a convex single-point normal fuzzy set defined on the real line, then A∼ is often
termed a fuzzy number.

VARIOUS FORMS

The most common forms of membership functions are those that are normal and convex.
However, many operations on fuzzy sets, hence operations on membership functions, result
in fuzzy sets that are subnormal and nonconvex. For example, the extension principle to be
discussed in Chapter 12 and the union operator both can produce subnormal or nonconvex
fuzzy sets.

Membership functions can be symmetrical or asymmetrical. They are typically defined
on one-dimensional universes, but they certainly can be described on multidimensional (or
n-dimensional) universes. For example, the membership functions shown in this chapter
are one-dimensional curves. In two dimensions these curves become surfaces and for three
or more dimensions these surfaces become hypersurfaces. These hypersurfaces, or curves,
are simple mappings from combinations of the parameters in the n-dimensional space to
a membership value on the interval [0, 1]. Again, this membership value expresses the
degree of membership that the specific combination of parameters in the n-dimensional
space has in a particular fuzzy set defined on the n-dimensional universe of discourse.
The hypersurfaces for an n-dimensional universe are analogous to joint probability density
functions; but, of course, the mapping for the membership function is to membership in a
particular set and not to relative frequencies, as it is for probability density functions.
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FIGURE 4.5
An interval-valued membership function.

Fuzzy sets of the types depicted in Fig. 4.2 are by far the most common ones
encountered in practice; they are described by ordinary membership functions. However,
several other types of fuzzy membership functions have been proposed [Klir and Yuan,
1995] as generalized membership functions. The primary reason for considering other
types of membership functions is that the values used in developing ordinary membership
functions are often overly precise. They require that each element of the universe x on
which the fuzzy set A∼ is defined be assigned a specific membership value, µA∼

(x). Suppose
the level of information is not adequate to specify membership functions with this precision.
For example, we may only know the upper and lower bounds of membership grades for
each element of the universe for a fuzzy set. Such a fuzzy set would be described by an
interval-valued membership function, such as the one shown in Fig. 4.5. In this figure, for a
particular element, x = z, the membership in a fuzzy set A∼ , i.e., µA∼

(z), would be expressed
by the membership interval [α1, α2]. Interval-valued fuzzy sets can be generalized further
by allowing their intervals to become fuzzy. Each membership interval then becomes an
ordinary fuzzy set. This type of membership function is referred to in the literature as a
type-2 fuzzy set. Other generalizations of the fuzzy membership functions are available as
well [see Klir and Yuan, 1995].

FUZZIFICATION

Fuzzification is the process of making a crisp quantity fuzzy. We do this by simply
recognizing that many of the quantities that we consider to be crisp and deterministic
are actually not deterministic at all: They carry considerable uncertainty. If the form of
uncertainty happens to arise because of imprecision, ambiguity, or vagueness, then the
variable is probably fuzzy and can be represented by a membership function.

In the real world, hardware such as a digital voltmeter generates crisp data, but these
data are subject to experimental error. The information shown in Fig. 4.6 shows one possible
range of errors for a typical voltage reading and the associated membership function that
might represent such imprecision.
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FIGURE 4.6
Membership function representing imprecision in ‘‘crisp voltage reading.’’
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FIGURE 4.7
Comparisons of fuzzy sets and crisp or fuzzy readings: (a) fuzzy set and crisp reading; (b) fuzzy set
and fuzzy reading.

The representation of imprecise data as fuzzy sets is a useful but not mandatory
step when those data are used in fuzzy systems. This idea is shown in Fig. 4.7, where
we consider the data as a crisp reading, Fig. 4.7a, or as a fuzzy reading, as shown in
Fig. 4.7b. In Fig. 4.7a we might want to compare a crisp voltage reading to a fuzzy set,
say ‘‘low voltage.’’ In the figure we see that the crisp reading intersects the fuzzy set ‘‘low
voltage’’ at a membership of 0.3, i.e., the fuzzy set and the reading can be said to agree at a
membership value of 0.3. In Fig. 4.7b the intersection of the fuzzy set ‘‘medium voltage’’
and a fuzzified voltage reading occurs at a membership of 0.4. We can see in Fig. 4.7b

that the set intersection of the two fuzzy sets is a small triangle, whose largest membership
occurs at the membership value of 0.4.
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We will say more about the importance of fuzzification of crisp variables in Chapters 8
and 13 of this text. In Chapter 8 the topic is simulation, and the inputs for any nonlinear or
complex simulation will be expressed as fuzzy sets. If the process is inherently quantitative
or the inputs derive from sensor measurements, then these crisp numerical inputs could
be fuzzified in order for them to be used in a fuzzy inference system (to be discussed in
Chapter 5). In Chapter 13 the topic is fuzzy control, and, again, this is a discipline where
the inputs generally originate from a piece of hardware, or a sensor and the measured input
could be fuzzified for utility in the rule-based system which describes the fuzzy controller.
If the system to be controlled is not hardware based, e.g., the control of an economic system
or the control of an ecosystem subjected to a toxic chemical, then the inputs could be scalar
quantities arising from statistical sampling, or other derived numerical quantities. Again,
for utility in fuzzy systems, these scalar quantities could first be fuzzified, i.e., translated
into a membership function, and then used to form the input structure necessary for a fuzzy
system.

DEFUZZIFICATION TO CRISP SETS

We begin by considering a fuzzy set A∼ , then define a lambda-cut set, Aλ, where 0 ≤ λ ≤ 1.
The set Aλ is a crisp set called the lambda (λ)-cut (or alpha-cut) set of the fuzzy set A∼ ,
where Aλ = {x|µA∼

(x) ≥ λ}. Note that the λ-cut set Aλ does not have a tilde underscore;
it is a crisp set derived from its parent fuzzy set, A∼ . Any particular fuzzy set A∼ can be
transformed into an infinite number of λ-cut sets, because there are an infinite number of
values λ on the interval [0, 1].

Any element x ∈ Aλ belongs to A∼ with a grade of membership that is greater than or
equal to the value λ. The following example illustrates this idea.

Example 4.1. Let us consider the discrete fuzzy set, using Zadeh’s notation, defined on
universe X = {a, b, c, d, e, f },

A∼ =
{

1

a
+ 0.9

b
+ 0.6

c
+ 0.3

d
+ 0.01

e
+ 0

f

}

This fuzzy set is shown schematically in Fig. 4.8. We can reduce this fuzzy set into several
λ-cut sets, all of which are crisp. For example, we can define λ-cut sets for the values of λ = 1,
0.9, 0.6, 0.3, 0+, and 0.

A1 = {a}, A0.9 = {a, b}
A0.6 = {a, b, c}, A0.3 = {a, b, c, d}
A0+ = {a, b, c, d, e}, A0 = X

1

0 a b c d e f x

µ
0.9

0.6
0.3

0.01 0.0
FIGURE 4.8
A discrete fuzzy set A∼ .
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FIGURE 4.9
Lambda-cut sets for λ = 1, 0.9, 0.6, 0.3, 0+, 0.

The quantity λ = 0+ is defined as a small ‘‘ε’’ value >0, i.e., a value just greater than
zero. By definition, λ = 0 produces the universe X, since all elements in the universe have
at least a 0 membership value in any set on the universe. Since all Aλ are crisp sets, all the
elements just shown in the example λ-cut sets have unit membership in the particular λ-cut
set. For example, for λ = 0.3, the elements a, b, c, and d of the universe have a membership
of 1 in the λ-cut set, A0.3, and the elements e and f of the universe have a membership of 0
in the λ-cut set, A0.3. Figure 4.9 shows schematically the crisp λ-cut sets for the values λ = 1,
0.9, 0.6, 0.3, 0+, and 0. Notice in these plots of membership value versus the universe X that
the effect of a λ-cut is to rescale the membership values: to one for all elements of the fuzzy
set A∼ having membership values greater than or equal to λ, and to zero for all elements of the
fuzzy set A∼ having membership values less than λ.

We can express λ-cut sets using Zadeh’s notation. For the example, λ-cut sets for the
values λ = 0.9 and 0.25 are given here:

A0.9 =
{

1

a
+ 1

b
+ 0

c
+ 0

d
+ 0

e
+ 0

f

}
A0.25 =

{
1

a
+ 1

b
+ 1

c
+ 1

d
+ 0

e
+ 0

f

}

λ-cut sets obey the following four very special properties:

1. (A∼ ∪ B∼)λ = Aλ ∪ Bλ (4.1a)

2. (A∼ ∩ B∼)λ = Aλ ∩ Bλ (4.1b)

3. (A∼)λ �= Aλ except for a value of λ = 0.5 (4.1c)

4. For any λ ≤ α, where 0 ≤ α ≤ 1, it is true that Aα ⊆ Aλ, where A0 = X (4.1d)
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FIGURE 4.10
Two different λ-cut sets for a continuous-valued fuzzy set.

These properties show that λ-cuts on standard operations on fuzzy sets are equivalent with
standard set operations on λ-cut sets. The last operation, Eq. (4.1d), can be shown more
conveniently using graphics. Figure 4.10 shows a continuous-valued fuzzy set with two
λ-cut values. Notice in the graphic that for λ = 0.3 and α = 0.6, A0.3 has a greater domain
than A0.6, i.e., for λ ≤ α (0.3 ≤ 0.6), A0.6 ⊆ A0.3.

In this chapter, various definitions of a membership function are discussed and
illustrated. Many of these same definitions arise through the use of λ-cut sets. As seen in
Fig. 4.1, we can provide the following definitions for a convex fuzzy set A∼ . The core of A∼ is
the λ = 1 cut set, A1. The support of A∼ is the λ-cut set A0+ , where λ = 0+, or symbolically,
A0+ = {x | µA∼(x) > 0}. The intervals [A0+ , A1] form the boundaries of the fuzzy set A∼ , i.e.,
those regions that have membership values between 0 and 1 (exclusive of 0 and 1): that is,
for 0 < λ < 1.

λ-CUTS FOR FUZZY RELATIONS

In Chapter 3, a biotechnology example, Example 3.11, was developed using a fuzzy relation
that was reflexive and symmetric. Recall this matrix,

R∼ =




1 0.8 0 0.1 0.2
0.8 1 0.4 0 0.9

0 0.4 1 0 0
0.1 0 0 1 0.5
0.2 0.9 0 0.5 1




We can define a λ-cut procedure for relations similar to the one developed for sets.
Consider a fuzzy relation R∼, where each row of the relational matrix is considered a fuzzy
set, i.e., the j th row in R∼ represents a discrete membership function for a fuzzy set, R∼j .
Hence, a fuzzy relation can be converted to a crisp relation in the following manner. Let
us define Rλ = {(x, y) | µR∼

(x, y) ≥ λ} as a λ-cut relation of the fuzzy relation, R∼. Since
in this case R∼ is a two-dimensional array defined on the universes X and Y, then any pair
(x, y) ∈ Rλ belongs to R∼ with a ‘‘strength’’ of relation greater than or equal to λ. These
ideas for relations can be illustrated with an example.
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Example 4.2. Suppose we take the fuzzy relation from the biotechnology example in Chapter 3
(Example 3.11), and perform λ-cut operations for the values of λ = 1, 0.9, 0. These crisp
relations are given below:

λ = 1, R1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




λ = 0.9, R0.9 =




1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1




λ = 0, R0 = E∼ (whole relation; see Chapter 3)

λ-cuts on fuzzy relations obey certain properties, just as λ-cuts on fuzzy sets do (see
Eqs. (4.1)), as given in Eqs. (4.2):

1. (R∼ ∪ S∼)
λ

= Rλ ∪ Sλ (4.2a)

2. (R∼ ∩ S∼)
λ

= Rλ ∩ Sλ (4.2b)

3. (R∼)
λ

�= Rλ (4.2c)

4. For any λ ≤ α, 0 ≤ α ≤ 1, then Rα ⊆ Rλ (4.2d)

DEFUZZIFICATION TO SCALARS

As mentioned in the introduction, there may be situations where the output of a fuzzy
process needs to be a single scalar quantity as opposed to a fuzzy set. Defuzzification is the
conversion of a fuzzy quantity to a precise quantity, just as fuzzification is the conversion
of a precise quantity to a fuzzy quantity. The output of a fuzzy process can be the logical
union of two or more fuzzy membership functions defined on the universe of discourse of
the output variable. For example, suppose a fuzzy output is comprised of two parts: the
first part, C∼1, a trapezoidal shape, shown in Fig. 4.11a, and the second part, C∼2, a triangular
membership shape, shown in Fig. 4.11b. The union of these two membership functions,
i.e., C∼ = C∼1 ∪ C∼2, involves the max operator, which graphically is the outer envelope of
the two shapes shown in Figs. 4.11a and b; the resulting shape is shown in Fig. 4.11c. Of
course, a general fuzzy output process can involve many output parts (more than two), and
the membership function representing each part of the output can have shapes other than
triangles and trapezoids. Further, as Fig. 4.11a shows, the membership functions may not
always be normal. In general, we can have

C∼k =
k⋃

i=1

C∼ i = C∼ (4.3)
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FIGURE 4.11
Typical fuzzy process output: (a) first part of fuzzy output; (b) second part of fuzzy output; (c) union
of both parts.

Among the many methods that have been proposed in the literature in recent years,
seven are described here for defuzzifying fuzzy output functions (membership functions)
[Hellendoorn and Thomas, 1993]. Four of these methods are first summarized and then
illustrated in two examples; then the additional three methods are described, then illustrated
in two other examples.

1. Max membership principle: Also known as the height method, this scheme is limited to
peaked output functions. This method is given by the algebraic expression

µC∼
(z∗) ≥ µC∼

(z) for all z ∈ Z (4.4)

where z∗ is the defuzzified value, and is shown graphically in Fig. 4.12.

1

zz*

µ

FIGURE 4.12
Max membership defuzzification method.
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zz*
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FIGURE 4.13
Centroid defuzzification method.

2. Centroid method: This procedure (also called center of area, center of gravity) is the
most prevalent and physically appealing of all the defuzzification methods [Sugeno,
1985; Lee, 1990]; it is given by the algebraic expression

z∗ =

∫
µC∼

(z) · z dz∫
µC∼

(z) dz

(4.5)

where
∫

denotes an algebraic integration. This method is shown in Fig. 4.13.
3. Weighted average method: The weighted average method is the most frequently used

in fuzzy applications since it is one of the more computationally efficient methods.
Unfortunately it is usually restricted to symmetrical output membership functions. It is
given by the algebraic expression

z∗ =
∑

µC∼
(z) · z∑

µC∼
(z)

(4.6)

where
∑

denotes the algebraic sum and where z is the centroid of each symmetric
membership function. This method is shown in Fig. 4.14. The weighted average method
is formed by weighting each membership function in the output by its respective
maximum membership value. As an example, the two functions shown in Fig. 4.14
would result in the following general form for the defuzzified value:

z∗ = a(0.5) + b(0.9)

0.5 + 0.9

µ

0 a b z

0.5

0.9
1

FIGURE 4.14
Weighted average method of defuzzification.
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0 a z* zb

1

µ

FIGURE 4.15
Mean max membership defuzzification method.

Since the method is limited to symmetrical membership functions, the values a and b

are the means (centroids) of their respective shapes.
4. Mean max membership: This method (also called middle-of-maxima) is closely related

to the first method, except that the locations of the maximum membership can be
nonunique (i.e., the maximum membership can be a plateau rather than a single point).
This method is given by the expression [Sugeno, 1985; Lee, 1990]

z∗ = a + b

2
(4.7)

where a and b are as defined in Fig. 4.15.

Example 4.3. A railroad company intends to lay a new rail line in a particular part of a county.
The whole area through which the new line is passing must be purchased for right-of-way
considerations. It is surveyed in three stretches, and the data are collected for analysis. The
surveyed data for the road are given by the sets, B∼1, B∼2, and B∼3, where the sets are defined on
the universe of right-of-way widths, in meters. For the railroad to purchase the land, it must
have an assessment of the amount of land to be bought. The three surveys on right-of-way width
are ambiguous, however, because some of the land along the proposed railway route is already
public domain and will not need to be purchased. Additionally, the original surveys are so old
(circa 1860) that some ambiguity exists on boundaries and public right-of-way for old utility
lines and old roads. The three fuzzy sets, B∼1, B∼2, and B∼3, shown in Figs. 4.16, 4.17, and 4.18,
respectively, represent the uncertainty in each survey as to the membership of right-of-way
width, in meters, in privately owned land.

We now want to aggregate these three survey results to find the single most nearly
representative right-of-way width (z) to allow the railroad to make its initial estimate of the

0.3

1 50 z (m)

µ

2 3 4

FIGURE 4.16
Fuzzy set B∼1: public right-of-way width (z) for survey 1.
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FIGURE 4.17
Fuzzy set B∼2: public right-of-way width (z) for survey 2.

µ

3 4 5 6 7 8 z (m)

0.5

1

FIGURE 4.18
Fuzzy set B∼3: public right-of-way width (z) for survey 3.

right-of-way purchasing cost. Using Eqs. (4.5)–(4.7) and the preceding three fuzzy sets, we
want to find z∗.

According to the centroid method, Eq. (4.5), z∗ can be found using

z∗ =

∫
µB∼

(z) · z dz∫
µB∼

(z) dz

=
[∫ 1

0
(0.3z)z dz +

∫ 3.6

1
(0.3z) dz +

∫ 4

3.6

(
z − 3.6

2

)
z dz +

∫ 5.5

4
(0.5)z dz

+
∫ 6

5.5
(z − 5.5)z dz +

∫ 7

6
z dz +

∫ 8

7

(
7 − z

2

)
z dz

]

÷
[∫ 1

0
(0.3z) dz +

∫ 3.6

1
(0.3) dz +

∫ 4

3.6

(
z − 3.6

2

)
dz +

∫ 5.5

4
(0.5) dz

+
∫ 6

5.5

(
z − 5.5

2

)
dz +

∫ 7

6
dz +

∫ 8

7

(
7 − z

2

)
dz

]

= 4.9 meters
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FIGURE 4.19
The centroid method for finding z∗.

where z∗ is shown in Fig. 4.19. According to the weighted average method, Eq. (4.6),

z∗ = (0.3 × 2.5) + (0.5 × 5) + (1 × 6.5)

0.3 + 0.5 + 1
= 5.41 meters

and is shown in Fig. 4.20. According to the mean max membership method, Eq. (4.7), z∗ is
given by (6 + 7)/2 = 6.5 meters, and is shown in Fig. 4.21.

µ

0 1 8 z2 3 4 5 6 7

0.5

1

0.3 z*

FIGURE 4.20
The weighted average method for finding z∗.

µ

0 1 8 z2 3 4 5 6 7

0.5

1

0.3 z*

FIGURE 4.21
The mean max membership method for finding z∗.
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Example 4.4. Many products, such as tar, petroleum jelly, and petroleum, are extracted from
crude oil. In a newly drilled oil well, three sets of oil samples are taken and tested for their
viscosity. The results are given in the form of the three fuzzy sets B∼1, B∼2, and B∼3, all defined
on a universe of normalized viscosity, as shown in Figs. 4.22–4.24. Using Eqs. (4.4)–(4.6),
we want to find the most nearly representative viscosity value for all three oil samples, and
hence find z∗ for the three fuzzy viscosity sets.

µ

0 1 2 3 4 5 z

0.5

1

FIGURE 4.22
Membership in viscosity of oil sample 1, B∼1.

µ

0 1 2 3 4 5 z

0.5

1

FIGURE 4.23
Membership in viscosity of oil sample 2, B∼2.

µ

0 1 2 3 4 5 z

0.5

1

FIGURE 4.24
Membership in viscosity of oil sample 3, B∼3.
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FIGURE 4.25
Logical union of three fuzzy sets B∼1, B∼2, and B∼3.

To find z∗ using the centroid method, we first need to find the logical union of the
three fuzzy sets. This is shown in Fig. 4.25. Also shown in Fig. 4.25 is the result of the max
membership method, Eq. (4.4). For this method, we see that µB∼

(z∗) has three locations where
the membership equals unity. This result is ambiguous and, in this case, the selection of the
intermediate point is arbitrary, but it is closer to the centroid of the area shown in Fig. 4.25.
There could be other compelling reasons to select another value in this case; perhaps max
membership is not a good metric for this problem.

According to the centroid method, Eq. (4.5),

z∗ =

∫
µB∼

(z)z dz∫
µB∼

(z) dz

=
[∫ 1.5

0
(0.67z)z dz +

∫ 1.8

1.5
(2 − 0.67z)z dz +

∫ 2

1.8
(z − 1)z dz +

∫ 2.33

2
(3 − z)z dz

+
∫ 3

2.33
(0.5z − 0.5)z dz +

∫ 5

3
(2.5 − 0.5z)z dz

]

÷
[∫ 1.5

0
(0.67z) dz +

∫ 1.8

1.5
(2 − 0.67z) dz +

∫ 2

1.8
(z − 1) dz +

∫ 2.33

2
(3 − z) dz

+
∫ 3

2.33
(0.5z − 0.5) dz +

∫ 5

3
(2.5 − 0.5z) dz

]

= 2.5 meters

The centroid value obtained, z∗, is shown in Fig. 4.26.
According to the weighted average method, Eq. (4.6),

z∗ = (1 × 1.5) + (1 × 2) + (1 × 3)

1 + 1 + 1
= 2.25 meters

and is shown in Fig. 4.27.

Three other popular methods, which are worthy of discussion because of their
appearance in some applications, are the center of sums, center of largest area, and first of
maxima methods [Hellendoorn and Thomas, 1993]. These methods are now developed.
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FIGURE 4.26
Centroid value z∗ for three fuzzy oil samples.
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FIGURE 4.27
Weighted average method for z∗.

5. Center of sums: This is faster than many defuzzification methods that are presently in
use, and the method is not restricted to symmetric membership functions. This process
involves the algebraic sum of individual output fuzzy sets, say C∼1 and C∼2, instead of their
union. Two drawbacks to this method are that the intersecting areas are added twice, and
the method also involves finding the centroids of the individual membership functions.
The defuzzified value z∗ is given by the following equation:

z∗ =

∫
Z
z

n∑
k=1

µC∼k
(z) dz

∫
z

n∑
k=1

µC∼k
(z) dz

(4.8)

where the symbol z is the distance to the centroid of each of the respective membership
functions.

This method is similar to the weighted average method, Eq. (4.6), except in the
center of sums method the weights are the areas of the respective membership functions
whereas in the weighted average method the weights are individual membership values.
Figure 4.28 is an illustration of the center of sums method.
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FIGURE 4.28
Center of sums method: (a) first membership function; (b) second membership function; and (c)
defuzzification step.

6. Center of largest area: If the output fuzzy set has at least two convex subregions, then
the center of gravity (i.e., z∗ is calculated using the centroid method, Eq. (4.5)) of the
convex fuzzy subregion with the largest area is used to obtain the defuzzified value z∗
of the output. This is shown graphically in Fig. 4.29, and given algebraically here:

z∗ =

∫
µC∼m

(z)z dz∫
µC∼m

(z) dz

(4.9)

where C∼m is the convex subregion that has the largest area making up C∼k . This condition
applies in the case when the overall output C∼k is nonconvex; and in the case when C∼k is
convex, z∗ is the same quantity as determined by the centroid method or the center of
largest area method (because then there is only one convex region).

7. First (or last) of maxima: This method uses the overall output or union of all individual
output fuzzy sets C∼k to determine the smallest value of the domain with maximized
membership degree in C∼k . The equations for z∗ are as follows.

First, the largest height in the union (denoted hgt(C∼k)) is determined,

hgt(C∼k) = sup
z∈Z

µC∼k
(z) (4.10)
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FIGURE 4.29
Center of largest area method (outlined with bold lines), shown for a nonconvex C∼k .

Then the first of the maxima is found,

z∗ = inf
z∈Z

{
z ∈ Z | µC∼k

(z) = hgt(C∼k)
}

(4.11)

An alternative to this method is called the last of maxima, and it is given by

z∗ = sup
z∈Z

{
z ∈ Z | µC∼k

(z) = hgt(C∼k)
}

(4.12)

In Eqs. (4.10)–(4.12) the supremum (sup) is the least upper bound and the infimum (inf)
is the greatest lower bound. Graphically, this method is shown in Fig. 4.30, where, in
the case illustrated in the figure, the first max is also the last max and, because it is a
distinct max, is also the mean max. Hence, the methods presented in Eqs. (4.4) (max or
height), (4.7) (mean max), (4.11) (first max), and (4.12) (last max) all provide the same
defuzzified value, z∗, for the particular situation illustrated in Fig. 4.30.

µ

0 z

0.5

1.0

2 4 6 8 10

z*

FIGURE 4.30
First of max (and last of max) method.
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The problems illustrated in Examples 4.3 and 4.4 are now continued, to illustrate the
last three methods presented.

Example 4.5. Continuing with Example 4.3 on the railroad company planning to lay a new
rail line, we will calculate the defuzzified values using the (1) center of sums method, (2) center
of largest area, and (3) first maxima and last maxima.

According to the center of sums method, Eq. (4.8), z∗ will be as follows:

z∗ = [2.5 × 0.5 × 0.3(3 + 5) + 5 × 0.5 × 0.5(2 + 4) + 6.5 × 0.5 × 1(3 + 1)]

[0.5 × 0.3(3 + 5) + 0.5 × 0.5(2 + 4) + 0.5 × 1(3 + 1)]

= 5.0 m

with the result shown in Fig. 4.31. The center of largest area method, Eq. (4.9), provides the
same result (i.e., z∗ = 4.9) as the centroid method, Eq. (4.5), because the complete output
fuzzy set is convex, as seen in Fig. 4.32. According to the first of maxima and last of maxima
methods, Eqs. (4.11) and (4.12), z∗ is shown as z∗

1 and z∗
2, respectively, in Fig. 4.33.
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FIGURE 4.31
Center of sums result for Example 4.5.
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FIGURE 4.32
Output fuzzy set for Example 4.5 is convex.
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FIGURE 4.33
First of maxima solution (z∗

1 = 6) and last of maxima solution (z∗
2 = 7).

Example 4.6. Continuing with Example 4.4 on the crude oil problem, the center of sums
method, Eq. (4.8), produces a defuzzified value for z∗ of

z∗ = (0.5 × 3 × 1 × 1.5 + 0.5 × 2 × 1 × 2 + 0.5 × 4 × 1 × 3)

(0.5 × 3 × 1 + 0.5 × 2 × 1 + 0.5 × 4 × 1)
= 2.3 m

which is shown in Fig. 4.34. In the center of largest area method we first determine the areas
of the three individual convex fuzzy output sets, as seen in Fig. 4.35. These areas are 1.02,
0.46, and 1.56 square units, respectively. Among them, the third area is largest, so the centroid
of that area will be the center of the largest area. The defuzzified value is calculated to be
z∗ = 3.3:

z∗ =

[(
0.67

2
+ 2.33

)
[0.5 × 0.67(1 + 0.67)]

]
+ 3.66(0.5 × 2 × 1)

[0.5 × 0.67(1 + 0.67)] + (0.5 × 2 × 1)
= 3.3 m

Finally, one can see graphically in Fig. 4.36 that the first of maxima and last of maxima,
Eqs. (4.11)–(4.12), give different values for z∗, namely, z∗ = 1.5 and 3.0, respectively.
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FIGURE 4.34
Center of sums solution for Example 4.6.
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FIGURE 4.35
Center of largest area method for Example 4.6.
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FIGURE 4.36
First of maxima gives z∗ = 1.5 and last of maxima gives z∗ = 3.

SUMMARY

This chapter has introduced the various features and forms of a membership function and
the idea of fuzzyifying scalar quantities to make them fuzzy sets. The primary focus of the
chapter, however, has been to explain the process of converting from fuzzy membership
functions to crisp formats – a process called defuzzification. Defuzzification is necessary
because, for example, we cannot instruct the voltage going into a machine to increase
‘‘slightly,’’ even if this instruction comes from a fuzzy controller – we must alter its voltage
by a specific amount. Defuzzification is a natural and necessary process. In fact, there is an
analogous form of defuzzification in mathematics where we solve a complicated problem
in the complex plane, find the real and imaginary parts of the solution, then decomplexify
the imaginary solution back to the real numbers space [Bezdek, 1993]. There are numerous
other methods for defuzzification that have not been presented here. A review of the
literature will provide the details on some of these [see, for example, Filev and Yager, 1991;
Yager and Filev, 1993].

A natural question to ask is: Of the seven defuzzification methods presented, which
is the best? One obvious answer to the question is that it is context- or problem-dependent.
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To answer this question in more depth, Hellendoorn and Thomas [1993] have specified
five criteria against which to measure the methods. These criteria will be repeated here
for the benefit of the reader who also ponders the question just given in terms of the
advantages and disadvantages of the various methods. The first criterion is continuity. A
small change in the input of a fuzzy process should not produce a large change in the
output. Second, a criterion known as disambiguity simply points out that a defuzzification
method should always result in a unique value for z∗, i.e., no ambiguity in the defuzzified
value. This criterion is not satisfied by the center of largest area method, Eq. (4.9), because,
as seen in Fig. 4.31, when the largest membership functions have equal area, there is
ambiguity in selecting a z∗. The third criterion is called plausibility. To be plausible, z∗
should lie approximately in the middle of the support region of C∼k and have a high degree
of membership in C∼k . The centroid method, Eq. (4.5), does not exhibit plausibility in the
situation illustrated in Fig. 4.31 because, although z∗ lies in the middle of the support of C∼k ,
it does not have a high degree of membership (also seen in the darkened area of Fig. 4.28c).
The fourth criterion is that of computational simplicity, which suggests that the more time
consuming a method is, the less value it should have in a computation system. The height
method, Eq. (4.4), the mean max method, Eq. (4.7), and the first of maxima method are
faster than the centroid, Eq. (4.5), or center of sum, Eq. (4.8), methods, for example. The
fifth criterion is called the weighting method, which weights the output fuzzy sets. This
criterion constitutes the difference between the centroid method, Eq. (4.5), the weighted
average method, Eq. (4.6), and center of sum methods, Eq. (4.8). The problem with the
fifth criterion is that it is problem-dependent, as there is little by which to judge the best
weighting method; the weighted average method involves less computation than the center
of sums, but that attribute falls under the fourth criterion, computational simplicity.

As with many issues in fuzzy logic, the method of defuzzification should be assessed
in terms of the goodness of the answer in the context of the data available. Other methods
are available that purport to be superior to the simple methods presented here [Hellendoorn
and Thomas, 1993].
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PROBLEMS

4.1. Two fuzzy sets A∼ and B∼, both defined on X, are as follows:

µ(xi) x1 x2 x3 x4 x5 x6

A∼ 0.1 0.6 0.8 0.9 0.7 0.1
B∼ 0.9 0.7 0.5 0.2 0.1 0

Express the following λ-cut sets using Zadeh’s notation:

(a) (A∼)0.7 (e) (A∼ ∪ A∼)0.7

(b) (B∼)0.4 (f ) (B∼ ∩ B∼)0.5

(c) (A∼ ∪ B∼)0.7 (g) (A∼ ∩ B∼)0.7

(d) (A∼ ∩ B∼)0.6 (h) (A∼ ∪ B∼)0.7

4.2. [Klir and Folger, 1988] Show that all λ-cuts of any fuzzy set A∼ defined in Rn space (n ≥ 1) are
convex if and only if

µA∼
[λr + (1 − λ)s] ≥ min[µA∼

(r), µA∼
(s)]

for all r , s ∈ Rn, and all λ ∈ [0, 1].
4.3. The fuzzy sets A∼ , B∼, and C∼ are all defined on the universe X = [0, 5] with the following

membership functions:

µA∼
(x) = 1

1 + 5(x − 5)2
µB∼

(x) = 2−x µC∼
(x) = 2x

x + 5

(a) Sketch the membership functions.
(b) Define the intervals along the x axis corresponding to the λ-cut sets for each of the fuzzy

sets A∼ , B∼, and C∼ for the following values of λ:
(i) λ = 0.2

(ii) λ = 0.4
(iii) λ = 0.7
(iv) λ = 0.9
(v) λ = 1.0

4.4. Determine the crisp λ-cut relations for λ = 0.1j , for j = 0,1,. . .,10, for the following fuzzy
relation matrix R∼:

R∼ =




0.2 0.7 0.8 1
1 0.9 0.5 0.1
0 0.8 1 0.6

0.2 0.4 1 0.3




4.5. For the fuzzy relation R∼4 in Example 3.11 find the λ-cut relations for the following values of λ:
(a) λ = 0+

(b) λ = 0.1
(c) λ = 0.4
(d) λ = 0.7

4.6. For the fuzzy relation R∼ in Problem 3.9(a) sketch (in 3D) the λ-cut relations for the following
values of λ:
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(a) λ = 0+

(b) λ = 0.3
(c) λ = 0.5
(d) λ = 0.9
(e) λ = 1

4.7. Show that any λ-cut relation (for λ > 0) of a fuzzy tolerance relation results in a crisp tolerance
relation.

4.8. Show that any λ-cut relation (for λ > 0) of a fuzzy equivalence relation results in a crisp
equivalence relation.

4.9. In metallurgy materials are made with mixtures of various metals and other elements to achieve
certain desirable properties. In a particular preparation of steel, three elements, namely iron,
manganese, and carbon, are mixed in two different proportions. The samples obtained from
these two different proportions are placed on a normalized scale, as shown in Fig. P4.9 and
are represented as fuzzy sets A∼1 and A∼2. You are interested in finding some sort of ‘‘average’’
steel proportion. For the logical union of the membership functions shown we want to find the
defuzzified quantity. For each of the seven methods presented in this chapter assess (a) whether
each is applicable and, if so, (b) calculate the defuzzified value, z∗.

µ

0 1 2 3 4 5 z

A1

(a)

6

0.5

1

µ

0 1 2 3 4 5 z

A2

(b)

6

0.5

1
~

~

FIGURE P4.9

4.10. Two companies bid for a contract. A committee has to review the estimates of those companies
and give reports to its chairperson. The reviewed reports are evaluated on a nondimensional
scale and assigned a weighted score that is represented by a fuzzy membership function, as
illustrated by the two fuzzy sets, B∼1 and B∼2, in Fig. P4.10. The chairperson is interested in the
lowest bid, as well as a metric to measure the combined ‘‘best’’ score. For the logical union
of the membership functions shown we want to find the defuzzified quantity. For each of the
seven methods presented in this chapter assess (a) whether each is applicable and, if so, (b)
calculate the defuzzified value, z∗.

4.11. A landfill is the cheapest method of solid waste treatment and disposal. Once disposed into a
landfill, solid waste can be a major source of energy due to its potential to produce methane.
However, all the solid waste disposed cannot generate methane at the same rate and in the same
quantities. Based on its biodegradability, solid waste is classified into three distinct groups,
namely: rapidly biodegradable, moderately biodegradable, and slowly biodegradable. Design
of a landfill gas extraction system is based on gas production through the first two groups; both
have different gas production patterns. The data collected from experiments and experiences are
presented by the sets A∼1 and A∼2 as shown in Fig. P4.11, where A∼1 and A∼2 are defined as the fuzzy
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µ
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1
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FIGURE P4.10

sets rapidly biodegradable and slowly biodegradable, respectively, in units of years. In order
to properly design the gas extraction system we need a single representative gas production
value. For the logical union of the membership functions shown we want to find the defuzzified
quantity. For each of the seven methods presented in this chapter assess (a) whether each is
applicable and, if so, (b) calculate the defuzzified value, z∗.

~
A2

t (years)
0 1 2 3 4 5 6 7 8 9 10

~
A1

mt = 1.0

0.5

FIGURE P4.11

4.12. Uniaxial compressive strength is easily performed on cylindrical or prismatic ice samples and
can vary with strain rate, temperature, porosity, grain orientation, and grain size ratio. While
strain rate and temperature can be controlled easily, the other variables cannot. This lack of
control yields an uncertainty in the uniaxial test results.

A test was conducted on each type of sample at a constant strain rate of 10−4 s−1, and
a temperature of −5◦C. Upon inspection of the results the exact yield point could not be
determined; however, there was enough information to form fuzzy sets for the failure of the
cylindrical and prismatic samples A∼ and B∼, respectively, as shown in Fig. P4.12. Once the
union of A∼ and B∼ has been identified (the universe of compressive strengths, megapascals
N/m2 × 106) we can obtain a defuzzified value for the yield strength of this ice under a
compressive axial load. For each of the seven methods presented in this chapter assess (a)
whether each is applicable and, if so, (b) calculate the defuzzified value, z∗.
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FIGURE P4.12

4.13. In the field of heat exchanger network (HEN) synthesis, a chemical plant can have two different
sets of independent HENs. The term ‘‘optimum cost’’ is considered fuzzy, because for the
design and construction of the HENs we have to consider other parameters in addition to the
capital cost. The membership function of fuzzy sets HEN1 and HEN2 is shown in Figs.P4.13(a)
and P4.13(b), respectively.

We wish to determine the optimum capital cost of a project to optimize the plant using
both independent networks (HEN1 and HEN2); hence, the logical union of their membership
functions, as shown in Fig. P4.13(c). For each of the seven methods presented in this chapter
assess (a) whether each is applicable and, if so, (b) calculate the defuzzified value, z∗.

4.14. In reactor design, it is often best to simplify a reactor by assuming ideal conditions. For a
continuous stirred tank reactor (CSTR), the concentration inside the reactor is the same as the
concentration of the effluent stream. In a plug flow reactor (PFR), the concentrations of the
inlet and outlet streams are different as the concentrations of the reactants change along the
length of the tube. For a fluidized bed in which catalyst is removed from the top of the reactor,
there exists both characteristics of a CSTR and PFR. The difference between inside reactor
concentration (Ci) and effluent concentration (Ce) gives the membership of either CSTR or
PFR, as seen in Fig. P4.14.

Find the difference in concentration that represents the optimum design, i.e., find the
most representative value for the union of PFR and CSTR. For each of the seven methods
presented in this chapter assess (a) whether each is applicable and, if so, (b) calculate the
defuzzified value, z∗.

4.15. Often in chemical processing plants there will be more than one type of instrumentation
measuring the same variable at the same instance during the process. Due to the nature of
measurements they are almost never exact, and hence can be represented as a fuzzy set. Due
to the differences in instrumentation the measurements will usually not be the same. Take
for example two types of temperature sensors, namely a thermocouple (TC) and an RTD
(Resistance Temperature Detector) measuring the same stream temperature. The membership
function of the two types of temperature sensors may look as in Fig. P4.15.

When an operator who prefers one measuring device ends his or her shift, and then is
replaced by another operator with a different preference in measuring device, there may be a
problem in determining the actual value of a variable. To avoid this problem it was decided
to plot the membership functions of the two types of sensors, take their union, and employ
defuzzification to select one temperature for the operator to use. To find this temperature, for
each of the seven methods presented in this chapter, assess (a) whether each is applicable and,
if so, (b) calculate the defuzzified value, z∗.
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CHAPTER

5
LOGIC AND
FUZZY
SYSTEMS

PART I LOGIC

‘‘I know what you’re thinking about,’’ said Tweedledum; ‘‘but it isn’t so, nohow.’’ ‘‘Contrari-
wise,’’ continued Tweedledee, ‘‘if it was so, it might be; and if it were so, it would be; but as it
isn’t, it ain’t. That’s logic.’’

Lewis Carroll
Through the Looking Glass, 1871

Logic is but a small part of the human capacity to reason. Logic can be a means to compel
us to infer correct answers, but it cannot by itself be responsible for our creativity or for
our ability to remember. In other words, logic can assist us in organizing words to make
clear sentences, but it cannot help us determine what sentences to use in various contexts.
Consider the passage above from the nineteenth-century mathematician Lewis Carroll in
his classic Through the Looking Glass. How many of us can see the logical context in the
discourse of these fictional characters? Logic for humans is a way quantitatively to develop
a reasoning process that can be replicated and manipulated with mathematical precepts.
The interest in logic is the study of truth in logical propositions; in classical logic this truth
is binary – a proposition is either true or false.

From this perspective, fuzzy logic is a method to formalize the human capacity of
imprecise reasoning, or – later in this chapter – approximate reasoning. Such reasoning
represents the human ability to reason approximately and judge under uncertainty. In fuzzy
logic all truths are partial or approximate. In this sense this reasoning has also been termed
interpolative reasoning, where the process of interpolating between the binary extremes of
true and false is represented by the ability of fuzzy logic to encapsulate partial truths.

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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Part-I of this chapter introduces the reader to fuzzy logic with a review of classical
logic and its operations, logical implications, and certain classical inference mechanisms
such as tautologies. The concept of a proposition is introduced as are associated concepts
of truth sets, tautologies, and contradictions. The operations of disjunction, conjunction,
and negation are introduced as well as classical implication and equivalence; all of these
are useful tools to construct compound propositions from single propositions. Operations
on propositions are shown to be isomorphic with operations on sets; hence an algebra of
propositions is developed by using the algebra of sets discussed in Chapter 2. Fuzzy logic is
then shown to be an extension of classical logic when partial truths are included to extend
bivalued logic (true or false) to a multivalued logic (degrees of truth between true and not
true).

In Part-II of this chapter we introduce the use of fuzzy sets as a calculus for the
interpretation of natural language. Natural language, despite its vagueness and ambiguity, is
the vehicle for human communication, and it seems appropriate that a mathematical theory
that deals with fuzziness and ambiguity is also the same tool used to express and interpret
the linguistic character of our language. The chapter continues with the use of natural
language in the expression of a knowledge form known as rule-based systems, which shall
be referred to generally as fuzzy systems. The chapter concludes with a simple graphical
interpretation of inference, which is illustrated with some examples.

CLASSICAL LOGIC

In classical logic, a simple proposition P is a linguistic, or declarative, statement contained
within a universe of elements, say X, that can be identified as being a collection of elements
in X that are strictly true or strictly false. Hence, a proposition P is a collection of elements,
i.e., a set, where the truth values for all elements in the set are either all true or all false.
The veracity (truth) of an element in the proposition P can be assigned a binary truth value,
called T (P), just as an element in a universe is assigned a binary quantity to measure its
membership in a particular set. For binary (Boolean) classical logic, T (P) is assigned a
value of 1 (truth) or 0 (false). If U is the universe of all propositions, then T is a mapping
of the elements, u, in these propositions (sets) to the binary quantities (0, 1), or

T : u ∈ U −→ (0, 1)

All elements u in the universe U that are true for proposition P are called the truth set of P,
denoted T (P). Those elements u in the universe U that are false for proposition P are called
the falsity set of P.

In logic we need to postulate the boundary conditions of truth values just as we do
for sets; that is, in function-theoretic terms we need to define the truth value of a universe
of discourse. For a universe Y and the null set ∅, we define the following truth values:

T (Y) = 1 and T (∅) = 0

Now let P and Q be two simple propositions on the same universe of discourse that
can be combined using the following five logical connectives
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Disjunction (∨)
Conjunction (∧)
Negation (−)
Implication (→)
Equivalence (↔)

to form logical expressions involving the two simple propositions. These connectives can
be used to form new propositions from simple propositions.

The disjunction connective, the logical or, is the term used to represent what is
commonly referred to as the inclusive or. The natural language term or and the logical or
differ in that the former implies exclusion (denoted in the literature as the exclusive or;
further details are given in this chapter). For example, ‘‘soup or salad’’ on a restaurant
menu implies the choice of one or the other option, but not both. The inclusive or is the
one most often employed in logic; the inclusive or (logical or as used here) implies that a
compound proposition is true if either of the simple propositions is true or both are true.

The equivalence connective arises from dual implication; that is, for some propositions
P and Q, if P → Q and Q → P, then P ↔ Q.

Now define sets A and B from universe X (universe X is isomorphic with universe
U), where these sets might represent linguistic ideas or thoughts. A propositional calculus
(sometimes called the algebra of propositions) will exist for the case where proposition P
measures the truth of the statement that an element, x, from the universe X is contained in
set A and the truth of the statement Q that this element, x, is contained in set B, or more
conventionally,

P : truth that x ∈ A

Q : truth that x ∈ B

where truth is measured in terms of the truth value, i.e.,

ifx ∈ A, T (P) = 1; otherwise, T (P) = 0

ifx ∈ B, T (Q) = 1; otherwise, T (Q) = 0

or, using the characteristic function to represent truth (1) and falsity (0), the following
notation results:

χA(x) =
{

1, x ∈ A
0, x /∈ A

A notion of mutual exclusivity arises in this calculus. For the situation involving two
propositions P and Q, where T (P) ∩ T (Q) = ∅, we have that the truth of P always implies
the falsity of Q and vice versa; hence, P and Q are mutually exclusive propositions.

Example 5.1. Let P be the proposition ‘‘The structural beam is an 18WF45’’ and let Q be
the proposition ‘‘The structural beam is made of steel.’’ Let X be the universe of structural
members comprised of girders, beams, and columns; x is an element (beam), A is the set of all
wide-flange (WF) beams, and B is the set of all steel beams. Hence,

P : x is in A

Q : x is in B
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The five logical connectives already defined can be used to create compound
propositions, where a compound proposition is defined as a logical proposition formed
by logically connecting two or more simple propositions. Just as we are interested in the
truth of a simple proposition, classical logic also involves the assessment of the truth of
compound propositions. For the case of two simple propositions, the resulting compound
propositions are defined next in terms of their binary truth values.

Given a proposition P : x ∈ A, P : x /∈ A, we have the following for the logical
connectives:

Disjunction
P ∨ Q : x ∈ A or x ∈ B

Hence, T(P ∨ Q) = max(T(P), T(Q))
(5.1a)

Conjunction
P ∧ Q : x ∈ A and x ∈ B

Hence, T(P ∧ Q) = min(T(P), T(Q))
(5.1b)

Negation

If T(P) = 1, then T(P) = 0; if T(P) = 0, then T(P) = 1. (5.1c)

Implication
(P −→ Q) : x �∈ A or x ∈ B

Hence, T(P −→ Q) = T(P ∪ Q)
(5.1d)

Equivalence

(P ←→ Q) : T(P ←→ Q) =
{

1, for T (P) = T (Q)

0, for T (P) �= T (Q)
(5.1e)

The logical connective implication, i.e., P → Q (P implies Q), presented here is also
known as the classical implication, to distinguish it from an alternative form devised in the
1930s by Lukasiewicz, a Polish mathematician, who was first credited with exploring logics
other than Aristotelian (classical or binary logic) [Rescher, 1969], and from several other
forms (see end of this chapter). In this implication the proposition P is also referred to as
the hypothesis or the antecedent, and the proposition Q is also referred to as the conclusion
or the consequent. The compound proposition P → Q is true in all cases except where a
true antecedent P appears with a false consequent, Q, i.e., a true hypothesis cannot imply a
false conclusion.

Example 5.2 [Similar to Gill, 1976]. Consider the following four propositions:

1. If 1 + 1 = 2, then 4 > 0.
2. If 1 + 1 = 3, then 4 > 0.
3. If 1 + 1 = 3, then 4 < 0.
4. If 1 + 1 = 2, then 4 < 0.

The first three propositions are all true; the fourth is false. In the first two, the conclusion 4 > 0
is true regardless of the truth of the hypothesis; in the third case both propositions are false,
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but this does not disprove the implication; finally, in the fourth case, a true hypothesis cannot
produce a false conclusion.

Hence, the classical form of the implication is true for all propositions of P and Q
except for those propositions that are in both the truth set of P and the false set of Q, i.e.,

T(P −→ Q) = T(P) ∩ T(Q) (5.2)

This classical form of the implication operation requires some explanation. For a
proposition P defined on set A and a proposition Q defined on set B, the implication ‘‘P
implies Q’’ is equivalent to taking the union of elements in the complement of set A with
the elements in the set B (this result can also be derived by using De Morgan’s principles
on Eq. (5.2)). That is, the logical implication is analogous to the set-theoretic form

(P −→ Q) ≡ (A ∪ B is true) ≡ (either ‘‘not in A’’ or ‘‘in B’’)

so that
T (P −→ Q) = T(P ∨ Q) = max(T(P), T(Q)) (5.3)

This expression is linguistically equivalent to the statement, ‘‘P → Q is true’’ when either
‘‘not A’’ or ‘‘B’’ is true (logical or). Graphically, this implication and the analogous set
operation are represented by the Venn diagram in Fig. 5.1. As noted in the diagram, the
region represented by the difference A | B is the set region where the implication P → Q is
false (the implication ‘‘fails’’). The shaded region in Fig. 5.1 represents the collection of
elements in the universe where the implication is true; that is, the set

A | B = A ∪ B = A ∩ B

If x is in A and x is not in B, then

A −→ B fails ≡ A | B (difference)

Now, with two propositions (P and Q) each being able to take on one of two truth
values (true or false, 1 or 0), there will be a total of 22 = 4 propositional situations. These
situations are illustrated, along with the appropriate truth values, for the propositions P and

A

A B

B

FIGURE 5.1
Graphical analog of the classical implication operation; gray area is where implication holds.
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TABLE 5.1
Truth table for various compound propositions

P Q P P ∨ Q P ∧ Q P → Q P ↔ Q

T (1) T (1) F (0) T (1) T (1) T (1) T (1)
T (1) F (0) F (0) T (1) F (0) F (0) F (0)
F (0) T (1) T (1) T (1) F (0) T (1) F (0)
F (0) F (0) T (1) F (0) F (0) T (1) T (1)

Q and the various logical connectives between them in Table 5.1. The values in the last
five columns of the table are calculated using the expressions in Eqs. (5.1) and (5.3). In
Table 5.1 T (or 1) denotes true and F (or 0) denotes false.

Suppose the implication operation involves two different universes of discourse; P is
a proposition described by set A, which is defined on universe X, and Q is a proposition
described by set B, which is defined on universe Y. Then the implication P → Q can be
represented in set-theoretic terms by the relation R, where R is defined by

R = (A × B) ∪ (A × Y) ≡ IF A, THEN B

IF x ∈ A where x ∈ X and A ⊂ X (5.4)

THEN y ∈ B where y ∈ Y and B ⊂ Y

This implication, Eq. (5.4), is also equivalent to the linguistic rule form, IF A, THEN B.
The graphic shown in Fig. 5.2 represents the space of the Cartesian product X × Y, showing
typical sets A and B; and superposed on this space is the set-theoretic equivalent of the
implication. That is,

P −→ Q : IF x ∈ A, THEN y ∈ B, or P −→ Q ≡ A ∪ B

The shaded regions of the compound Venn diagram in Fig. 5.2 represent the truth domain
of the implication, IF A, THEN B (P → Q).

Another compound proposition in linguistic rule form is the expression

IF A, THEN B, ELSE C

A

B

X

Y

FIGURE 5.2
The Cartesian space showing the implication IF A, THEN B.
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A

B

X

YC

FIGURE 5.3
Truth domain for IF A, THEN B, ELSE C.

Linguistically, this compound proposition could be expressed as

IF A, THEN B, and IF A, THEN C

In classical logic this rule has the form

(P −→ Q) ∧ (P −→ S) (5.5)

P : x ∈ A, A ⊂ X

Q : y ∈ B, B ⊂ Y

S : y ∈ C, C ⊂ Y

The set-theoretic equivalent of this compound proposition is given by

IF A, THEN B, ELSE C ≡ (A × B) ∪ (A × C) = R = relation on X × Y (5.6)

The graphic in Fig. 5.3 illustrates the shaded region representing the truth domain for this
compound proposition for the particular case where B ∩ C = ∅.

Tautologies

In classical logic it is useful to consider compound propositions that are always true,
irrespective of the truth values of the individual simple propositions. Classical logical
compound propositions with this property are called tautologies. Tautologies are useful
for deductive reasoning, for proving theorems, and for making deductive inferences. So,
if a compound proposition can be expressed in the form of a tautology, the truth value of
that compound proposition is known to be true. Inference schemes in expert systems often
employ tautologies because tautologies are formulas that are true on logical grounds alone.
For example, if A is the set of all prime numbers (A1 = 1, A2 = 2, A3 = 3, A4 = 5,. . .) on
the real line universe, X, then the proposition ‘‘Ai is not divisible by 6’’ is a tautology.

One tautology, known as modus ponens deduction, is a very common inference
scheme used in forward-chaining rule-based expert systems. It is an operation whose task
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is to find the truth value of a consequent in a production rule, given the truth value of the
antecedent in the rule. Modus ponens deduction concludes that, given two propositions,
P and P → Q, both of which are true, then the truth of the simple proposition Q is
automatically inferred. Another useful tautology is the modus tollens inference, which is
used in backward-chaining expert systems. In modus tollens an implication between two
propositions is combined with a second proposition and both are used to imply a third
proposition. Some common tautologies follow:

B ∪ B ←→ X

A ∪ X; A ∪ X ←→ X

(A ∧ (A −→ B)) −→ B (modus ponens) (5.7)

(B ∧ (A −→ B)) −→ A (modus tollens) (5.8)

A simple proof of the truth value of the modus ponens deduction is provided here, along
with the various properties for each step of the proof, for purposes of illustrating the utility
of a tautology in classical reasoning.

Proof

(A ∧ (A −→ B)) −→ B

(A ∧ (A ∪ B)) −→ B Implication

((A ∧ A) ∪ (A ∧ B)) −→ B Distributivity

(∅ ∪ (A ∧ B)) −→ B Excluded middle axioms

(A ∧ B) −→ B Identity

(A ∧ B) ∪ B Implication

(A ∨ B) ∪ B De Morgan′s principles

A ∨ (B ∪ B) Associativity

A ∪ X Excluded middle axioms

X �⇒ T(X) = 1 Identity; QED

A simpler manifestation of the truth value of this tautology is shown in Table 5.2 in truth
table form, where a column of all ones for the result shows a tautology.

TABLE 5.2
Truth table (modus ponens)

A B A → B (A ∧ (A → B)) (A ∧ (A → B)) → B

0 0 1 0 1
0 1 1 0 1 Tautology
1 0 0 0 1
1 1 1 1 1
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TABLE 5.3
Truth table (modus tollens)

A B A B A → B (B ∧ (A → B)) (B ∧ (A → B)) → A

0 0 1 1 1 1 1
0 1 1 0 1 0 1 Tautology
1 0 0 1 0 0 1
1 1 0 0 1 0 1

Similarly, a simple proof of the truth value of the modus tollens inference is listed here.

Proof

(B ∧ (A −→ B)) −→ A

(B ∧ (A ∪ B)) −→ A

((B ∧ A) ∪ (B ∧ B)) −→ A

((B ∧ A) ∪ ∅) −→ A

(B ∧ A) −→ A

(B ∧ A) ∪ A

(B ∨ A) ∪ A

B ∪ (A ∪ A)

B ∪ X = X �⇒ T(X) = 1 QED

The truth table form of this result is shown in Table 5.3.

Contradictions

Compound propositions that are always false, regardless of the truth value of the individual
simple propositions constituting the compound proposition, are called contradictions. For
example, if A is the set of all prime numbers (A1 = 1, A2 = 2, A3 = 3, A4 = 5, . . .) on the
real line universe, X, then the proposition ‘‘Ai is a multiple of 4’’ is a contradiction. Some
simple contradictions are listed here:

B ∩ B

A ∩ ∅; A ∩ ∅

Equivalence

As mentioned, propositions P and Q are equivalent, i.e., P ↔ Q, is true only when both P
and Q are true or when both P and Q are false. For example, the propositions P: ‘‘triangle
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T(A)

T(B)

FIGURE 5.4
Venn diagram for equivalence (darkened areas), i.e., for T (A ↔ B).

is equilateral’’ and Q: ‘‘triangle is equiangular’’ are equivalent because they are either both
true or both false for some triangle. This condition of equivalence is shown in Fig. 5.4,
where the shaded region is the region of equivalence.

It can be easily proved that the statement P ↔ Q is a tautology if P is identical to Q,
i.e., if and only if T (P) = T (Q).

Example 5.3. Suppose we consider the universe of positive integers, X = {1 ≤ n ≤ 8}. Let
P = ‘‘n is an even number’’ and let Q = ‘‘(3 ≤ n ≤ 7) ∧ (n �= 6).’’ Then T(P) = {2, 4, 6, 8}
and T(Q) = {3, 4, 5, 7}. The equivalence P ↔ Q has the truth set

T(P ←→ Q) = (T(P ) ∩ T(Q)) ∪ (T(P ) ∩ T(Q)) = {4} ∪ {1} = {1, 4}

One can see that ‘‘1 is an even number’’ and ‘‘(3 ≤ 1 ≤ 7) ∧ (1 �= 6)’’ are both false, and ‘‘4
is an even number’’ and ‘‘(3 ≤ 4 ≤ 7) ∧ (4 �= 6)’’ are both true.

Example 5.4. Prove that P ↔ Q if P = ‘‘n is an integer power of 2 less than 7 and greater
than zero’’ and Q = ‘‘n2 − 6n + 8 = 0.’’ Since T(P) = {2, 4} and T(Q) = {2, 4}, it follows
that P ↔ Q is an equivalence.

Suppose a proposition R has the form P → Q. Then the proposition Q → P is called
the contrapositive of R; the proposition Q → P is called the converse of R; and the
proposition P → Q is called the inverse of R. Interesting properties of these propositions
can be shown (see Problem 5.3 at the end of this chapter).

The dual of a compound proposition that does not involve implication is the same
proposition with false (0) replacing true (1) (i.e., a set being replaced by its complement),
true replacing false, conjunction (∧) replacing disjunction (∨), and disjunction replacing
conjunction. If a proposition is true, then its dual is also true (see Problems 5.4 and 5.5).

Exclusive Or and Exclusive Nor

Two more interesting compound propositions are worthy of discussion. These are the
exclusive or and the exclusive nor. The exclusive or is of interest because it arises in many
situations involving natural language and human reasoning. For example, when you are
going to travel by plane or boat to some destination, the implication is that you can travel
by air or sea, but not both, i.e., one or the other. This situation involves the exclusive or; it
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TABLE 5.4
Truth table for exclusive
or, XOR

P Q P XOR Q

1 1 0
1 0 1
0 1 1
0 0 0

T(P)

T(Q)

FIGURE 5.5
Exclusive or shown in gray areas.

TABLE 5.5
Truth table for exclusive nor

P Q P XOR Q

1 1 1
1 0 0
0 1 0
0 0 1

does not involve the intersection, as does the logical or (union in Eq. (2.1) and Fig. 2.2 and
disjunction in Eq. (5.1a)). For two propositions, P and Q, the exclusive or, denoted here as
XOR, is given in Table 5.4 and Fig. 5.5.

The exclusive nor is the complement of the exclusive or [Mano, 1988]. A look at its
truth table, Table 5.5, shows that it is an equivalence operation, i.e.,

P XOR Q ←→ (P ←→ Q)

and, hence, it is graphically equivalent to the Venn diagram in Fig. 5.4.

Logical Proofs

Logic involves the use of inference in everyday life, as well as in mathematics. In the latter,
we often want to prove theorems to form foundations for solution procedures. In natural
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language, if we are given some hypotheses it is often useful to make certain conclusions
from them – the so-called process of inference (inferring new facts from established
facts). In the terminology we have been using, we want to know if the proposition
(P1 ∧ P2 ∧ · · · ∧ Pn) → Q is true. That is, is the statement a tautology?

The process works as follows. First, the linguistic statement (compound proposition)
is made. Second, the statement is decomposed into its respective single propositions. Third,
the statement is expressed algebraically with all pertinent logical connectives in place.
Fourth, a truth table is used to establish the veracity of the statement.

Example 5.5.

Hypotheses: Engineers are mathematicians. Logical thinkers do not believe in magic. Mathe-
maticians are logical thinkers.

Conclusion: Engineers do not believe in magic.

Let us decompose this information into individual propositions.

P : a person is an engineer

Q : a person is a mathematician

R : a person is a logical thinker

S : a person believes in magic

The statements can now be expressed as algebraic propositions as

((P −→ Q) ∧ (R −→ S) ∧ (Q −→ R)) −→ (P −→ S)

It can be shown that this compound proposition is a tautology (see Problem 5.6).

Sometimes it might be difficult to prove a proposition by a direct proof (i.e., verify
that it is true), so an alternative is to use an indirect proof. For example, the popular
proof by contradiction (reductio ad absurdum) exploits the fact that P → Q is true if
and only if P ∧ Q is false. Hence, if we want to prove that the compound statement
(P1 ∧ P2 ∧ · · · ∧ Pn) → Q is a tautology, we can alternatively show that the alternative
statement P1 ∧ P2 ∧ · · · ∧ Pn ∧ Q is a contradiction.

Example 5.6.

Hypotheses: If an arch-dam fails, the failure is due to a poor subgrade. An arch-dam fails.
Conclusion: The arch-dam failed because of a poor subgrade.

This information can be shown to be algebraically equivalent to the expression

((P −→ Q) ∧ P) −→ Q

To prove this by contradiction, we need to show that the algebraic expression

((P −→ Q) ∧ P ∧ Q)

is a contradiction. We can do this by constructing the truth table in Table 5.6. Recall that a
contradiction is indicated when the last column of a truth table is filled with zeros.
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TABLE 5.6
Truth table for dam failure problem

P Q P Q P ∨ Q (P ∨ Q) ∧ P ∧ Q

0 0 1 1 1 0
0 1 1 0 1 0
1 0 0 1 0 0
1 1 0 0 1 0

Deductive Inferences

The modus ponens deduction is used as a tool for making inferences in rule-based systems.
A typical if–then rule is used to determine whether an antecedent (cause or action) infers a
consequent (effect or reaction). Suppose we have a rule of the form IF A, THEN B, where
A is a set defined on universe X and B is a set defined on universe Y. As discussed before,
this rule can be translated into a relation between sets A and B; that is, recalling Eq. (5.4),
R = (A × B) ∪ (A × Y). Now suppose a new antecedent, say A′, is known. Can we use
modus ponens deduction, Eq. (5.7), to infer a new consequent, say B′, resulting from the
new antecedent? That is, can we deduce, in rule form, IF A′, THEN B′? The answer, of
course, is yes, through the use of the composition operation (defined initially in Chapter 3).
Since ‘‘A implies B’’ is defined on the Cartesian space X × Y, B′ can be found through the
following set-theoretic formulation, again from Eq. (5.4):

B′ = A′◦R = A′◦((A × B) ∪ (A × Y))

where the symbol ◦ denotes the composition operation. Modus ponens deduction can also be
used for the compound rule IF A, THEN B, ELSE C, where this compound rule is equivalent
to the relation defined in Eq. (5.6) as R = (A × B) ∪ (A × C). For this compound rule, if
we define another antecedent A′, the following possibilities exist, depending on (1) whether
A′ is fully contained in the original antecedent A, (2) whether A′ is contained only in the
complement of A, or (3) whether A′ and A overlap to some extent as described next:

IF A′ ⊂ A, THEN y = B

IF A′ ⊂ A, THEN y = C

IF A′ ∩ A �= ∅, A′ ∩ A �= ∅, THEN y = B ∪ C

The rule IF A, THEN B (proposition P is defined on set A in universe X, and proposition Q
is defined on set B in universe Y), i.e., (P → Q) = R = (A × B) ∪ (A × Y), is then defined
in function-theoretic terms as

χR(x, y) = max[(χA(x) ∧ χB(y)), ((1 − χA(x)) ∧ 1)] (5.9)

where χ( ) is the characteristic function as defined before.

Example 5.7. Suppose we have two universes of discourse for a heat exchanger problem
described by the following collection of elements, X = {1, 2, 3, 4} and Y = {1, 2, 3, 4, 5, 6}.
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Suppose X is a universe of normalized temperatures and Y is a universe of normalized
pressures. Define crisp set A on universe X and crisp set B on universe Y as follows: A = {2, 3}
and B = {3, 4}. The deductive inference IF A, THEN B (i.e., IF temperature is A, THEN
pressure is B) will yield a matrix describing the membership values of the relation R, i.e.,
χR(x, y) through the use of Eq. (5.9). That is, the matrix R represents the rule IF A, THEN B
as a matrix of characteristic (crisp membership) values.

Crisp sets A and B can be written using Zadeh’s notation,

A = {
0
1 + 1

2 + 1
3 + 0

4

}
B = {

0
1 + 0

2 + 1
3 + 1

4 + 0
5 + 0

6

}
If we treat set A as a column vector and set B as a row vector, the following matrix results
from the Cartesian product of A × B, using Eq. (3.16):

A × B =



0 0 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 0 0




The Cartesian product A × Y can be determined using Eq. (3.16) by arranging A as a column
vector and the universe Y as a row vector (sets A and Y can be written using Zadeh’s notation),

A = {
1
1 + 0

2 + 0
3 + 1

4

}
Y = {

1
1 + 1

2 + 1
3 + 1

4 + 1
5 + 1

6

}

A × Y =



1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1




Then the full relation R describing the implication IF A, THEN B is the maximum of the two
matrices A × B and A × Y, or, using Eq. (5.9),

R =



1 2 3 4 5 6
1 1 1 1 1 1 1
2 0 0 1 1 0 0
3 0 0 1 1 0 0
4 1 1 1 1 1 1




The compound rule IF A, THEN B, ELSE C can also be defined in terms of a
matrix relation as R = (A × B) ∪ (A × C) ⇒ (P → Q) ∧ (P → S), as given by Eqs. (5.5)
and (5.6), where the membership function is determined as

χR(x, y) = max[(χA(x) ∧ χB(y)), ((1 − χA(x)) ∧ χC(y))] (5.10)

Example 5.8. Continuing with the previous heat exchanger example, suppose we define a
crisp set C on the universe of normalized temperatures Y as C = {5, 6}, or, using Zadeh’s
notation,

C = {
0
1 + 0

2 + 0
3 + 0

4 + 1
5 + 1

6

}
The deductive inference IF A, THEN B, ELSE C (i.e., IF pressure is A, THEN temperature is
B, ELSE temperature is C) will yield a relational matrix R, with characteristic values χR(x, y)
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obtained using Eq. (5.10). The first half of the expression in Eq. (5.10) (i.e., A × B) has already
been determined in the previous example. The Cartesian product A × C can be determined
using Eq. (3.16) by arranging the set A as a column vector and the set C as a row vector (see
set A in Example 5.7), or

A × C =



0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1




Then the full relation R describing the implication IF A, THEN B, ELSE C is the maximum of
the two matrices A × B and A × C (see Eq. (5.10)),

R =



1 2 3 4 5 6
1 0 0 0 0 1 1
2 0 0 1 1 0 0
3 0 0 1 1 0 0
4 0 0 0 0 1 1




FUZZY LOGIC

The restriction of classical propositional calculus to a two-valued logic has created many
interesting paradoxes over the ages. For example, the Barber of Seville is a classic paradox
(also termed Russell’s barber). In the small Spanish town of Seville, there is a rule that all
and only those men who do not shave themselves are shaved by the barber. Who shaves the
barber? Another example comes from ancient Greece. Does the liar from Crete lie when he
claims, ‘‘All Cretians are liars?’’ If he is telling the truth, his statement is false. But if his
statement is false, he is not telling the truth. A simpler form of this paradox is the two-word
proposition, ‘‘I lie.’’ The statement can not be both true and false.

Returning to the Barber of Seville, we conclude that the only way for this paradox
(or any classic paradox for that matter) to work is if the statement is both true and
false simultaneously. This can be shown, using set notation [Kosko, 1992]. Let S be the
proposition that the barber shaves himself and S (not S) that he does not. Then since
S → S (S implies not S), and S → S, the two propositions are logically equivalent: S ↔ S.
Equivalent propositions have the same truth value; hence,

T (S) = T (S) = 1 − T (S)

which yields the expression
T (S) = 1

2

As seen, paradoxes reduce to half-truths (or half-falsities) mathematically. In classical
binary (bivalued) logic, however, such conditions are not allowed, i.e., only T (S) = 1 or 0
is valid; this is a manifestation of the constraints placed on classical logic by the excluded
middle axioms.

A more subtle form of paradox can also be addressed by a multivalued logic. Consider
the paradoxes represented by the classical sorites (literally, a heap of syllogisms); for
example, the case of a liter-full glass of water. Often this example is called the Optimist’s
conclusion (is the glass half-full or half-empty when the volume is at 500 milliliters?). Is the
liter-full glass still full if we remove 1 milliliter of water? Is the glass still full if we remove
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2 milliliters of water, 3, 4, or 100 milliliters? If we continue to answer yes, then eventually
we will have removed all the water, and an empty glass will still be characterized as full!
At what point did the liter-full glass of water become empty? Perhaps at 500 milliliters
full? Unfortunately no single milliliter of liquid provides for a transition between full and
empty. This transition is gradual, so that as each milliliter of water is removed, the truth
value of the glass being full gradually diminishes from a value of 1 at 1000 milliliters to 0
at 0 milliliters. Hence, for many problems we have need for a multivalued logic other than
the classic binary logic that is so prevalent today.

A relatively recent debate involving similar ideas to those in paradoxes stems from
a paper by psychologists Osherson and Smith [1981], in which they claim (incorrectly)
that fuzzy set theory is not expressive enough to represent strong intuitionistic concepts.
This idea can be described as the logically empty and logically universal concepts. The
authors argued that the concept apple that is not an apple is logically empty, and that
the concept fruit that either is or is not an apple is logically universal. These concepts
are correct for classical logic; the logically empty idea and the logically universal idea
are the axiom of contradiction and the axiom of the excluded middle, respectively. The
authors argued that fuzzy logic also should adhere to these axioms to correctly represent
concepts in natural language but, of course, there is a compelling reason why they should
not. Several authorities have disputed this argument (see Belohlavek et al., 2002). While
the standard fuzzy operations do not obey the excluded middle axioms, there are other
fuzzy operations for intersection, union, and complement that do conform to these axioms
if such confirmation is required by empirical evidence. More to the point, however, is that
the concepts of apple and fruit are fuzzy and, as fruit geneticists will point out, there are
some fruits that can appear to be an apple that genetically are not an apple.

A fuzzy logic proposition, P∼, is a statement involving some concept without clearly
defined boundaries. Linguistic statements that tend to express subjective ideas and that can be
interpreted slightly differently by various individuals typically involve fuzzy propositions.
Most natural language is fuzzy, in that it involves vague and imprecise terms. Statements
describing a person’s height or weight or assessments of people’s preferences about colors
or menus can be used as examples of fuzzy propositions. The truth value assigned to P∼ can
be any value on the interval [0, 1]. The assignment of the truth value to a proposition is
actually a mapping from the interval [0, 1] to the universe U of truth values, T , as indicated
in Eq. (5.11),

T : u ∈ U −→ (0, 1) (5.11)

As in classical binary logic, we assign a logical proposition to a set in the universe of
discourse. Fuzzy propositions are assigned to fuzzy sets. Suppose proposition P∼ is assigned
to fuzzy set A∼ ; then the truth value of a proposition, denoted T (P∼), is given by

T (P∼) = µA∼
(x) where 0 ≤ µA∼

≤ 1 (5.12)

Equation (5.12) indicates that the degree of truth for the proposition P∼ : x ∈ A∼ is equal to
the membership grade of x in the fuzzy set A∼ .

The logical connectives of negation, disjunction, conjunction, and implication are
also defined for a fuzzy logic. These connectives are given in Eqs. (5.13)–(5.16) for two
simple propositions: proposition P∼ defined on fuzzy set A∼ and proposition Q∼ defined on
fuzzy set B∼.
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Negation
T (P∼) = 1 − T (P∼) (5.13)

Disjunction
P∼ ∨ Q∼ : x is A∼ or B∼ T(P∼ ∨ Q∼) = max(T(P∼), T(Q∼)) (5.14)

Conjunction
P∼ ∧ Q∼ : x is A∼ and B∼ T(P∼ ∧ Q∼) = min(T(P∼), T(Q∼)) (5.15)

Implication [Zadeh, 1973]

P∼ −→ Q∼ : x is A∼, then x is B∼

T(P∼ −→ Q∼) = T(P∼ ∨ Q∼) = max(T(P∼), T(Q∼)) (5.16)

As before in binary logic, the implication connective can be modeled in rule-based form;
P∼ → Q∼ is, IF x is A∼ , THEN y is B∼ and it is equivalent to the following fuzzy relation,

R∼ = (A∼ × B∼) ∪ (A∼ × Y) (recall Eq. (5.4)), just as it is in classical logic. The membership
function of R∼ is expressed by the following formula:

µR∼
(x, y) = max[(µA∼

(x) ∧ µB∼
(y)), (1 − µA∼

(x))] (5.17)

Example 5.9. Suppose we are evaluating a new invention to determine its commercial
potential. We will use two metrics to make our decisions regarding the innovation of the idea.
Our metrics are the ‘‘uniqueness’’ of the invention, denoted by a universe of novelty scales,
X = {1, 2, 3, 4}, and the ‘‘market size’’ of the invention’s commercial market, denoted on a
universe of scaled market sizes, Y = {1, 2, 3, 4, 5, 6}. In both universes the lowest numbers
are the ‘‘highest uniqueness’’ and the ‘‘largest market,’’ respectively. A new invention in
your group, say a compressible liquid of very useful temperature and viscosity conditions, has
just received scores of ‘‘medium uniqueness,’’ denoted by fuzzy set A∼ , and ‘‘medium market
size,’’ denoted fuzzy set B∼. We wish to determine the implication of such a result, i.e., IF A∼ ,
THEN B∼. We assign the invention the following fuzzy sets to represent its ratings:

A∼ = medium uniqueness =
{

0.6

2
+ 1

3
+ 0.2

4

}

B∼ = medium market size =
{

0.4

2
+ 1

3
+ 0.8

4
+ 0.3

5

}

C∼ = diffuse market size =
{

0.3

1
+ 0.5

2
+ 0.6

3
+ 0.6

4
+ 0.5

5
+ 0.3

6

}

The following matrices are then determined in developing the membership function of the
implication, µR∼

(x, y), illustrated in Eq. (5.17),

A∼ × B∼ =



1 2 3 4 5 6
1 0 0 0 0 0 0
2 0 0.4 0.6 0.6 0.3 0
3 0 0.4 1 0.8 0.3 0
4 0 0.2 0.2 0.2 0.2 0
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A∼ × Y =



1 2 3 4 5 6
1 1 1 1 1 1 1
2 0.4 0.4 0.4 0.4 0.4 0.4
3 0 0 0 0 0 0
4 0.8 0.8 0.8 0.8 0.8 0.8




and finally, R∼ = max(A∼ × B∼, A∼ × Y)

R∼ =



1 2 3 4 5 6
1 1 1 1 1 1 1
2 0.4 0.4 0.6 0.6 0.4 0.4
3 0 0.4 1 0.8 0.3 0
4 0.8 0.8 0.8 0.8 0.8 0.8




When the logical conditional implication is of the compound form

IF x is A∼, THEN y is B∼, ELSE y is C∼

then the equivalent fuzzy relation, R∼, is expressed as R∼ = (A∼ × B∼) ∪ (A∼ × C∼), in a form
just as Eq. (5.6), whose membership function is expressed by the following formula:

µR∼
(x, y) = max

[
(µA∼

(x) ∧ µB∼
(y)), ((1 − µA∼

(x)) ∧ µC∼
(y))

]
(5.18)

Hence, using the result of Eq. 5.18, the new relation is

R∼ = (A∼ × B∼) ∪ (A∼ × C∼)(A∼ × C∼): A∼ × C∼ =




1 2 3 4 5 6

1 0.3 0.5 0.6 0.6 0.5 0.3
2 0.3 0.4 0.4 0.4 0.4 0.3
3 0 0 0 0 0 0
4 0.3 0.5 0.6 0.6 0.5 0.3




and finally,

R∼ =




1 2 3 4 5 6

1 0.3 0.5 0.6 0.6 0.5 0.3
2 0.3 0.4 0.6 0.6 0.4 0.3
3 0 0.4 1 0.8 0.3 0
4 0.3 0.5 0.6 0.6 0.5 0.3




APPROXIMATE REASONING

The ultimate goal of fuzzy logic is to form the theoretical foundation for reasoning about
imprecise propositions; such reasoning has been referred to as approximate reasoning
[Zadeh, 1976, 1979]. Approximate reasoning is analogous to classical logic for reasoning
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with precise propositions, and hence is an extension of classical propositional calculus that
deals with partial truths.

Suppose we have a rule-based format to represent fuzzy information. These rules are
expressed in conventional antecedent-consequent form, such as

Rule 1: IF x is A∼ , THEN y is B∼, where A∼ and B∼ represent fuzzy propositions (sets).
Now suppose we introduce a new antecedent, say A∼

′, and we consider the following rule:
Rule 2: IF x is A∼

′, THEN y is B∼
′.

From information derived from Rule 1, is it possible to derive the consequent in Rule 2,
B∼

′? The answer is yes, and the procedure is fuzzy composition. The consequent B∼
′ can be

found from the composition operation, B∼
′ = A∼

′◦R∼.
The two most common forms of the composition operator are the max–min and the

max–product compositions, as initially defined in Chapter 3.

Example 5.10. Continuing with the invention example, Example 5.9, suppose that the fuzzy
relation just developed, i.e., R∼, describes the invention’s commercial potential. We wish to know
what market size would be associated with a uniqueness score of ‘‘almost high uniqueness.’’
That is, with a new antecedent, A∼

′, the following consequent, B∼
′, can be determined using

composition. Let

A∼
′ = almost high uniqueness =

{
0.5

1
+ 1

2
+ 0.3

3
+ 0

4

}

Then, using the following max–min composition,

B∼
′ = A∼

′◦R∼ =
{

0.5

1
+ 0.5

2
+ 0.6

3
+ 0.6

4
+ 0.5

5
+ 0.5

6

}

we get the fuzzy set describing the associated market size. In other words, the consequent is
fairly diffuse, where there is no strong (or weak) membership value for any of the market size
scores (i.e., no membership values near 0 or 1).

This power of fuzzy logic and approximate reasoning to assess qualitative knowledge
can be illustrated in more familiar terms to engineers in the context of the following example
in the field of biophysics.

Example 5.11. For research on the human visual system, it is sometimes necessary to
characterize the strength of response to a visual stimulus based on a magnetic field measurement
or on an electrical potential measurement. When using magnetic field measurements, a typical
experiment will require nearly 100 off/on presentations of the stimulus at one location to obtain
useful data. If the researcher is attempting to map the visual cortex of the brain, several stimulus
locations must be used in the experiments. When working with a new subject, a researcher will
make preliminary measurements to determine if the type of stimulus being used evokes a good
response in the subject. The magnetic measurements are in units of femtotesla (10−15 tesla).
Therefore, the inputs and outputs are both measured in terms of magnetic units.

We will define inputs on the universe X = [0, 50, 100, 150, 200] femtotesla, and outputs
on the universe Y = [0, 50, 100, 150, 200] femtotesla. We will define two fuzzy sets, two
different stimuli, on universe X:

W∼ = ‘‘weak stimulus’’ =
{

1

0
+ 0.9

50
+ 0.3

100
+ 0

150
+ 0

200

}
⊂ X

M∼ = ‘‘medium stimulus’’ =
{

0

0
+ 0.4

50
+ 1

100
+ 0.4

150
+ 0

200

}
⊂ X
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and one fuzzy set on the output universe Y,

S∼ = ‘‘severe response’’ =
{

0

0
+ 0

50
+ 0.5

100
+ 0.9

150
+ 1

200

}
⊂ Y

The complement of S∼ will then be

S∼ =
{

1

0
+ 1

50
+ 0.5

100
+ 0.1

150
+ 0

200

}

We will construct the proposition: IF ‘‘weak stimulus’’ THEN not ‘‘severe response,’’ using
classical implication.

IF W∼ THEN S∼ = W∼ −→ S∼ = (W∼ × S∼) ∪ (W∼ × Y)

W∼ × S∼ =




1
0.9
0.3
0
0


 [1 1 0.5 0.1 0] =




0 50 100 150 200
0 1 1 0.5 0.1 0
50 0.9 0.9 0.5 0.1 0
100 0.3 0.3 0.3 0.1 0
150 0 0 0 0 0
200 0 0 0 0 0




W∼ × Y =




0
.1
.7
1
1


 [1 1 1 1 1] =




0 50 100 150 200
0 0 0 0 0 0
50 0.1 0.1 0.1 0.1 0.1
100 0.7 0.7 0.7 0.7 0.7
150 1 1 1 1 1
200 1 1 1 1 1




R∼ = (W∼ × S∼) ∪ (W∼ × Y) =




0 50 100 150 200
0 1 1 0.5 0.1 0
50 0.9 0.9 0.5 0.1 0.1
100 0.7 0.7 0.7 0.7 0.7
150 1 1 1 1 1
200 1 1 1 1 1




This relation R∼, then, expresses the knowledge embedded in the rule: IF ‘‘weak stimuli’’
THEN not ‘‘severe response.’’ Now, using a new antecedent (IF part) for the input, M∼ =
‘‘medium stimuli,’’ and a max–min composition we can find another response on the Y
universe to relate approximately to the new stimulus M∼ , i.e., to find M∼ ◦R∼:

M∼ ◦R∼ = [0 0.4 1 0.4 0]




0 50 100 150 200
1 1 0.5 0.1 0

0.9 0.9 0.5 0.1 0.1
0.7 0.7 0.7 0.7 0.7
1 1 1 1 1
1 1 1 1 1


 = [0.7 0.7 0.7 0.7 0.7]

This result might be labeled linguistically as ‘‘no measurable response.’’

An interesting issue in approximate reasoning is the idea of an inverse relationship
between fuzzy antecedents and fuzzy consequences arising from the composition operation.
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Consider the following problem. Suppose we use the original antecedent, A∼ , in the fuzzy
composition. Do we get the original fuzzy consequent, B∼, as a result of the operation? That
is, does the composition operation have a unique inverse, i.e., B∼ = A∼◦R∼? The answer is an
unqualified no, and one should not expect an inverse to exist for fuzzy composition.

Example 5.12. Again, continuing with the invention example, Examples 5.9 and 5.10, suppose
that A∼

′ = A∼ = ‘‘medium uniqueness.’’ Then

B∼
′ = A∼

′◦R∼ = A∼◦R∼ =
{

0.4

1
+ 0.4

2
+ 1

3
+ 0.8

4
+ 0.4

5
+ 0.4

6

}
�= B∼

That is, the new consequent does not yield the original consequent (B∼ = medium market size)
because the inverse is not guaranteed with fuzzy composition.

In classical binary logic this inverse does exist; that is, crisp modus ponens would give

B′ = A′◦R = A◦R = B

where the sets A and B are crisp, and the relation R is also crisp. In the case of approximate
reasoning, the fuzzy inference is not precise but rather is approximate. However, the
inference does represent an approximate linguistic characteristic of the relation between
two universes of discourse, X and Y.

Example 5.13. Suppose you are a soils engineer and you wish to track the movement of
soil particles under applied loading in an experimental apparatus that allows viewing of the
soil motion. You are building pattern recognition software to enable a computer to monitor
and detect the motions. However, there are some difficulties in ‘‘teaching’’ your software
to view the motion. The tracked particle can be occluded by another particle. The occlusion
can occur when a tracked particle is behind another particle, behind a mark on the camera’s
lens, or partially out of sight of the camera. We want to establish a relationship between
particle occlusion, which is a poorly known phenomenon, and lens occlusion, which is quite
well-known in photography. Let these membership functions,

A∼ =
{

0.1

x1
+ 0.9

x2
+ 0.0

x3

}
and B∼ =

{
0

y1
+ 1

y2
+ 0

y3

}

describe fuzzy sets for a tracked particle moderately occluded behind another particle and a
lens mark associated with moderate image quality, respectively. Fuzzy set A∼ is defined on a
universe X = {x1, x2, x3} of tracked particle indicators, and fuzzy set B∼ (note in this case that
B∼ is a crisp singleton) is defined on a universe Y = {y1, y2, y3} of lens obstruction indices. A
typical rule might be: IF occlusion due to particle occlusion is moderate, THEN image quality
will be similar to a moderate lens obstruction, or symbolically,

IF x is A∼, THEN y is B∼ or (A∼ × B∼) ∪ (A∼ × Y) = R∼

We can find the relation, R∼, as follows:

A∼ × B∼ =
[ y1 y2 y3

x1 0 0.1 0
x2 0 0.9 0
x3 0 0 0

]
A∼ × Y∼ =

[ y1 y2 y3

x1 0.9 0.9 0.9
x2 0.1 0.1 0.1
x3 1 1 1

]
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R∼ = (A∼ × B∼) ∪ (A∼ × Y∼) =
[

0.9 0.9 0.9
0.1 0.9 0.1
1 1 1

]

This relation expresses in matrix form all the knowledge embedded in the implication. Let A∼
′

be a fuzzy set, in which a tracked particle is behind a particle with slightly more occlusion than
the particle expressed in the original antecedent A∼ , given by

A∼
′ =

{
0.3

x1
+ 1.0

x2
+ 0.0

x3

}

We can find the associated membership of the image quality using max–min composition. For
example, approximate reasoning will provide

IF x is A∼
′, THEN B∼

′ = A∼
′◦R∼

and we get

B∼
′ = [0.3 1 0]◦

[
0.9 0.9 0.9
0.1 0.9 0.1
1 1 1

]
=

{
0.3

y1
+ 0.9

y2
+ 0.3

y3

}

This image quality, B∼
′, is more fuzzy than B∼, as indicated by the former’s membership function.

OTHER FORMS OF THE IMPLICATION OPERATION

There are other techniques for obtaining the fuzzy relation R∼ based on the IF A∼ , THEN B∼,
or R∼ = A∼ → B∼. These are known as fuzzy implication operations, and they are valid for all
values of x ∈ X and y ∈ Y. The following forms of the implication operator show different
techniques for obtaining the membership function values of fuzzy relation R∼ defined on the
Cartesian product space X × Y:

µR∼
(x, y) = max[µB∼

(y), 1 − µA∼
(x)] (5.19)

µR∼
(x, y) = min[µA∼

(x), µB∼
(y)] (5.20)

µR∼
(x, y) = min{1, [1 − µA∼

(x) + µB∼
(y)]} (5.21)

µR∼
(x, y) = µA∼

(x) · µB∼
(y) (5.22)

µR∼
(x, y) =

{
1, for µA∼

(x) ≤ µB∼
(y)

µB∼
(y), otherwise (5.23)

In situations where the universes are represented by discrete elements the fuzzy relation R∼
is a matrix.

Equation (5.19) is equivalent to classical implication (Eq. 5.16) for µB∼
(y) ≤ µA∼

(x).
Equation (5.20) has been given various terms in the literature; it has been referred to as
correlation-minimum and as Mamdani’s implication, after British Prof. Mamdani’s work
in the area of system control [Mamdani, 1976]. This formulation for the implication is
also equivalent to the fuzzy cross product of fuzzy sets A∼ and B∼, i.e., R∼ = A∼ × B∼. For
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µA∼
(x) ≥ 0.5 and µB∼

(y) ≥ 0.5 classical implication reduces to Mamdani’s implication.
The implication defined by Eq. (5.21) is known as Lukasiewicz’s implication, after the
Polish logician Jan Lukasiewicz [Rescher, 1969]. Equation (5.22) describes a form of
correlation-product implication and is based on the notions of conditioning and reinforce-
ment. This product form tends to dilute the influence of joint membership values that
are small and, as such, are related to Hebbian-type learning algorithms in neuropsychol-
ogy when used in artificial neural network computations. Equation (5.23) is sometimes
called Brouwerian implication and is discussed in Sanchez [1976]. Although the classical
implication continues to be the most popular and is valid for fuzzy and crisp applica-
tions, these other methods have been introduced as computationally effective under certain
conditions of the membership values, µA∼

(x) and µB∼
(y). The appropriate choice of an

implication operator is a matter left to the analyst, since it is typically context-dependent
(see Problems 5.20 and 5.21 for comparisons). Ross [1995] gives a few other fuzzy
implications.

PART II FUZZY SYSTEMS

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age
of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of
Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we
had everything before us . . . .

Charles Dickens
A Tale of Two Cities, Chapter 1, 1859

Natural language is perhaps the most powerful form of conveying information that humans
possess for any given problem or situation that requires solving or reasoning. This power
has largely remained untapped in today’s mathematical paradigms; not so anymore with the
utility of fuzzy logic. Consider the information contained in the passage above from Charles
Dickens’ A Tale of Two Cities. Imagine reducing this passage to a more precise form
such that it could be assimilated by a binary computer. First, we will have to remove the
fuzziness inherent in the passage, limiting the statements to precise, either–or, Aristotelian
logic. Consider the following crisp version of the first few words of the Dickens passage:

The time interval x was the period exhibiting a 100 percent maximum of possible values as
measured along some arbitrary social scale, [and] the interval x was also the period of time
exhibiting a 100 percent minimum of these values as measured along the same scale. [Clark,
1992]

The crisp version of this passage has established an untenable paradox, identical
to that posed by the excluded middle axioms in probability theory. Another example is
available from the same classic, the last sentence in Dickens’ A Tale of Two Cities: ‘‘It is
a far, far better thing that I do, than I have ever done; it is a far, far better rest that I go to,
than I have ever known.’’ It would also be difficult to address this original fuzzy phrase by
an intelligent machine using binary logic. Both of these examples demonstrate the power
of communication inherent in natural language, and they demonstrate how far we are from
enabling intelligent machines to reason the way humans do – a long way!
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NATURAL LANGUAGE

Cognitive scientists tell us that humans base their thinking primarily on conceptual patterns
and mental images rather than on any numerical quantities. In fact the expert system
paradigm known as ‘‘frames’’ is based on the notion of a cognitive picture in one’s mind.
Furthermore, humans communicate with their own natural language by referring to previous
mental images with rather vague but simple terms. Despite the vagueness and ambiguity in
natural language, humans communicating in a common language have very little trouble
in basic understanding. Our language has been termed the shell of our thoughts [Zadeh,
1975a]. Hence, any attempts to model the human thought process as expressed in our
communications with one another must be preceded by models that attempt to emulate our
natural language.

Our natural language consists of fundamental terms characterized as atoms in the
literature. A collection of these atoms will form the molecules, or phrases, of our natural
language. The fundamental terms can be called atomic terms. Examples of some atomic
terms are slow, medium, young, beautiful, etc. A collection of atomic terms is called a
composite, or simply a set of terms. Examples of composite terms are very slow horse,
medium-weight female, young tree, fairly beautiful painting, etc. Suppose we define the
atomic terms and sets of atomic terms to exist as elements and sets on a universe of natural
language terms, say universe X. Furthermore, let us define another universe, called Y, as a
universe of cognitive interpretations, or meanings. Although it may seem straightforward
to envision a universe of terms, it may be difficult to ponder a universe of interpretations.
Consider this universe, however, to be a collection of individual elements and sets that
represent the cognitive patterns and mental images referred to earlier in this chapter. Clearly,
then, these interpretations would be rather vague, and they might best be represented as
fuzzy sets. Hence, an atomic term, or as Zadeh [1975a] defines it, a linguistic variable, can
be interpreted using fuzzy sets.

The need for expressing linguistic variables using the precepts of mathematics is
quite well established. Leibniz, who was an early developer of calculus, once claimed, ‘‘If
we could find characters or signs appropriate for expressing all our thoughts as definitely
and as exactly as arithmetic expresses numbers or geometric analysis expresses lines, we
could in all subjects, in so far as they are amenable to reasoning, accomplish what is
done in arithmetic and geometry.’’ Fuzzy sets are a relatively new quantitative method to
accomplish just what Leibniz had suggested.

With these definitions and foundations, we are now in a position to establish a
formal model of linguistics using fuzzy sets. Suppose we define a specific atomic term
in the universe of natural language, X, as element α, and we define a fuzzy set A∼ in the
universe of interpretations, or meanings, Y, as a specific meaning for the term α. Then
natural language can be expressed as a mapping M∼ from a set of atomic terms in X to
a corresponding set of interpretations defined on universe Y. Each atomic term α in X
corresponds to a fuzzy set A∼ in Y, which is the ‘‘interpretation’’ of α. This mapping, which
can be denoted M∼ (α, A∼ ), is shown schematically in Fig. 5.6.

The fuzzy set A∼ represents the fuzziness in the mapping between an atomic term
and its interpretation, and can be denoted by the membership function µM∼

(α, y), or more
simply by

µM∼
(α, y) = µA∼

(y) (5.24)
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FIGURE 5.6
Mapping of a linguistic atom, α, to a cognitive interpretation, A∼ .

As an example, suppose we have the atomic term ‘‘young’’ (α) and we want to
interpret this linguistic atom in terms of age, y, by a membership function that expresses the
term ‘‘young.’’ The membership function given here in the notation of Zadeh [1975b], and
labeled A∼ , might be one interpretation of the term young expressed as a function of age,

A∼ = ‘‘young’’ =
∫ 25

0

1

y
+

∫ 100

25

1

y

[
1 +

(
y − 25

5

)2
]−1

or alternatively,

µM∼
(young, y) =




[
1 +

(
y − 25

5

)2
]−1

y > 25 years

1 y ≤ 25 years

Similarly, the atomic term ‘‘old’’ might be expressed as another fuzzy set, O∼ , on the
universe of interpretation, Y, as

µM∼
(old, y) = 1 −

[
1 +

(
y − 50

5

)2
]−1

for 50 ≤ y ≤ 100

On the basis of the foregoing, we can call α a natural language variable whose
‘‘value’’ is defined by the fuzzy set µα(y). Hereinafter, the ‘‘value’’ of a linguistic variable
will be synonymous with its interpretation.

As suggested before, a composite is a collection, or set, of atomic terms combined
by various linguistic connectives such as and, or, and not. Define two atomic terms, α and
β, on the universe X. The interpretation of the composite, defined on universe Y, can be
defined by the following set-theoretic operations [Zadeh, 1975b],

α or β : µα or β(y) = max(µα(y), µβ(y))

α and β : µα and β(y) = min(µα(y), µβ(y)) (5.25)

Not α = α : µα(y) = 1 − µα(y)

These operations are analogous to those proposed earlier in this chapter (standard fuzzy oper-
ations), where the natural language connectives and, or, and not were logical connectives.
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LINGUISTIC HEDGES

In linguistics, fundamental atomic terms are often modified with adjectives (nouns) or
adverbs (verbs) like very, low, slight, more or less, fairly, slightly, almost, barely, mostly,
roughly, approximately, and so many more that it would be difficult to list them all. We will
call these modifiers ‘‘linguistic hedges’’: that is, the singular meaning of an atomic term
is modified, or hedged, from its original interpretation. Using fuzzy sets as the calculus of
interpretation, these linguistic hedges have the effect of modifying the membership function
for a basic atomic term [Zadeh, 1972]. As an example, let us look at the basic linguistic
atom, α, and subject it to some hedges. Define α = ∫

Y µα(y)/y; then

‘‘Very’’ α = α2 =
∫

Y

[µα(y)]2

y
(5.26)

‘‘Very, very’’ α = α4 (5.27)

‘‘Plus’’ α = α1.25 (5.28)

‘‘Slightly’’ α = √
α =

∫
Y

[µα(y)]0.5

y
(5.29)

‘‘Minus’’ α = α0.75 (5.30)

The expressions shown in Eqs. (5.26)–(5.28) are linguistic hedges known as concen-
trations [Zadeh, 1972]. Concentrations tend to concentrate the elements of a fuzzy set by
reducing the degree of membership of all elements that are only ‘‘partly’’ in the set. The less
an element is in a set (i.e., the lower its original membership value), the more it is reduced
in membership through concentration. For example, by using Eq. (5.26) for the hedge very,
a membership value of 0.9 is reduced by 10% to a value of 0.81, but a membership value of
0.1 is reduced by an order of magnitude to 0.01. This decrease is simply a manifestation of
the properties of the membership value itself; for 0 ≤ µ ≤ 1, then µ ≥ µ2. Alternatively,
the expressions given in Eqs. (5.29) and (5.30) are linguistic hedges known as dilations
(or dilutions in some publications). Dilations stretch or dilate a fuzzy set by increasing the
membership of elements that are ‘‘partly’’ in the set [Zadeh, 1972]. For example, using
Eq. (5.29) for the hedge slightly, a membership value of 0.81 is increased by 11% to a value
of 0.9, whereas a membership value of 0.01 is increased by an order of magnitude to 0.1.

Another operation on linguistic fuzzy sets is known as intensification. This operation
acts in a combination of concentration and dilation. It increases the degree of membership of
those elements in the set with original membership values greater than 0.5, and it decreases
the degree of membership of those elements in the set with original membership values less
than 0.5. This also has the effect of making the boundaries of the membership function (see
Fig. 4.1) steeper. Intensification can be expressed by numerous algorithms, one of which,
proposed by Zadeh [1972], is

‘‘intensify’’ α =
{

2µα
2(y) for 0 ≤ µα(y) ≤ 0.5

1 − 2 [1 − µα(y)]2 for 0.5 ≤ µα(y) ≤ 1
(5.31)

Intensification increases the contrast between the elements of the set that have more
than half-membership and those that have less than half-membership. Figures 5.7, 5.8,
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Fuzzy concentration.
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FIGURE 5.9
Fuzzy intensification.

and 5.9 illustrate the operations of concentration, dilation, and intensification, respectively,
for fuzzy linguistic hedges on a typical fuzzy set A∼ .

Composite terms can be formed from one or more combinations of atomic terms,
logical connectives, and linguistic hedges. Since an atomic term is essentially a fuzzy
mapping from the universe of terms to a universe of fuzzy sets represented by membership
functions, the implementation of linguistic hedges and logical connectives is manifested as
function-theoretic operations on the values of the membership functions. In order to conduct
the function-theoretic operations, a precedence order must be established. For example,
suppose we have two atomic terms ‘‘small’’ and ‘‘red,’’ and their associated membership
functions, and we pose the following linguistic expression: a ‘‘not small’’ and ‘‘very red’’
fruit. Which of the operations, i.e., not, and, very, would we perform first, which would we
perform second, and so on? In the literature, the following preference table (Table 5.7) has
been suggested for standard Boolean operations.

Parentheses may be used to change the precedence order and ambiguities may be
resolved by the use of association-to-the-right. For example, ‘‘plus very minus very small’’
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TABLE 5.7
Precedence for linguistic hedges
and logical operations

Precedence Operation

First Hedge. not
Second And
Third Or

Source: Zadeh [1973]

should be interpreted as

plus (very (minus (very (small))))

Every atomic term and every composite term has a syntax represented by its linguistic
label and a semantics, or meaning (interpretation), which is given by a membership function.
The use of a membership function gives the flexibility of an elastic meaning to a linguistic
term. On the basis of this elasticity and flexibility, it is possible to incorporate subjectivity
and bias into the meaning of a linguistic term. These are some of the most important benefits
of using fuzzy mathematics in the modeling of linguistic variables. This capability allows
us to encode and automate human knowledge, which is often expressed in natural language
propositions.

In our example, a ‘‘not small’’ and ‘‘very red’’ fruit, we would perform the hedges
‘‘not small’’ and ‘‘very red’’ first, then we would perform the logical operation and on the
two phrases as suggested in Table 5.7. To further illustrate Table 5.7 consider the following
numerical example.

Example 5.14. Suppose we have a universe of integers, Y = {1, 2, 3, 4, 5}. We define the
following linguistic terms as a mapping onto Y:

‘‘Small’’ =
{

1

1
+ 0.8

2
+ 0.6

3
+ 0.4

4
+ 0.2

5

}

‘‘Large’’ =
{

0.2

1
+ 0.4

2
+ 0.6

3
+ 0.8

4
+ 1

5

}

Now we modify these two linguistic terms with hedges,

‘‘Very small’’ = ‘‘small’’2 (Eq. (5.26)) =
{

1

1
+ 0.64

2
+ 0.36

3
+ 0.16

4
+ 0.04

5

}

‘‘Not very small’’ = 1 − ‘‘very small’’ =
{

0

1
+ 0.36

2
+ 0.64

3
+ 0.84

4
+ 0.96

5

}

Then we construct a phrase, or a composite term:

α = ‘‘not very small and not very, very large’’
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which involves the following set-theoretic operations:

α =
(

0.36

2
+ 0.64

3
+ 0.84

4
+ 0.96

5

)
∩

(
1

1
+ 1

2
+ 0.9

3
+ 0.6

4

)
=

(
0.36

2
+ 0.64

3
+ 0.6

4

)

Suppose we want to construct a linguistic variable ‘‘intensely small’’ (extremely small); we
will make use of Eq. (5.31) to modify ‘‘small’’ as follows:

‘‘Intensely small’’ =
{

1 − 2[1 − 1]2

1
+ 1 − 2[1 − 0.8]2

2

+ 1 − 2[1 − 0.6]2

3
+ 2[0.4]2

4
+ 2[0.2]2

5

}

=
{

1

1
+ 0.92

2
+ 0.68

3
+ 0.32

4
+ 0.08

5

}

In summary, the foregoing material introduces the idea of a linguistic variable (atomic
term), which is a variable whose values (interpretation) are natural language expressions
referring to the contextual semantics of the variable. Zadeh [1975b] described this notion
quite well:

A linguistic variable differs from a numerical variable in that its values are not numbers but
words or sentences in a natural or artificial language. Since words, in general, are less precise
than numbers, the concept of a linguistic variable serves the purpose of providing a means
of approximate characterization of phenomena which are too complex or too ill-defined to
be amenable to description in conventional quantitative terms. More specifically, the fuzzy
sets which represent the restrictions associated with the values of a linguistic variable may
be viewed as summaries of various subclasses of elements in a universe of discourse. This,
of course, is analogous to the role played by words and sentences in a natural language.
For example, the adjective handsome is a summary of a complex of characteristics of the
appearance of an individual. It may also be viewed as a label for a fuzzy set which represents
a restriction imposed by a fuzzy variable named handsome. From this point of view, then, the
terms very handsome, not handsome, extremely handsome, quite handsome, etc., are names of
fuzzy sets which result from operating on the fuzzy set handsome with the modifiers named
very, not, extremely, quite, etc. In effect, these fuzzy sets, together with the fuzzy set labeled
handsome, play the role of values of the linguistic variable Appearance.

FUZZY (RULE-BASED) SYSTEMS

In the field of artificial intelligence (machine intelligence) there are various ways to represent
knowledge. Perhaps the most common way to represent human knowledge is to form it into
natural language expressions of the type

IF premise (antecedent), THEN conclusion (consequent) (5.32)

The form in Expression (5.32) is commonly referred to as the IF–THEN rule-based
form; this form generally is referred to as the deductive form. It typically expresses an
inference such that if we know a fact (premise, hypothesis, antecedent), then we can
infer, or derive, another fact called a conclusion (consequent). This form of knowledge
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TABLE 5.8
The canonical form for a fuzzy rule-based system

Rule 1: IF condition C1, THEN restriction R1

Rule 2: IF condition C2, THEN restriction R2

...

Rule r: IF condition Cr , THEN restriction Rr

representation, characterized as shallow knowledge, is quite appropriate in the context
of linguistics because it expresses human empirical and heuristic knowledge in our own
language of communication. It does not, however, capture the deeper forms of knowledge
usually associated with intuition, structure, function, and behavior of the objects around us
simply because these latter forms of knowledge are not readily reduced to linguistic phrases
or representations; this deeper form, as described in Chapter 1, is referred to as inductive.
The fuzzy rule-based system is most useful in modeling some complex systems that can
be observed by humans because it makes use of linguistic variables as its antecedents and
consequents; as described here these linguistic variables can be naturally represented by
fuzzy sets and logical connectives of these sets.

By using the basic properties and operations defined for fuzzy sets (see Chapter 2), any
compound rule structure may be decomposed and reduced to a number of simple canonical
rules as given in Table 5.8. These rules are based on natural language representations
and models, which are themselves based on fuzzy sets and fuzzy logic. The fuzzy level
of understanding and describing a complex system is expressed in the form of a set of
restrictions on the output based on certain conditions of the input (see Table 5.8). Restrictions
are generally modeled by fuzzy sets and relations. These restriction statements are usually
connected by linguistic connectives such as ‘‘and,’’ ‘‘or,’’ or ‘‘else.’’ The restrictions
R1, R2, . . . , Rr apply to the output actions, or consequents of the rules. The following
illustrates a couple of the most common techniques [Ross, 1995] for decomposition of
linguistic rules involving multiple antecedents into the simple canonical form illustrated in
Table 5.8.

Multiple conjunctive antecedents

IF x is A∼
1 and A∼

2 . . . and A∼
L THEN y is B∼

s (5.33)

Assuming a new fuzzy subset As as

A∼
s = A∼

1 ∩ A∼
2 ∩ · · · ∩ A∼

L

expressed by means of membership function

µA∼
s (x) = min[µA∼

1(x), µA∼
2(x), . . . , µA∼

L(x)]

based on the definition of the standard fuzzy intersection operation, the compound rule may
be rewritten as

IF A∼
s THEN B∼

s
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Multiple disjunctive antecedents

IF x is A∼
1 OR x is A∼

2 . . . OR x is A∼
L THEN y is B∼

s (5.34)

could be rewritten as
IF x is A∼

s THEN y is B∼
s

where the fuzzy set A∼
s is defined as

A∼
s = A∼

1 ∪ A∼
2 ∪ · · · ∪ A∼

L

µA∼
s (x) = max [µA∼

1(x), µA∼
2(x), . . . , µA∼

L(x)]

which is based on the definition of the standard fuzzy union operation.

Aggregation of fuzzy rules

Most rule-based systems involve more than one rule. The process of obtaining the overall
consequent (conclusion) from the individual consequents contributed by each rule in the
rule-base is known as aggregation of rules. In determining an aggregation strategy, two
simple extreme cases exist [Ross, 1995]:

1. Conjunctive system of rules. In the case of a system of rules that must be jointly satisfied,
the rules are connected by ‘‘and’’ connectives. In this case the aggregated output
(consequent), y, is found by the fuzzy intersection of all individual rule consequents, yi ,
where i = 1, 2, . . . r (see Table 5.8), as

y = y1 and y2 and . . . and yr

or (5.35)

y = y1 ∩ y2 ∩ · · · ∩ yr

which is defined by the membership function

µy(y) = min(µy1(y), µy2(y), . . . , µyr (y)) for y ∈ Y (5.36)

2. Disjunctive system of rules. For the case of a disjunctive system of rules where the
satisfaction of at least one rule is required, the rules are connected by the ‘‘or’’
connectives. In this case the aggregated output is found by the fuzzy union of all
individual rule contributions, as

y = y1 or y2 or . . . or yr

or (5.37)

y = y1 ∪ y2 ∪ · · · ∪ yr

which is defined by the membership function

µy(y) = max(µy1(y), µy2(y), . . . , µyr (y)) for y ∈ Y (5.38)
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GRAPHICAL TECHNIQUES OF INFERENCE

Part I of this chapter illustrates mathematical procedures to conduct deductive inferencing
of IF–THEN rules. These procedures can be implemented on a computer for processing
speed. Sometimes, however, it is useful to be able to conduct the inference computation
manually with a few rules to check computer programs or to verify the inference operations.
Conducting the matrix operations illustrated in this chapter, Part I, for a few rule sets
can quickly become quite onerous. Graphical methods that emulate the inference process
and that make manual computations involving a few simple rules straightforward have
been proposed [see Jang et al., 1997]. This section will describe three common methods
of deductive inference for fuzzy systems based on linguistic rules: (1) Mamdani systems,
(2) Sugeno models, and (3) Tsukamoto models.

The first inference method, due to Mamdani and Assilian [1975], is the most common
in practice and in the literature. To begin the general illustration of this idea, we consider
a simple two-rule system where each rule comprises two antecedents and one consequent.
This is analogous to a dual-input and single-output fuzzy system. The graphical procedures
illustrated here can be easily extended and will hold for fuzzy rule-bases (or fuzzy systems)
with any number of antecedents (inputs) and consequents (outputs). A fuzzy system with
two noninteractive inputs x1 and x2 (antecedents) and a single output y (consequent) is
described by a collection of r linguistic IF–THEN propositions in the Mamdani form:

IF x1 is A∼
k
1 and x2 is A∼

k
2 THEN yk is B∼

k for k = 1, 2, . . . , r (5.39)

where A∼
k
1 and A∼

k
2 are the fuzzy sets representing the kth antecedent pairs, and B∼

k is the
fuzzy set representing the kth consequent.

In the following presentation, we consider two different cases of two-input Mamdani
systems: (1) the inputs to the system are scalar values, and we use a max–min inference
method, and (2) the inputs to the system are scalar values, and we use a max–product
inference method. Of course the inputs to any fuzzy system can also be a membership
function, such as a gauge reading that has been fuzzified, but we shall lose no generality in
describing the method by employing fuzzy singletons (scalar values) as the input.

Case 1

Inputs x1 and x2 are crisp values, i.e., delta functions. The rule-based system is described
by Eq. (5.39), so membership for the inputs x1 and x2 will be described by

µ(x1) = δ(x1 − input (i)) =
{

1, x1 = input(i)
0, otherwise

(5.40)

µ(x2) = δ(x2 − input (j)) =
{

1, x2 = input(j)

0, otherwise
(5.41)

Based on the Mamdani implication method of inference given in this chapter, Eq. (5.20),
and for a set of disjunctive rules, the aggregated output for the r rules will be given by

µB∼
k (y) = max

k
[min[µA∼

k
1
(input(i)), µA∼

k
2
(input(j))]] k = 1, 2, . . . , r (5.42)
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FIGURE 5.10
Graphical Mamdani (max–min) inference method with crisp inputs.

Equation (5.42) has a very simple graphical interpretation, as seen in Fig. 5.10.
Figure 5.10 illustrates the graphical analysis of two rules, where the symbols A11 and A12

refer to the first and second fuzzy antecedents of the first rule, respectively, and the symbol
B1 refers to the fuzzy consequent of the first rule; the symbols A21 and A22 refer to the first
and second fuzzy antecedents, respectively, of the second rule, and the symbol B2 refers to
the fuzzy consequent of the second rule. The minimum function in Eq. (5.42) is illustrated
in Fig. 5.10 and arises because the antecedent pairs given in the general rule structure
for this system are connected by a logical ‘‘and’’ connective, as seen in Eq. (5.39). The
minimum membership value for the antecedents propagates through to the consequent and
truncates the membership function for the consequent of each rule. This graphical inference
is done for each rule. Then the truncated membership functions for each rule are aggregated,
using the graphical equivalent of either Eq. (5.36), for conjunction rules, or Eq. (5.38),
for disjunctive rules; in Fig. 5.10 the rules are disjunctive, so the aggregation operation
max results in an aggregated membership function comprised of the outer envelope of the
individual truncated membership forms from each rule. If one wishes to find a crisp value
for the aggregated output, some appropriate defuzzification technique (see Chapter 4) could
be employed to the aggregated membership function, and a value such as y∗ shown in
Fig. 5.10 would result.

Case 2

In the preceding example, if we were to use a max–product (or correlation-product)
implication technique (see Eq. (5.22)) for a set of disjunctive rules, the aggregated output
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for the r rules would be given by

µB∼
k (y) = max

k
[µA∼

k
1
(input(i)) · µA∼

k
2
(input(j))] k = 1, 2, . . . , r (5.43)

and the resulting graphical equivalent of Eq. (5.43) would be as shown in Fig. 5.11. In
Fig. 5.11 the effect of the max–product implication is shown by the consequent membership
functions remaining as scaled triangles (instead of truncated triangles as in case 1). Again,
Fig. 5.11 shows the aggregated consequent resulting from a disjunctive set of rules (the
outer envelope of the individual scaled consequents) and a defuzzified value, y∗, resulting
from some defuzzification method (see Chapter 4).

Example 5.15. In mechanics, the energy of a moving body is called kinetic energy. If an object
of mass m (kilograms) is moving with a velocity v (meters per second), then the kinetic energy

k (in joules) is given by the equation k = 1

2
mv2. Suppose we model the mass and velocity as

inputs to a system (moving body) and the energy as output, then observe the system for a while
and deduce the following two disjunctive rules of inference based on our observations:

Rule 1 : IF x1 is A∼
1
1 (small mass) and x2 is A∼

1
2 (high velocity),

THEN y is B∼
1 (medium energy).

Rule 2 : IF x1 is A∼
2
1 (large mass) or x2 is A∼

2
2 (medium velocity),

THEN y is B∼
2 (high energy).

µ

Input(i)

µ µ

µµ

µ

y

x1 x2
y

y

x1 x2

Rule 1

Rule 2

A11 A12 B1

A21 A22 B2min

min

Input(j)

Input(i) Input(j)

y*

µ

FIGURE 5.11
Graphical Mamdani (max–product) implication method with crisp inputs.
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We now proceed to describe these two rules in a graphical form and illustrate the two cases of
graphical inference presented earlier in this section.

Suppose we have made some observations of the system (moving body) and we
estimate the values of the two inputs, mass and velocity, as crisp values. For example, let
input(i) = 0.35 kg (mass) and input(j) = 55 m/s (velocity). Case 1 models the inputs as delta
functions, Eqs. (5.40) – (5.41), and uses a Mamdani implication, Eq. (5.42). Graphically, this
is illustrated in Fig. 5.12, where the output fuzzy membership function is defuzzified using a
centroid method.

In Figs. 5.12 and 5.13, the two rules governing the behavior of the moving body
system are illustrated graphically. The antecedents, mass (kg) and velocity (m/s), for each
rule are shown as fuzzy membership functions corresponding to the linguistic values for
each antecedent. Moreover, the consequent, energy (joules), for each rule is also shown
as a fuzzy membership function corresponding to the linguistic label for that consequent.
The inputs for mass and velocity intersect the antecedent membership functions at some
membership level. The minimum or maximum of the two membership values is propagated
to the consequent depending on whether the ‘‘and’’ or ‘‘or’’ connective, respectively, is used
between the two antecedents in the rule. The propagated membership value from operations
on the antecedents then truncates (for Mamdani implication) or scales (for max–product
implication) the membership function for the consequent for that rule. This truncation or
scaling is conducted for each rule, and then the truncated or scaled membership functions from
each rule are aggregated according to Eq. (5.36) (conjunctive) or (5.38) (disjunctive). In this
example we are using two disjunctive rules.

In case 2 we only change the method of implication from the first case. Now using
a max–product implication method, Eq. (5.43), and a centroidal defuzzification method, the
graphical result is shown in Figure 5.13.

Input(i)
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y

x1 x2

y

x1 x2

Rule 1

Rule 2

A11
A12

A21
A22 B2

max

min

y* = 244 joules

µ

µ

B1

Medium

µ

y

µ

µ

High

Input(j)

Large Medium High

Input(i) Input(j)

0 .1 .3 .5 0 20 40 60 100 300 500

0 1 3 4 0 20 60 80 100 300 500402 5

FIGURE 5.12
Fuzzy inference method using the case 1 graphical approach.
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FIGURE 5.13
Fuzzy inference method using the case 2 graphical approach.

The Mamdani method has several variations. There are different t-norms to use for the
connectives of the antecedents, different aggregation operators for the rules, and numerous
defuzzification methods that could be used. As the foregoing example illustrates, the two
Mamdani methods yield different shapes for the aggregated fuzzy consequents for the two
rules used. However, the defuzzified values for the output energy are both fairly consistent:
244 joules and 260 joules. The power of fuzzy rule-based systems is their ability to yield
‘‘good’’ results with reasonably simple mathematical operations.

The second inference method, generally referred to as the Sugeno method, or the TSK
method (Takagi, Sugeno, and Kang) [Takagi and Sugeno, 1985; Sugeno and Kang, 1988],
was proposed in an effort to develop a systematic approach to generating fuzzy rules from
a given input–output data set. A typical rule in a Sugeno model, which has two-inputs x

and y, and output z, has the form

IF xis A∼ and y is B∼, THEN z is z = f (x, y)

where z = f (x, y) is a crisp function in the consequent. Usually f (x, y) is a polynomial
function in the inputs x and y, but it can be any general function as long as it describes the
output of the system within the fuzzy region specified in the antecedent of the rule to which
it is applied. When f (x, y) is a constant the inference system is called a zero-order Sugeno
model, which is a special case of the Mamdani system in which each rule’s consequent is
specified as a fuzzy singleton. When f (x, y) is a linear function of x and y, the inference



156 LOGIC AND FUZZY SYSTEMS

µ A1

X

µ B1

Min or
product

w1 z1 = p1 x + q1y + r1

z2 = p2 x + q2y + r2

w1z1 + w2z2z = w1 + w2

Weighted average

Y
µ A2

X

x y

µ B2

w2

Y

FIGURE 5.14
The Sugeno fuzzy model (Jang, Jyh-Shing Roger; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-Fuzzy
and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Ist Edition,
 1997. Reprinted by permission of Pearson Education Inc., Upper Saddle River, NJ).

system is called a first-order Sugeno model. Jang et al. [1997] point out that the output
of a zero-order Sugeno model is a smooth function of its input variables as long as the
neighboring membership functions in the antecedent have enough overlap. By contrast,
the overlap of the membership functions in the consequent of a Mamdani model does not
have a decisive effect on the smoothness; it is the overlap of the antecedent membership
functions that determines the smoothness of the resulting system behavior.

In a Sugeno model each rule has a crisp output, given by a function; because of this
the overall output is obtained via a weighted average defuzzification (Eq. (4.6)), as shown
in Fig. 5.14. This process avoids the time-consuming methods of defuzzification necessary
in the Mamdani model.

Example 5.16. An example of a two-input single-output Sugeno model with four rules is
repeated from Jang et al. [1997]:

IF X is small and Y is small, THEN z = −x + y + 1

IF X is small and Y is large, THEN z = −y + 3

IF X is large and Y is small, THEN z = −x + 3

IF X is large and Y is large, THEN z = x + y + 2

Figure 5.15a plots the membership function of inputs X and Y, and Fig. 5.15b is the
resulting input – output surface of the system. The surface is complex, but it is still obvious
that the surface is comprised of four planes, each of which is specified by the output function
of each of the four rules. Figure 5.15b shows that there is a smooth transition between the four
output planes. Without the mathematically difficult process of a defuzzification operation, the
Sugeno model is a very popular method for sample-based fuzzy systems modeling.

The third inference method is due to Tsukamoto [1979]. In this method the consequent
of each fuzzy rule is represented by a fuzzy set with a monotonic membership function,
as shown in Fig. 5.16. In a monotonic membership function, sometimes called a shoulder
function, the inferred output of each rule is defined as a crisp value induced by the
membership value coming from the antecedent clause of the rule. The overall output is
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FIGURE 5.15
Sugeno Model for Example 5.16 (Jang, Jyh-Shing Roger; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-
Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Ist
Edition,  1997. Reprinted by permission of Pearson Education Inc., Upper Saddle River, NJ):
(a) antecedent and consequent membership functions; (b) overall system response surface.
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FIGURE 5.16
The Tsukamoto fuzzy model (Jang, Jyh-Shing Roger; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-Fuzzy
and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Ist Edition,
 1997. Reprinted by permission of Pearson Education Inc., Upper Saddle River, NJ).

calculated by the weighted average of each rule’s output, as seen in Fig. 5.16. Since each
rule infers a crisp output, the Tsukamoto model’s aggregation of the overall output also
avoids the time-consuming process of defuzzification. Because of the special nature of
the output membership functions required by the method, it is not as useful as a general
approach, and must be employed in specific situations.

Example 5.17. An example of a single input, single-output Tsukamoto fuzzy model is given
by the following rules:

IF X is small, THEN Y is C1

IF X is medium, THEN Y is C2

IF X is large, THEN Y is C3
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Tsukamoto model for Example 5.17 (Jang, Jyh-Shing Roger; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-
Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Ist
Edition,  1997. Reprinted by permission of Pearson Education Inc., Upper Saddle River, NJ):
(a) antecedent membership functions; (b) consequent membership functions; (c) each rule’s output
curve; (d) overall system response curve.

where the antecedent and consequent fuzzy sets are as shown in Fig. 5.17a and Fig. 5.17b,
respectively. If we plot the output of each of the three rules as a function of the input, X, we
get the three curves shown in Fig. 5.17c. The overall output of the three-rule system is shown
in Fig. 5.17d. Since the reasoning mechanism of the Tsukamoto fuzzy model does not strictly
follow a composition operation in its inference it always generates a crisp output even when
the input and output membership functions are fuzzy membership functions.

Example 5.18. In heat exchanger design, a flexibility analysis requires the designer to
determine if the size of the heat exchanger is either small or large. In order to quantify
this linguistic vagueness of size, we form the general design equation for a heat exchanger,
Q = AU�Tlog mean, where the heat transfer coefficient U and area A need to be determined.
Figure 5.18 show a schematic of this exchanger.

We want to determine the sizes for a heat exchanger in which a stream of benzene
is heated using saturated steam at pressure 68.95 kPa and temperature 362.7 K. The initial
temperature of the benzene steam is 17◦C, and the model used to determine the size of the heat
exchanger is the following:

AU = wCp ln

(
Ts − T1

�Tapp

)

where Cp is the heat capacity of the benzene (1.7543 kJ/K kg ) and Ts − T1 = 72.55 K.
We will model the benzene flow rate, w, in kg/s, and temperature approach

(
�Tapp

)
in

kelvin, as the inputs, and we will model the size of the heat exchanger as output. We will
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FIGURE 5.18
Heat exchanger design.

deduce the following disjunctive rules of inference based on observations of the model:

Rule 1 : IF w is A∼
1
1 (large flow rate) and �Tapp is A∼

1
2 (small approach),

THEN AU is B∼
1 (large heat exchanger).

Rule 2 : IF w is A∼
2
1 (small flow rate) or �Tapp is A∼

2
2 (large approach),

THEN AU is B∼
1 (small heat exchanger).

Rule 3 : IF w is A∼
2
1 (small flow rate) and �Tapp is A∼

1
2 (small approach),

THEN AU is B∼
1 (large heat exchanger).

The graphical equivalent of these rules is shown in Fig. 5.19. A weighted average defuzzification
method will be employed to compare the results from one input pair for each of the three
following inference methods: Mamdani, Sugeno and Tsukamoto.

We will input two crisp values of benzene flow rate and temperature approach:

w = 1300 kg/s and �Tapp = 6.5 K

1. Using the max–min Mamdani implication method of inference, we know that

µB∼
k (AU) = max

k

{
min

[
µAk

1
(w), µAk

2
(�Tapp)

]}

Using the graphical approach we get the rules shown in Fig. 5.19.
And using a weighted average defuzzification, we get

AU ∗ = (4500 m2 kW/m2 K)(0.5) + (10, 000 m2 kW/m2 K)(0.25)

0.5 + 0.25
= 6333.3 m2 kW/m2 K

which is also shown in Fig. 5.20.
2. for the Sugeno fuzzy method of inference, we have experience in heat exchanger design

that gives the following expressions in a polynomial form for our two consequents (small
and large heat exchangers):

AUsmall = 3.4765w − 210.5�Tapp + 2103

AUlarge = 4.6925w − 52.62�Tapp + 2631
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FIGURE 5.19
Graphical inference using the Mamdani method for three rules.
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FIGURE 5.20
Result of the defuzzification step in the Mamdani method.

Taking the minimum value for the conjunction and the maximum value for the disjunction
of the membership values of the inputs, for each rule we will have:

Rule 1 : w1 = 0.25

Rule 2 : w2 = 0.5

Rule 3 : w1 = 0.25
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Then

AUsmall = 5256 m2 kW/m2 K and AUlarge = 5311 m2 kW/m2 K

Finally, the defuzzified value of the heat exchange size is

AU ∗ = (5311 m2 kW/m2 K)(0.25)+(5256 m2 kW/m2 K)(0.5)+(5311 m2 kW/m2 K(0.25)

0.25 + 0.5 + 0.25

= 5283.5 m2 kW/m2 K

3. For the Tsukamoto fuzzy method of inference, we modify the output membership functions
from the Mamdani case (see Fig. 5.19), but we added shoulders to them for Tsukamoto.
Using a graphical approach, we get the rules shown in Fig. 5.21.
Using the minimum value of the membership values, the defuzzified value of the heat
exchanger size is

AU ∗ = (7000 m2 kW/m2 K)(0.25)+(5500 m2 kW/m2 K)(0.5)+(7000 m2 kW/m2 K(0.25)

0.25 + 0.5 + 0.25

= 6250 m2 kW/m2 K

The Mamdani and Tsukamoto methods yield similar values of AU , since they are based on
similar membership functions for the output. The difference with the Sugeno method is a
function of the accuracy of the polynomials that model the output.

Rule 2

Rule 1

Rule 3

0
AU (m2kW/m2K)w (kg/s) ∆Tapp (K)

10,000 20,0000 5 101000 1500 2000

(w)µ (∆Tapp)µ (AU)µ

0
AU (m2kW/m2K)w (kg/s) ∆Tapp (K)

10,000 20,0005 10 151000 1500 2000

(w)µ (∆Tapp)µ (AU)µ

0
AU (m2kW/m2K)w (kg/s) ∆Tapp (K)

10,000 20,0000 5 101000 1500 2000

(w)µ (∆Tapp)µ (AU)µ

FIGURE 5.21
Tsukamoto method of inference for the three rules.
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SUMMARY

This chapter has presented the basic axioms, operations, and properties of binary logic and
fuzzy logic. Just as in Chapter 2, we find that the only significant difference between a
binary logic and a fuzzy logic stems from the logical equivalent of the excluded middle
axioms. Examples are provided that illustrate the various operations of a fuzzy logic. An
approximate reasoning, proposed by Zadeh [1976, 1979], is presented to illustrate the power
of using fuzzy sets in the reasoning process. Other works in the area of fuzzy reasoning and
approximate reasoning have been helpful in explaining the theory; for example, a useful
comparison study [Mizumoto and Zimmerman, 1982] and a work defining the mathematical
foundations [Yager, 1985]. From a general point of view, other multivalued logics have
been developed [Dubois and Prade, 1980; Klir and Folger, 1988], and these other logics may
be viewed as fuzzy logics in the sense that they represent more than just the crisp truth values
of 0 and 1. In fact, Gaines [1976] has shown that some forms of multivalued logics result
from fuzzifying, in the sense of the extension principle, the standard propositional calculus.
The illustration of approximate reasoning given here is conducted using fuzzy relations to
represent the rules of inference. The chapter concludes by pointing out the rich variety in
reasoning possible with fuzzy logic when one considers the vast array of implication and
composition operations; an example of this can be found in Yager [1983]. The implications
can be interpreted as specific chains of reasoning. Giles [1976] gives a very nice interpre-
tation of these chains of reasoning in terms of risk: every chain of reasoning is analogous
to a dialogue between speakers whose assertions entail a commitment about their truth.

The subjectivity that exists in fuzzy modeling is a blessing rather than a curse. The
vagueness present in the definition of terms is consistent with the information contained
in the conditional rules developed by the engineer when observing some complex process.
Even though the set of linguistic variables and their meanings is compatible and consistent
with the set of conditional rules used, the overall outcome of the qualitative process
is translated into objective and quantifiable results. Fuzzy mathematical tools and the
calculus of fuzzy IF–THEN rules provide a most useful paradigm for the automation and
implementation of an extensive body of human knowledge heretofore not embodied in the
quantitative modeling process; we call this paradigm fuzzy systems. These mathematical
tools provide a means of sharing, communicating, and transferring this human subjective
knowledge of systems and processes.

This chapter has also summarized the seminal works of Zadeh [1972, 1973, 1975a,b]
in the area of linguistic modeling. Modeling in the area of linguistics has reached far beyond
the boundaries of engineering. For example, Kickert [1979] used fuzzy linguistic modeling
to adapt a factual prototype of Mulder’s power theory to a numerical simulation. This is a
marvelous illustration of the power of fuzzy sets in a situation where ideals of the rational
man run contrary to the satisfaction gained simply through the exercise of power. The
material developed in this chapter provides a good foundation for discussions in Chapter 8
on nonlinear simulation and in Chapter 13 on fuzzy control.

This chapter has focused on two popular forms of logic – classical and fuzzy. There
are other forms, of course. For example, almost a century ago (1905), L. E. J. Brouwer posed
a form of logic known as intuitionism. This logic has been subject to debate for all of this
time [Franchella, 1995]. Intuitionism is a branch of logic which stresses that mathematics
has priority over logic, the objects of mathematics are constructed and operated upon in the
mind by the mathematician, and it is impossible to define the properties of mathematical
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objects simply by establishing a number of axioms. In particular, intuitionists reject, as they
called it then, the principle of the excluded middle (we refer to this as the excluded middle
axiom in this text) which allows proof by contradiction.

Brouwer rejected in mathematical proofs the principle of the excluded middle, which
states that any mathematical statement is either true or false. In 1918 he published a set
theory, in 1919 a measure theory, and in 1923 a theory of functions all developed without
using this principle.

In 1928 Brouwer’s paper, ‘‘Reflections on Formalism,’’ identifies and discusses four
key differences between formalism and intuitionism, all having to do either with the role of
the principle of the excluded middle or with the relation between mathematics and language.
Brouwer emphasizes, as he had done in his dissertation in 1907, that formalism presupposes
contextual mathematics at the metalevel. In this paper Brouwer presents his first strong
counterexample of the principle of the excluded middle, by showing that it is false that
every real number is either rational or irrational. An illustration of this is the following: A
is a statement: ‘‘π has infinitely many 7s in its expansion’’ and A is a statement: ‘‘π has
only finitely many 7s in its expansion.’’ We do not know whether A is true of false, so we
cannot claim that A or A is true, because that would imply that we either know A or we
know A [Kreinovich, 2003].

Brouwer also considered weak counterexamples to the principle of the excluded
middle. A still open problem in mathematics, known as Goldbach’s conjecture (the
conjecture that every even number equal to or greater than 4 is the sum of two prime
numbers), is one such counterexample. The conjecture Brouwer states: ‘‘we have at present
experienced neither its truth nor its falsity, so intuitionistically speaking, it is at present
neither true nor false, and hence we cannot assert ‘Goldbach’s conjecture is true, or it is
false’ ’’ [Franchella, 1995].

Another form of logic is termed linear logic, where we have two different versions
of conjunction. For example, in the phrase I can buy a snack and a drink we can mean that
we can only buy one, not both, or that we can buy both. Both forms of the conjunction are
allowed [Kreinovich, 2003].

In Brouwer’s intuitionism there is a single description of the connective, ‘‘or.’’
In intuitionism (also termed constructive logic) the meaning of ‘‘or’’ is as follows: the
statement ‘‘A or B’’ means that either we know A or we know B. In a nonconstructive
logic the statement ‘‘A or B’’ means that we know that one or the other (A or B) is true,
but we do not know which one is true. In classical logic we have both types of ‘‘or.’’ What
Brouwer pointed out is that if we interpret the ‘‘or’’ as a constructive or, then the excluded
middle axiom is not valid.

The significance of other forms of logic is that we oftentimes intertwine our human
intuition with formal logic structures that are likely layered in our minds, just like the laws
of nature are layered in reality. For example, sometimes we use Newton’s laws to describe
behavior in mechanics that we can see visually, yet the phenomena might better be described
by quantum mechanics laws at a scale that is not known to us through simple observation.
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PROBLEMS

5.1. Under what conditions of P and Q is the implication P → Q a tautology?
5.2. The exclusive-or is given by the expression P XOR Q = (P ∧ Q) ∨ (P ∧ Q). Show that the

logical-or, given by P ∨ Q, gives a different result from the exclusive-or and comment on this
difference using an example in your own field.

5.3. For a proposition R of the form P → Q, show the following:
(a) R and its contrapositive are equivalent, i.e., prove that (P → Q) ↔ (Q → P).
(b) The converse of R and the inverse of R are equivalent, i.e., prove that (Q → P) ↔ (P → Q).

5.4. Show that the dual of the equivalence ((P ∨ Q) ∨ ((P) ∧ (Q))) ↔ X is also true.
5.5. Show that De Morgan’s principles are duals.
5.6. Show that the compound proposition ((P → Q) ∧ (R → S) ∧ (Q → R)) → (P → S) is a

tautology.
5.7. Show that the following propositions from Lewis Carroll are tautologies [Gill, 1976]:

(a) No ducks waltz; no officers ever decline to waltz; all my poultry are ducks. Therefore, none
of my poultry are officers.

(b) Babies are illogical; despised persons cannot manage crocodiles; illogical persons are
despised; therefore, babies cannot manage crocodiles.

(c) Promise-breakers are untrustworthy; wine-drinkers are very communicative; a man who
keeps his promise is honest; all pawnbrokers are wine-drinkers; we can always trust
a very communicative person; therefore, all pawnbrokers are honest. (This problem
requires 26 = 64 lines of a truth table; perhaps it should be tackled with a com-
puter.)

5.8. Prove the following statements by contradiction.
(a) ((P → Q) ∧ P) → Q
(b) ((P → Q) ∧ (Q ∨ R) ∧ (R ∧ S)) → P

5.9. Prove that ((P → Q) ∧ (R → Q) ∧ (P ∨ R)) → R is not a tautology (i.e., a fallacy) by
developing a counterexample.

5.10. Prove that the following statements are tautologies.
(a) ((P → Q) ∧ P) → Q
(b) P → (P ∨ Q)

(c) (P ∧ Q) → P
(d) ((P → Q) ∧ (Q → R)) → (P → R)

(e) ((P ∨ Q) ∧ P) → Q
5.11. For this inference rule,

[(A → B) ∧ (B → C)] → (A → C)

Prove that the rule is a tautology.
5.12. Consider the following two discrete fuzzy sets, which are defined on universe X = {−5, 5}:

A∼ = ‘‘zero’’ =
{

0

−2
+ 0.5

−1
+ 1.0

0
+ 0.5

1
+ 0

2

}

B∼ = ‘‘positive medium’’ =
{

0

0
+ 0.5

1
+ 1.0

2
+ 0.5

3
+ 0

4

}
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(a) Construct the relation for the rule IF A∼ , THEN B∼ (i.e., IF x is ‘‘zero’’ THEN y is ‘‘positive
medium’’) using the Mamdani implication, Eq. (5.20), and the product implication,
Eq. (5.22), or

µR(x, y) = min[µA(x), µB(y)]

and

µR(x, y) = µA(x) · µB(y)

(b) If we introduce a new antecedent,

A∼
′ = ‘‘positive small’’ =

{
0

−1
+ 0.5

0
+ 1.0

1
+ 0.5

2
+ 0

3

}

find the new consequent B∼
′, using max–min composition, i.e., B∼

′ = A∼
′◦R∼, for both relations

from part (a).
5.13. Given the fuzzy sets A∼ and B∼ on X and Y, respectively,

A∼ =
∫ {

1 − 0.1x

x

}
, for x ∈ [0,+10]

B∼ =
∫ {

0.2y

y

}
, for y ∈ [0, +5]

µA(x) = 0 outside the [0, 10] interval

µB(y) = 0 outside the [0, 5] interval

(a) Construct a fuzzy relation R∼ for the implication A∼ → B∼ using the classical implication

operation, i.e., construct R∼ = (A∼ × B∼) ∪ (A∼ × Y).
(b) Use max–min composition to find B∼

′, given

A∼
′ =

{
1

3

}

Note: A∼
′ is a crisp singleton, i.e., the number 3 has a membership of 1, and all other

numbers in the universe X have a membership of 0.
Hint: You can solve this problem graphically by segregating the Cartesian space into
various regions according to the min and max operations, or you can approximate the
continuous fuzzy variables as discrete variables and use matrix operations. In either case,
‘‘sketch’’ the solutions for part (a) in 3D space (x, y, µ) and (b) in 2D space (y, µ).

5.14. Suppose we have a distillation process where the objective is to separate components of a
mixture in the input stream. The process is pictured in Fig. P5.14. The relationship between the
input variable, temperature, and the output variable, distillate fractions, is not precise but the
human operator of this process has developed an intuitive understanding of this relationship.
The universe for each of these variables is

X = universe of temperatures (
◦F) = {160, 165, 170, 175, 180, 185, 190, 195}

Y = universe of distillate fractions (percentages) = {77, 80, 83, 86, 89, 92, 95, 98}
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FIGURE P5.14

Now we define fuzzy sets A∼ and B∼ on X and Y, respectively:

A∼ = temperature of input steam is hot =
{

0

175
+ 0.7

180
+ 1

185
+ 0.4

190

}

B∼ = separation of mixture is good =
{

0

89
+ 0.5

92
+ 0.8

95
+ 1

98

}

We wish to determine the proposition, IF ‘‘temperature is hot’’ THEN ‘‘separation of mixture
is good,’’ or symbolically, A∼ → B∼. From this,

(a) Find R∼ = (A∼ × B∼) ∪ (A∼ × Y).
(b) Now define another fuzzy linguistic variable as

A∼
′ =

{
1

170
+ 0.8

175
+ 0.5

180
+ 0.2

185

}

and for the ‘‘new’’ rule IF A∼
′ THEN B∼

′, find B∼
′ using max–min composition, i.e., find

B∼
′ = A∼

′◦R∼.
5.15. The calculation of the vibration of an elastic structure depends on knowing the material

properties of the structure as well as its support conditions. Suppose we have an elastic
structure, such as a bar of known material, with properties like wave speed (C), modulus of
elasticity (E), and cross-sectional area (A). However, the support stiffness is not well-known;
hence the fundamental natural frequency of the system is not precise either. A relationship does
exist between them, though, as illustrated in Fig. P5.15.

K
Bar (C, E, A)

FIGURE P5.15
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Define two fuzzy sets,

K∼ = ‘‘support stiffness,’’ in pounds per square inch

f∼1 = ‘‘first natural frequency of the system,’’ in hertz

with membership functions

K∼ =
{

0

1e + 3
+ 0.2

1e + 4
+ 0.5

1e + 5
+ 0.8

5e + 5
+ 1

1e + 6
+ 0.8

5e + 6
+ 0.2

1e + 7

}

f∼1 =
{

0

100
+ 0

200
+ 0.2

500
+ 0.5

800
+ 1

1000
+ 0.8

2000
+ 0.2

5000

}

(a) Using the proposition, IF x is K∼ , THEN y is f∼1, find this relation using the following forms
of the implication K∼ → f∼1:
(i) Classical µR = max[min(µK, µf1), (1 − µK)]
(ii) Mamdani µR = min(µK, µf1)

(iii) Product µR = µK · µf1

(b) Now define another antecedent, say K∼
′ = ‘‘damaged support,’’

K∼
′ =

{
0

1e + 3
+ 0.8

1e + 4
+ 0.1

1e + 5

}

Find the system’s fundamental (first) natural frequency due to the change in the support
conditions, i.e., find f∼1 = ‘‘first natural frequency due to damaged support’’ using classical
implication from part (a), sub-part (i) preceding, and
(i) max–min composition
(ii) max–product composition

5.16. When gyros are calibrated for axis bias, they are matched with a temperature. Thus, we can
have a relation of gyro bias (GB∼ ) vs. temperature (T∼). Suppose we have fuzzy sets for a given
gyro bias and a given Fahrenheit temperature, as follows:

µGB∼
(x) =

{
0.2

3
+ 0.4

4
+ 1

5
+ 0.4

6
+ 0.2

7

}
bias in degrees Fahrenheit per hour

µT∼
(y) =

{
0.4

66
+ 0.6

68
+ 1

70
+ 0.6

72
+ 0.4

74

}
temperature in degrees Fahrenheit

(a) Use a Mamdani implication to find the relation IF gyro bias, THEN temperature.
(b) Suppose we are given a new gyro bias (GB∼

′) as follows:

µGB∼
′ (x) =

{
0.6

3
+ 1

4
+ 0.6

5

}

Using max–min composition, find the temperature associated with this new bias.
5.17. You are asked to develop a controller to regulate the temperature of a room. Knowledge of the

system allows you to construct a simple rule of thumb: when the temperature is HOT then cool
room down by turning the fan at the fast speed, or, expressed in rule form, IF temperature is
HOT, THEN fan should turn FAST. Fuzzy sets for hot temperature and fast fan speed can be
developed: for example,

H∼ = ‘‘hot’’ =
{

0

60
+ 0.1

70
+ 0.7

80
+ 0.9

90
+ 1

100

}
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represents universe X in ◦F, and

F∼ = ‘‘fast’’ =
{

0

0
+ 0.2

1
+ 0.5

2
+ 0.9

3
+ 1

4

}

represents universe Y in 1000 rpm.
(a) From these two fuzzy sets construct a relation for the rule using classical implication.
(b) Suppose a new rule uses a slightly different temperature, say ‘‘moderately hot,’’ and is

expressed by the fuzzy membership function for ‘‘moderately hot,’’ or

H∼
′ =

{
0

60
+ 0.2

70
+ 1

80
+ 1

90
+ 1

100

}

Using max–product composition, find the resulting fuzzy fan speed.
5.18. In public transportation systems there often is a significant need for speed control. For subway

systems, for example, the train speed cannot go too far beyond a certain target speed or the
trains will have trouble stopping at a desired location in the station. Set up a fuzzy set

A∼ = ‘‘speed way over target’’ =
{

0

T0
+ 0.8

T0 + 5
+ 1

T0 + 10
+ 0.8

T0 + 15

}

on a universe of target speeds, say T = [T0, T0 + 15], where T0 is a lower bound on speed.
Define another fuzzy set,

B∼ = ‘‘apply brakes with high force’’ =
{

0.3

10
+ 0.8

20
+ 0.9

30
+ 1

40

}

on a universe of braking pressures, say S = [10, 40].
(a) For the compound proposition, IF speed is ‘‘way over target,’’ THEN ‘‘apply brakes with

high force,’’ find a fuzzy relation using classical implication.
(b) For a new antecedent,

A∼
′ = ‘‘speed moderately over target’’ =

{
0.2

T0
+ 0.6

T0 + 5
+ 0.8

T0 + 10
+ 0.3

T0 + 15

}

find the fuzzy brake pressure using max–min composition.
5.19. We want to consider the engineering of amplifiers. Here, the amplifier is a simple voltage-

measuring input and current output, as shown in Fig. P5.19. We define two fuzzy linguistic
variables for a fuzzy relation: V∼ in, the input voltage, and I∼out, the output current:

V∼ in = ‘‘small’’ =
{

0.5

0.10
+ 1

0.20
+ 0.8

0.30
+ 0.2

0.40

}
volts

I∼out = ‘‘big’’ =
{

0.3

0.6
+ 1

1
+ 0.5

1.4

}
amps

where V∼ in is defined on a universe of voltages, and I∼out is defined on a universe of currents.

–+
–
+ +

Iout

–
Vin

FIGURE P5.19
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(a) Find the relation, IF V∼ in, THEN I∼out, using classical implication.
(b) Another fuzzy linguistic variable in this problem is input impedance, Z∼. The higher the

impedance, generally the better the amplifier. For the following impedance defined on a
universe of resistances,

Z∼ = ‘‘high impedance’’ =
{

0

104
+ 0.3

105
+ 1

106
+ 0.6

107

}
ohms

find the relation, IF Z∼, THEN I∼out, using Mamdani implication.
5.20 For Example 5.9 in this chapter, recalculate the fuzzy relation R∼ using

(a) Equation (5.19)
(b) Equation (5.20)
(c) Equation (5.21)
(d) Equation (5.22)
(e) Equation (5.23)

5.21. Fill in the following table using Eqs. (5.19) – (5.23) to determine the values of the implication
A∼ → B∼. Comment on the similarities and dissimilarities of the various implication methods
with respect to the various values for A∼ and B∼.

A∼ B∼ A∼ → B∼
0 0
0 1
1 0
1 1
0.2 0.3
0.2 0.7
0.8 0.3
0.8 0.7

5.22. A factory process control operation involves two linguistic (atomic) parameters consisting of
pressure and temperature in a fluid delivery system. Nominal pressure limits range from 400 psi
minimum to 1000 psi maximum. Nominal temperature limits are 130 to 140◦F. We characterize
each parameter in fuzzy linguistic terms as follows:

‘‘Low temperature’’ =
{

1

131
+ 0.8

132
+ 0.6

133
+ 0.4

134
+ 0.2

135
+ 0

136

}

‘‘High temperature’’ =
{

0

134
+ 0.2

135
+ 0.4

136
+ 0.6

137
+ 0.8

138
+ 1

139

}

‘‘High pressure’’ =
{

0

400
+ 0.2

600
+ 0.4

700
+ 0.6

800
+ 0.8

900
+ 1

1000

}

‘‘Low pressure’’ =
{

1

400
+ 0.8

600
+ 0.6

700
+ 0.4

800
+ 0.2

900
+ 0

1000

}

(a) Find the following membership functions:
(i) Temperature not very low
(ii) Temperature not very high

(iii) Temperature not very low and not very high
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(b) Find the following membership functions:
(i) Pressure slightly high
(ii) Pressure fairly high ([high]2/3)

(iii) Pressure not very low or fairly low
5.23. In information retrieval, having fuzzy information about the size of a document helps when

trying to scale the word frequencies of the document (i.e., how often a word occurs in a
document is important when determining relevance). So on the universe of document sizes, we
define two fuzzy sets:

‘‘Small’’ document’’ =
{

1 − e−k(a−x) for x ≤ a

0 for x > a

‘‘Large document’’ =
{

1 − e−k(x−b) for x ≥ b

0 for x < b

where the parameters k, a, and b change from database to database. Graphically the parameters
a and b look as shown in Fig. P5.23. Develop a graphical solution to the following linguistic
phrases, for the specific values of a = 2, b = 4, and k = 0.5:

1

a

Document size (in characters)

Small Large1

b

Document size (in characters)

µ µ

FIGURE P5.23

(a) ‘‘Not very large’’ document
(b) ‘‘Large and small’’ documents
(c) ‘‘Not very large or small’’ documents

5.24. In a problem related to the computer tracking of soil particles as they move under stress, the
program displays desired particles on the screen. Particles can be small and large. Because of
segmentation problems in computer imaging, the particles can become too large and obscure
particles of interest or become too small and be obscured. To solve this problem linguistically,
suppose we define the following atomic terms on a scale of sizes [0, 50] in units of mm2:

‘‘Large’’ =
{

0

0
+ 0.1

10
+ 0.3

20
+ 0.5

30
+ 0.6

40
+ 0.7

50

}

‘‘Small’’ =
{

1

0
+ 0.8

10
+ 0.5

20
+ 0.3

30
+ 0.1

40
+ 0

50

}

For these atomic terms find membership functions for the following phrases:
(a) Very small or very large
(b) Not small and not large
(c) Large or not small

5.25. In vehicle navigation the mapping source of information uses shape points to define the
curvature of a turning maneuver. A segment is a length of road between two points. If the
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segment is linear, it has no or very few shape points. If the road is winding or circular, the
segment can have many shape points. Figure P5.25 shows the relationship of curvature and
shape points. Assume that up to nine shape points can define any curvature in a typical road
segment. The universe of discourse of shape points then varies from 0 (linear road) to 9
(extremely curved). Define the following membership functions:

‘‘Somewhat straight’’ =
{

1

0
+ 0.9

1
+ 0.8

2
+ 0.7

3
+ 0.6

4
+ 0.5

5
+ 0.4

6
+ 0.3

7
+ 0.2

8
+ 0.1

9

}

‘‘Curved’’ =
{

0

0
+ 0.1

1
+ 0.2

2
+ 0.3

3
+ 0.4

4
+ 0.5

5
+ 0.6

6
+ 0.7

7
+ 0.8

8
− 0.9

9

}

(x0, y0) (xi, yi)

Linear road segment

Curved road segment

(x0, y0)

(xi, yi)

Shape point 1 (x1, y1)

Shape point 2 (x2, y2)

FIGURE P5.25

Calculate the membership functions for the following phrases:
(a) Very curved
(b) Fairly curved (= [curved]2/3)
(c) Very, very somewhat straight
(d) Not fairly curved and very, very somewhat straight

5.26. This problems deals with the voltages generated internally in switching power supplies.
Embedded systems are often supplied 120 V AC for power. A ‘‘power supply’’ is required to
convert this to a useful voltage (quite often +5 V DC). Some power supply designs employ
a technique called ‘‘switching.’’ This technique generates the appropriate voltages by storing
and releasing the energy between inductors and capacitors. This problem characterizes two
linguistic variables, high and low voltage, on the voltage range of 0 to 200 V AC:

‘‘High’’ =
{

0

0
+ 0

25
+ 0

50
+ 0.1

75
+ 0.2

100
+ 0.4

125
+ 0.6

150
+ 0.8

175
+ 1

200

}

‘‘Medium’’ =
{

0.2

0
+ 0.4

25
+ 0.6

50
+ 0.8

75
+ 1

100
+ 0.8

125
+ 0.6

150
+ 0.4

175
+ 0.2

200

}

Find the membership functions for the following phrases:
(a) Not very high
(b) Slightly medium and very high
(c) Very, very high or very, very medium
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5.27. In risk assessment we deal with characterizing uncertainty in assessing the hazard to human
health posed by various toxic chemicals. Because the pharmacokinetics of the human body are
very difficult to explain for long-term chemical hazards, such as chronic exposure to lead or to
cigarette smoke, hazards can sometimes be uncertain because of scarce data or uncertainty in
the exposure patterns. Let us characterize hazard linguistically with two terms: ‘‘low’’ hazard
and ‘‘high’’ hazard:

‘‘Low’’ hazard =
{

0

1
+ 0.3

2
+ 0.8

3
+ 0.1

4
+ 0

5

}

‘‘High’’ hazard =
{

0

1
+ 0.1

2
+ 0.2

3
+ 0.8

4
+ 0

5

}

Find the membership functions for the following linguistic expressions:
(a) Low hazard and not high hazard
(b) Very high hazard and not low hazard
(c) Low hazard or high hazard

5.28. In reference to car speeds we have the linguistic variables ‘‘fast’’ and ‘‘slow’’ for speed:

‘‘Fast’’ =
{

0

0
+ 0.1

10
+ 0.2

20
+ 0.3

30
+ 0.4

40
+ 0.5

50
+ 0.6

60
+ 0.7

70
+ 0.8

80
+ 0.9

90
+ 1

100

}

‘‘Slow’’ =
{

1

0
+ 0.9

10
+ 0.8

20
+ 0.7

30
+ 0.6

40
+ 0.5

50
+ 0.4

60
+ 0.3

70
+ 0.2

80
+ 0.1

90
+ 0

100

}

Using these variables, compute the membership function for the following linguistic terms:
(a) Very fast
(b) Very, very fast
(c) Highly fast (= minus very, very fast)
(d) Plus very fast
(e) Fairly fast (= [fast]2/3)
(f ) Not very slow and not very fast
(g) Slow or not very slow

5.29. For finding the volume of a cylinder, we need two parameters, namely, radius and height of the
cylinder. When the radius is 7 centimeters and height is 12 centimeters, then the volume equals
1847.26 cubic centimeters (using volume = πr2h). Reduce the following rule to canonical
form: IF x1 is radius AND x2 is height, THEN y is volume.

5.30. According to Boyle’s law, for an ideal gas at constant temperature t , pressure is inversely
proportional to volume, or volume is inversely proportional to pressure. When we consider
different sets of pressures and volumes under the same temperature, we can apply the following
rule: IF x1 is p1v1 AND x2 is p2v2, THEN t is a constant. Here p is pressure and v is volume
of the gas considered. Reduce this rule to canonical form.

5.31. In Example 5.16 recalculate the response function shown in Fig. 5.15b using the following
membership function shapes:
(a) two triangles for the input and two triangles for the output;
(b) two trapezoids for the input and two trapezoids for the output

5.32. In Example 5.17 recalculate the response function shown in Fig. 5.17d using the following
membership function shapes for the inputs: (a) triangles for small, medium, large; (b) trapezoids
for small, medium, large.

5.33. Repeat Example 5.16 using a weighted sum defuzzifier instead of the weighted average
defuzzification, i.e., use z = w1z1 + w2z2 in Fig. 5.14. Do you get the same response surface
as in Example 5.16? Why?
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5.34. From thermodynamics it is known that for an ideal gas in an adiabatic reversible process

T2

T1
=

(
P2

P1

)γ − 1

γ

where T1 and T2 are temperatures in kelvin (k) and P1 and P2 are pressures in bars and, for an
ideal gas, the constant γ is

γ = 1 + R

Cν
= 1.4

For this problem, T1 will be fixed at 300 K and the fuzzy model will predict P2 for the given
input variables P1 and T2. In other words, we are interested in finding the final pressure, P2, of
the system if the temperature of the system is changed to T2 from an original pressure equal to
P1. A real application could use a similar model built from experimental data to do a prediction
on nonideal gases.

The rules used are

Rule 1 : IF P1 = atmP AND T2 = lowT THEN P2 = lowP

Rule 2 : IF P1 = atmP AND T2 = midT THEN P2 = lowP

Rule 1 : IF P1 = lowP AND T2 = lowT THEN P2 = very highP

The rules and membership functions are based on values obtained from the known formula
where

IF P1 = 1 bar AND T2 = 410 K THEN P2 = 3 bar

IF P1 = 1 bar AND T2 = 430 K THEN P2 = 3.5 bar

IF P1 = 2 bar AND T2 = 420 K THEN P2 = 6 bar

Given the rule-base, the membership functions shown in Fig. P5.34, and the following pair of
input values, P1 = 1.6 bar and T2 = 415 K, conduct a simulation to determine P2 for the three
inference methods of Mamdani, Sugeno, and Tsukamoto. For the Sugeno consequents use the
ideal gas formula, given above.

For Mamdani and Sugeno, use the input membership functions in Fig. P5.34a.
For the Tsukamoto method, use the output membership functions shown in Fig. P5.34b

with the same inputs as used in Fig. P5.34a.
5.35. In finding the Nusselt number (a dimensionless number for determining heat transfer) for

an hexagonal cylinder in cross flow, there are two correlations (which are to be used as the
consequent terms in a Sugeno inference method):

Nu1 = 0.16Re0.638Pr1/3 5000 < Re < 19,650

Nu2 = 0.0385Re0.728Pr1/3 Re > 19,650

Re is the Reynolds number and Pr is the Prandtl number.
The Nusselt number is a function of convective heat transfer (h), diameter of the

hexagonal cylinder (D) over which cooling fluid travels, and the conductivity of the material
(K):

Nu = hD

K
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Rule 1

0
P2 (bar)

5 10

0.4

P1 (bar)
0 5 10 400

T (K)
450 500

(P1)µ (P2)µ(T)µ

Rule 2

0
P2 (bar)

5 10

0.25

P1 (bar)
0 5 10 400

T (K)
450 500

(P1)µ (P2)µ(T)µ

Rule 3

0
P2 (bar)

5 10

0.5

P1 (bar)
0 5 10 400

T (K)
450 500

(P1)µ (P2)µ(T)µ

FIGURE P5.34a

Rule 1

0
P2 (bar)T (K)P1 (bar)

5 10

0.4

0 5 10 400 450 500

(P1) (P2)µ(T)µ

Rule 2

0
P2 (bar)T (K)P1 (bar)

5 10

0.25

0 5 10 400 450 500
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0
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0.5
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µ

µ

FIGURE P5.34b
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Both Re and Pr can be fuzzy due to uncertainty in the variables in velocity. It would
be convenient to find Nu (output) based on Re and Pr (inputs) without having to do all the
calculations. More specifically, there is uncertainty in calculating the Reynolds number because
velocity is not known exactly:

Re = ρV D

µ

where ρ is the density, V is the velocity, D is the characteristic length (or pipe diameter), and
µ is the dynamic viscosity. And there is also uncertainty in the value for the Prandtl number
due to its constituents

Pr = v

α

where ν is the kinematic viscosity and α is the specific gravity.
Calculation of Nu is very involved and the incorporation of a rule-base can be used to

bypass these calculations; we have the following rules to govern this process:

If Re is high and Pr is low −→ Then Nu is low

If Re is low and Pr is low −→ Then Nu is low

If Re is high and Pr is high −→ Then Nu is medium

If Re is low and Pr is high −→ Then Nu is medium

For this problem, conduct a Mamdani and a Sugeno inference, based on the membership
functions given in Figs P5.35a, b, and c, and use the following inputs:

Re = 19.65 × 103

Pr = 275

Low

1.94E+04

Re

1.92E+04 1.96E+04 1.98E+04 2.00E+04 2.02E+04

High0.6

(Re) = 1.0µ

FIGURE P5.35a
Input for Reynolds number.

Low High

100
Pr

0 200 300 400 500

0.6

0

(Pr) = 1.0µ

FIGURE P5.35b
Input for Prandtl number.
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Low

450

Nu

350 550 650 750

Medium0.6

0

(Nu) = 1.0µ

FIGURE P5.35c
Output for Mamdani inference.

Comment on the differences in the results.



CHAPTER

6
DEVELOPMENT OF
MEMBERSHIP
FUNCTIONS

So far as the laws of mathematics refer to reality, they are not certain. And so far as they are
certain, they do not refer to reality.

Albert Einstein Theoretical physicist and Nobel Laureate
‘‘Geometrie und Erfahrung,’’ Lecture to Prussian Academy, 1921

The statement above, from Albert Einstein, attests to the fact that few things in real life are
certain or can be conveniently reduced to the axioms of mathematical theories and models.
A metaphorical expression that represents this idea is known as the ‘‘Law of Probable
Dispersal,’’ to wit, ‘‘Whatever it is that hits the fan will not be evenly distributed.’’ As
this enlightened law implies, most things in nature cannot be characterized with simple or
convenient shapes or distributions. Membership functions characterize the fuzziness in a
fuzzy set – whether the elements in the set are discrete or continuous – in a graphical form
for eventual use in the mathematical formalisms of fuzzy set theory. But the shapes used to
describe the fuzziness have very few restrictions indeed; some of these have been described
in Chapters 1 and 4. Just as there are an infinite number of ways to characterize fuzziness,
there are an infinite number of ways to graphically depict the membership functions
that describe this fuzziness. This chapter describes a few procedures to develop these
membership functions based on deductive intuition or numerical data; Chapter 7 develops
this idea further with an explanation of additional procedures which build membership
functions and deductive rules from measured observations of systems.

Since the membership function essentially embodies all fuzziness for a particular
fuzzy set, its description is the essence of a fuzzy property or operation. Because of the
importance of the ‘‘shape’’ of the membership function, a great deal of attention has been
focused on development of these functions. This chapter describes, then illustrates, six

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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procedures that have been used to build membership functions. There are many more;
references at the end of this chapter can be consulted on this topic.

MEMBERSHIP VALUE ASSIGNMENTS

There are possibly more ways to assign membership values or functions to fuzzy variables
than there are to assign probability density functions to random variables [see Dubois
and Prade, 1980]. This assignment process can be intuitive or it can be based on some
algorithmic or logical operations. The following is a list of six straightforward methods
described in the literature to assign membership values or functions to fuzzy variables.
Each of these methods will be illustrated in simple examples in this chapter. The literature
on this topic is rich with references, and a short list of those consulted is provided in the
summary of this chapter.

1. Intuition
2. Inference
3. Rank ordering
4. Neural networks
5. Genetic algorithms
6. Inductive reasoning

Intuition

This method needs little or no introduction. It is simply derived from the capacity of humans
to develop membership functions through their own innate intelligence and understanding.
Intuition involves contextual and semantic knowledge about an issue; it can also involve
linguistic truth values about this knowledge [see Zadeh, 1972]. As an example, consider the
membership functions for the fuzzy variable temperature. Figure 6.1 shows various shapes
on the universe of temperature as measured in units of degrees Celsius. Each curve is a
membership function corresponding to various fuzzy variables, such as very cold, cold,
normal, hot, and very hot. Of course, these curves are a function of context and the analyst
developing them. For example, if the temperatures are referred to the range of human
comfort we get one set of curves, and if they are referred to the range of safe operating
temperatures for a steam turbine we get another set. However, the important character
of these curves for purposes of use in fuzzy operations is the fact that they overlap. In
numerous examples throughout the rest of this text we shall see that the precise shapes of

0° 20° 40° 60° 80°

1

0

µ
Cold Cool Warm Hot

Temperature,  C

FIGURE 6.1
Membership functions for the fuzzy variable ‘‘temperature.’’.
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these curves are not so important in their utility. Rather, it is the approximate placement
of the curves on the universe of discourse, the number of curves (partitions) used, and the
overlapping character that are the most important ideas.

Inference

In the inference method we use knowledge to perform deductive reasoning. That is, we wish
to deduce or infer a conclusion, given a body of facts and knowledge. There are many forms
of this method documented in the literature, but the one we will illustrate here relates to our
formal knowledge of geometry and geometric shapes, similar to ideas posed in Chapter 1.

In the identification of a triangle, let A, B, and C be the inner angles of a triangle, in
the order A ≥ B ≥ C ≥ 0, and let U be the universe of triangles, i.e.,

U = {(A, B, C) | A ≥ B ≥ C ≥ 0; A + B + C = 180◦} (6.1)

We define a number of geometric shapes that we wish to be able to identify for any
collection of angles fulfilling the constraints given in Eq. (6.1). For this purpose we will
define the following five types of triangles:

I∼ Approximate isosceles triangle
R∼ Approximate right triangle
IR∼ Approximate isosceles and right triangle
E∼ Approximate equilateral triangle
T∼ Other triangles

We can infer membership values for all of these triangle types through the method
of inference, because we possess knowledge about geometry that helps us to make the
membership assignments. So we shall list this knowledge here to develop an algorithm to
assist us in making these membership assignments for any collection of angles meeting the
constraints of Eq. (6.1).

For the approximate isosceles triangle we have the following algorithm for the
membership, again for the situation of A ≥ B ≥ C ≥ 0 and A + B + C = 180◦:

µI∼
(A, B, C) = 1 − 1

60◦ min(A − B, B − C) (6.2)

So, for example, if A = B or B = C, the membership value in the approximate isosceles
triangle is µI∼

= 1; if A = 120◦, B = 60◦, and C = 0◦, then µI∼
= 0. For a fuzzy right triangle,

we have

µR∼
(A, B, C) = 1 − 1

90◦ |A − 90◦| (6.3)

For instance, when A = 90◦, the membership value in the fuzzy right triangle, µR∼
= 1, or

when A = 180◦, this membership vanishes, i.e., µR∼
= 0. For the case of an approximate

isosceles and right triangle (there is only one of these in the crisp domain), we can find this
membership function by taking the logical intersection (and operator) of the isosceles and
right triangle membership functions, or

IR∼ = I∼∩ R∼
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which results in

µIR∼
(A, B, C) = min[µI∼

(A, B, C), µR∼
(A, B, C)]

= 1 − max

[
1

60◦ min(A − B, B − C),
1

90◦ |A − 90◦|
]

(6.4)

For the case of a fuzzy equilateral triangle, the membership function is given by

µE∼
(A, B, C) = 1 − 1

180◦ (A − C) (6.5)

For example, when A = B = C, the membership value is µE∼
(A, B, C) = 1; when A = 180◦,

the membership value vanishes, or µE∼
= 0. Finally, for the set of ‘‘all other triangles’’

(all triangular shapes other than I∼, R∼, and E∼) we simply invoke the complement of the
logical union of the three previous cases (or, from De Morgan’s principles (Eq. (2.13)), the
intersection of the complements of the triangular shapes),

T∼ = (
I∼∪ R∼ ∪ E∼

) = I∼∩ R∼ ∩ E∼

which results in

µT∼
(A, B, C) = min{1 − µI∼

(A, B, C), 1 − µE∼
(A, B, C), 1 − µR∼

(A, B, C)}

= 1

180◦ min{3(A − B), 3(B − C), 2|A − 90◦|, A − C} (6.6)

Example 6.1 [Ross, 1995]. Define a specific triangle, as shown in Fig. 6.2, with these three
ordered angles:

{X : A = 85◦ ≥ B = 50◦ ≥ C = 45◦
, whereA + B + C = 180◦}

The membership values for the fuzzy triangle shown in Fig. 6.2 for each of the fuzzy triangles
types are determined from Eqs. (6.2)–(6.6), as listed here:

µR∼
(x) = 0.94

µI∼
(x) = 0.916

µIR∼
(x) = 0.916

µE∼
(x) = 0.7

µT∼
(x) = 0.05

Hence, it appears that the triangle given in Fig. 6.2 has the highest membership in the set
of fuzzy right triangles, i.e., in R∼. Notice, however, that the triangle in Fig. 6.2 also has
high membership in the isosceles triangle fuzzy set, and reasonably high membership in the
equilateral fuzzy triangle set.

Rank Ordering

Assessing preferences by a single individual, a committee, a poll, and other opinion methods
can be used to assign membership values to a fuzzy variable. Preference is determined
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85°

45°

50°
FIGURE 6.2
A specific triangle.

by pairwise comparisons, and these determine the ordering of the membership. More is
provided on the area of rank ordering in Chapter 10, ‘‘Fuzzy Decision Making.’’ This
method is very similar to a relative preferences method developed by Saaty [1974].

Example 6.2 [Ross, 1995]. Suppose 1000 people respond to a questionnaire about their
pairwise preferences among five colors, X = {red, orange, yellow, green, blue}. Define a fuzzy
set as A∼ on the universe of colors ‘‘best color.’’ Table 6.1 is a summary of the opinion survey.
In this table, for example, out of 1000 people 517 preferred the color red to the color orange,
841 preferred the color orange to the color yellow, etc. Note that the color columns in the
table represent an ‘‘antisymmetric’’ matrix. Such a matrix will be seen to relate to a reciprocal
relation, which is introduced in Chapter 10. The total number of responses is 10,000 (10
comparisons). If the sum of the preferences of each color (row sum) is normalized to the total
number of responses, a rank ordering can be determined as shown in the last two columns of
the table.

If the percentage preference (the percentage column of Table 6.1) of these colors
is plotted to a normalized scale on the universe of colors in an ascending order on the
color universe, the membership function for ‘‘best color’’ shown in Fig. 6.3 would result.
Alternatively, the membership function could be formed based on the rank order developed
(last column of Table 6.1).

Neural Networks

In this section we explain how a neural network can be used to determine membership
functions. We first present a brief introduction to neural networks and then show how they
can be used to determine membership functions.

A neural network is a technique that seeks to build an intelligent program (to
implement intelligence) using models that simulate the working network of the neurons in

TABLE 6.1
Example in Rank Ordering

Number who preferred
Red Orange Yellow Green Blue Total Percentage Rank order

Red – 517 525 545 661 2248 22.5 2
Orange 483 – 841 477 576 2377 23.8 1
Yellow 475 159 – 534 614 1782 17.8 4
Green 455 523 466 – 643 2087 20.9 3
Blue 339 424 386 357 – 1506 15 5
Total 10,000



MEMBERSHIP VALUE ASSIGNMENTS 183

Blue Yellow Green Red Orange

Colors

1

µ

FIGURE 6.3
Membership function for best color.

Axon

Synapse

Cell body

Dendrite

FIGURE 6.4
A simple schematic of a human neuron.

the human brain [Yamakawa, 1992; Hopfield, 1982; Hopfield and Tank, 1986]. A neuron,
Fig. 6.4, is made up of several protrusions called dendrites and a long branch called the
axon. A neuron is joined to other neurons through the dendrites. The dendrites of different
neurons meet to form synapses, the areas where messages pass. The neurons receive the
impulses via the synapses. If the total of the impulses received exceeds a certain threshold
value, then the neuron sends an impulse down the axon where the axon is connected to other
neurons through more synapses. The synapses may be excitatory or inhibitory in nature.
An excitatory synapse adds to the total of the impulses reaching the neuron, whereas an
inhibitory neuron reduces the total of the impulses reaching the neuron. In a global sense,
a neuron receives a set of input pulses and sends out another pulse that is a function of the
input pulses.

This concept of how neurons work in the human brain is utilized in performing
computations on computers. Researchers have long felt that the neurons are responsible
for the human capacity to learn, and it is in this sense that the physical structure is being
emulated by a neural network to accomplish machine learning. Each computational unit
computes some function of its inputs and passes the result to connected units in the network.
The knowledge of the system comes out of the entire network of the neurons.

Figure 6.5 shows the analog of a neuron as a threshold element. The variables x1,
x2,. . . , xi ,. . . , xn are the n inputs to the threshold element. These are analogous to impulses
arriving from several different neurons to one neuron. The variables w1, w2,. . . , wi ,. . . ,
wn are the weights associated with the impulses/inputs, signifying the relative importance
that is associated with the path from which the input is coming. When wi is positive, input
xi acts as an excitatory signal for the element. When wi is negative, input xi acts as an
inhibitory signal for the element. The threshold element sums the product of these inputs
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FIGURE 6.5
A threshold element as an analog to a neuron.

and their associated weights (
∑

wixi), compares it to a prescribed threshold value, and, if
the summation is greater than the threshold value, computes an output using a nonlinear
function (F ). The signal output y (Fig. 6.5) is a nonlinear function (F ) of the difference
between the preceding computed summation and the threshold value and is expressed as

y = F
(∑

wixi − t
)

(6.7)

where xi signal input (i = 1, 2, . . . , n)

wi weight associated with the signal input xi

t threshold level prescribed by user

F(s) is a nonlinear function, e.g., a sigmoid function F(s) = 1

1 + e−s

The nonlinear function, F , is a modeling choice and is a function of the type of output
signal desired in the neural network model. Popular choices for this function are a sigmoid
function, a step function, and a ramp function on the unit interval.

Figure 6.6 shows a simple neural network for a system with single-input signal x and
a corresponding single-output signal f (x). The first layer has only one element that has a
single input, but the element sends its output to four other elements in the second layer.
Elements shown in the second layer are all single-input, single-output elements. The third
layer has only one element that has four inputs, and it computes the output for the system.
This neural network is termed a (1 × 4 × 1) neural network. The numbers represent the
number of elements in each layer of the network. The layers other than the first (input layer)
and the last (output layer) layers constitute the set of hidden layers. (Systems can have more
than three layers, in which case we would have more than one hidden layer.)

Neural systems solve problems by adapting to the nature of the data (signals) they
receive. One of the ways to accomplish this is to use a training data set and a checking
data set of input and output data/signals (x, y) (for a multiple-input, multiple-output
system using a neural network, we may use input–output sets comprised of vectors
(x1, x2, . . . , xn, y1, y2, . . . , yn)). We start with a random assignment of weights wi

jk to the
paths joining the elements in the different layers (Fig. 6.6). Then an input x from the
training data set is passed through the neural network. The neural network computes a value
(f (x)output), which is compared with the actual value (f (x)actual = y). The error measure E

is computed from these two output values as

E = f (x)actual − f (x)output (6.8)
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FIGURE 6.6
A simple 1 × 4 × 1 neural network, where wi

jk represents the weight associated with the path
connecting the j th element of the ith layer to the kth element of the (i + 1)th layer.

This is the error measure associated with the last layer of the neural network (for Fig. 6.6);
in this case the error measure E would be associated with the third layer in the neural
network. Next we try to distribute this error to the elements in the hidden layers using a
technique called back-propagation.

The error measure associated with the different elements in the hidden layers is
computed as follows. Let Ej be the error associated with the j th element (Fig. 6.7). Let wnj

be the weight associated with the line from element n to element j and let I be the input to
unit n. The error for element n is computed as

En = F ′(I )wnjEj (6.9)

where, for F(I) = 1/(1 + e−I ), the sigmoid function, we have

F ′(I ) = F(I)(1 − F(I)) (6.10)

I

n j

wnj

En Ej

FIGURE 6.7
Distribution of error to different elements.
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FIGURE 6.8
A threshold element with an error E associated with it.

Next the different weights wi
jk connecting different elements in the network are

corrected so that they can approximate the final output more closely. For updating the
weights, the error measure on the elements is used to update the weights on the lines joining
the elements.

For an element with an error E associated with it, as shown in Fig. 6.8, the associated
weights may be updated as

wi (new) = wi (old) + αExi (6.11)

where α = learning constant
E = associated error measure
xi = input to the element

The input value xi is passed through the neural network (now having the updated
weights) again, and the errors, if any, are computed again. This technique is iterated until
the error value of the final output is within some user-prescribed limits.

The neural network then uses the next set of input–output data. This method is
continued for all data in the training data set. This technique makes the neural network
simulate the nonlinear relation between the input–output data sets. Finally a checking data
set is used to verify how well the neural network can simulate the nonlinear relationship.

For systems where we may have data sets of inputs and corresponding outputs, and
where the relationship between the input and output may be highly nonlinear or not known
at all, we may want to use fuzzy logic to classify the input and the output data sets broadly
into different fuzzy classes. Furthermore, for systems that are dynamic in nature (the system
parameters may change in a nondeterministic fashion) the fuzzy membership functions
would have to be repeatedly updated. For these types of systems it is advantageous to use
a neural network since the network can modify itself (by changing the weight assignments
in the neural network) to accommodate the changes. Unlike symbolic learning algorithms,
e.g., conventional expert systems [Luger and Stubblefield, 1989], neural networks do not
learn by adding new rules to their knowledge base; they learn by modifying their overall
structure. The lack of intuitive knowledge in the learning process is one of the major
drawbacks of neural networks for use in cognitive learning.

Generation of membership functions using a neural network

We consider here a method by which fuzzy membership functions may be created for fuzzy
classes of an input data set [Takagi and Hayashi, 1991]. We select a number of input data
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FIGURE 6.9
Using a neural network to determine membership functions [Takagi and Hayashi, 1991].

TABLE 6.2
Variables describing the data points to be used as a training data set

Data point 1 2 3 4 5 6 7 8 9 10

x1 0.05 0.09 0.12 0.15 0.20 0.75 0.80 0.82 0.90 0.95
x2 0.02 0.11 0.20 0.22 0.25 0.75 0.83 0.80 0.89 0.89

values and divide them into a training data set and a checking data set. The training data
set is used to train the neural network. Let us consider an input training data set as shown
in Fig. 6.9a. Table 6.2 shows the coordinate values of the different data points considered
(e.g., crosses in Fig. 6.9a). The data points are expressed with two coordinates each, since
the data shown in Fig. 6.9a represent a two-dimensional problem. The data points are first
divided into different classes (Fig. 6.9a) by conventional clustering techniques (these are
explained in Chapter 11).
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As shown in Fig. 6.9a the data points have been divided into three regions, or
classes, R1, R2, and R3. Let us consider data point 1, which has input coordinate values
of x1 = 0.7 and x2 = 0.8 (Fig. 6.9d). As this is in region R2, we assign to it a complete
membership of one in class R2 and zero membership in classes R1 and R3 (Fig. 6.9f).
Similarly, the other data points are assigned membership values of unity for the classes
they belong to initially. A neural network is created (Figs. 6.9b, e, h) that uses the data
point marked 1 and the corresponding membership values in different classes for training
itself to simulate the relationship between coordinate locations and the membership values.
Figure 6.9c represents the output of the neural network, which classifies data points into
one of the three regions. The neural network then uses the next set of data values (e.g.,
point 2) and membership values to train itself further as seen in Fig. 6.9d. This repetitive
process is continued until the neural network can simulate the entire set of input–output
(coordinate location–membership value) values. The performance of the neural network is
then checked using the checking data set. Once the neural network is ready, its final version
(Fig. 6.9h) can be used to determine the membership values (function) of any input data
(Fig. 6.9g) in the different regions (Fig. 6.9i).

Notice that the points shown in the table in Fig. 6.9i are actually the membership
values in each region for the data point shown in Fig. 6.9g. These could be plotted as a
membership function, as shown in Fig. 6.10. A complete mapping of the membership of
different data points in the different fuzzy classes can be derived to determine the overlap
of the different classes (the hatched portion in Fig. 6.9c shows the overlap of the three
fuzzy classes). These steps will become clearer as we go through the computations in the
following example.

Example 6.3. Let us consider a system that has 20 data points described in two-dimensional
format (two variables) as shown in Tables 6.2 and 6.3. We have placed these data points in
two fuzzy classes, R1 and R2, using a clustering technique (see Chapter 11). We would like
to form a neural network that can determine the membership values of any data point in the
two classes. We would use the data points in Table 6.2 to train the neural network and the
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R2R1
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0
0.1 0.1
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FIGURE 6.10
Membership function for data point (X1, X2 = (0.5, 0.5)).

TABLE 6.3
Variables describing the data points to be used as a checking data set

Data point 11 12 13 14 15 16 17 18 19 20

x1 0.09 0.10 0.14 0.18 0.22 0.77 0.79 0.84 0.94 0.98
x2 0.04 0.10 0.21 0.24 0.28 0.78 0.81 0.82 0.93 0.99
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TABLE 6.4
Membership values of the data points in the training and checking data sets to be used for training
and checking the performance of the neural network

Data points 1 2 3 4 5 6
& 11 & 12 & 13 & 14 & 15 & 16

R1 1.0 1.0 1.0 1.0 1.0 0.0
R2 0.0 0.0 0.0 0.0 0.0 1.0

7 8 9 10
& 17 & 18 & 19 & 20

0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0
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FIGURE 6.11
The [2 × 3 × 3 × 2] neural network to be trained for the data set of Example 6.3.

data points in Table 6.3 to check its performance. The membership values in Table 6.4 are to
be used to train and check the performance of the neural network. The data points that are to
be used for training and checking the performance of the neural network have been assigned
membership values of unity for the classes into which they have been originally assigned, as
seen in Table 6.4.

We select a 2 × 3 × 3 × 2 neural network to simulate the relationship between the data
points and their membership in the two fuzzy sets, R1 and R2 (Fig. 6.11). The coordinates x1
and x2 for each data point are used as the input values, and the corresponding membership
values in the two fuzzy classes for each data point are the output values for the neural
network.

Table 6.5 shows the initial quasi-random values that have been assigned to the different
weights connecting the paths between the elements in the layers in the network shown in
Fig. 6.11. We take the first data point (x1 = 0.05, x2 = 0.02) as the input to the neural network.
We will use Eq. (6.7) in the form

O = 1

1 + exp[− (∑
xiwi − t

)
]

(6.12)
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TABLE 6.5
The initial quasi-random values that have been
assigned to the different weights connecting
the paths between the elements in the layers in
the network of Fig. 6.11

w1
11 = 0.5 w2

11 = 0.10 w3
11 = 0.30

w1
12 = 0.4 w2

12 = 0.55 w3
12 = 0.35

w1
13 = 0.1 w2

13 = 0.35 w3
21 = 0.35

w1
21 = 0.2 w2

21 = 0.20 w3
22 = 0.25

w1
22 = 0.6 w2

22 = 0.45 w3
31 = 0.45

w1
23 = 0.2 w2

23 = 0.35 w3
32 = 0.30

w2
31 = 0.25

w2
32 = 0.15

w2
33 = 0.60

where O = output of the threshold element computed using the sigmoidal function
xi = inputs to the threshold element (i = 1, 2, . . . , n)

wi = weights attached to the inputs
t = threshold for the element

First iteration: We start off with the first iteration in training the neural network using
Eq. (6.12) to determine the outputs of the different elements by calculating the outputs for each
of the neural network layers. We select a threshold value of t = 0.

Outputs for the second layer:

O2
1 = 1

1 + exp{−[(0.05 × 0.50) + (0.02 × 0.20) − 0.0]} = 0.507249

O2
2 = 1

1 + exp{−[(0.05 × 0.40) + (0.02 × 0.60) − 0.0]} = 0.507999

O2
3 = 1

1 + exp{−[(0.05 × 0.10) + (0.02 × 0.20) − 0.0]} = 0.502250

Outputs for the third layer:

O3
1 = 1

1 + exp{−[(0.507249 × 0.10) + (0.507999 × 0.20) + (0.502250 × 0.25) − 0.0]}
= 0.569028

O3
2 = 1

1 + exp{−[(0.507249 × 0.55) + (0.507999 × 0.45) + (0.502250 × 0.15) − 0.0]}
= 0.641740

O3
3 = 1

1 + exp{−[(0.507249 × 0.35) + (0.507999 × 0.35) + (0.502250 × 0.60) − 0.0]}
= 0.658516
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Outputs for the fourth layer:

O4
1 = 1

1 + exp{−[(0.569028 × 0.30) + (0.641740 × 0.35) + (0.658516 × 0.45) − 0.0]}
= 0.666334

O4
2 = 1

1 + exp{−[(0.569028 × 0.35) + (0.641740 × 0.25) + (0.658516 × 0.30) − 0.0]}
= 0.635793

Determining errors:

R1 : E4
1 = O4

1 actual − O4
1 = 1.0 − 0.666334 = 0.333666

R2 : E4
2 = O4

2 actual − O4
2 = 0.0 − 0.635793 = −0.635793

Now that we know the final errors for the neural network for the first iteration, we
distribute this error to the other nodes (elements) in the network using Eqs. (6.9)–(6.10) in
the form

En = On(1 − On)
∑

j

wnjEj (6.13)

Assigning errors: First, we assign errors to the elements in the third layer,

E3
1 = 0.569028(1.0 − 0.569028)[(0.30 × 0.333666) + (0.35 × (−0.635793))] = −0.030024

E3
2 = 0.641740(1.0 − 0.641740)[(0.35 × 0.333666) + (0.25 × (−0.635793))] = −0.009694

E3
3 = 0.658516(1.0 − 0.658516)[(0.45 × 0.333666) + (0.30 × (−0.635793))] = −0.009127

and then assign errors to the elements in the second layer,

E2
1 = 0.507249(1.0 − 0.507249)[(0.10 × (−0.030024)) + (0.55 × (−0.009694))

+ (0.35 × (−0.009127))] = −0.002882

E2
2 = 0.507999(1.0 − 0.507999)[(0.20 × (−0.030024)) + (0.45 × (−0.009694))

+ (0.35 × (−0.009127))] = −0.003390

E2
3 = 0.502250(1.0 − 0.502250)[(0.25 × (−0.030024)) + (0.15 × (−0.009694))

+ (0.60 × (−0.009127))] = −0.003609

Now that we know the errors associated with each element in the network we can update
the weights associated with these elements so that the network approximates the output more
closely. To update the weights we use Eq. (6.11) in the form

wi
jk(new) = wi

jk(old) + αEi+1
k xjk 6.14

where wi
jk = represents the weight associated with the path connecting the j th element of

the ith layer to the kth element of the (i + 1)th layer
α = learning constant, which we will take as 0.3 for this example

Ei+1
k = error associated with the kth element of the (i + 1)th layer
xjk = input from the j th element in the ith layer to the kth element in the (i + 1)th

layer (Oi
j )
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Updating weights: We will update the weights connecting elements in the third and the
fourth layers,

w3
11 = 0.30 + 0.3 × 0.333666 × 0.569028 = 0.356960

w3
21 = 0.35 + 0.3 × 0.333666 × 0.641740 = 0.414238

w3
31 = 0.45 + 0.3 × 0.333666 × 0.658516 = 0.515917

w3
12 = 0.35 + 0.3 × (−0.635793) × 0.569028 = 0.241465

w3
22 = 0.25 + 0.3 × (−0.635793) × 0.641740 = 0.127596

w3
32 = 0.30 + 0.3 × (−0.635793) × 0.658516 = 0.174396

then update weights connecting elements in the second and the third layers,

w2
11 = 0.10 + 0.3 × (−0.030024) × 0.507249 = 0.095431

w2
21 = 0.20 + 0.3 × (−0.030024) × 0.507999 = 0.195424

w2
31 = 0.25 + 0.3 × (−0.030024) × 0.502250 = 0.245476

w2
12 = 0.55 + 0.3 × (−0.009694) × 0.507249 = 0.548525

w2
22 = 0.45 + 0.3 × (−0.009694) × 0.507999 = 0.448523

w2
32 = 0.15 + 0.3 × (−0.009694) × 0.502250 = 0.148540

w2
13 = 0.35 + 0.3 × (−0.009127) × 0.507249 = 0.348611

w2
23 = 0.35 + 0.3 × (−0.009127) × 0.507999 = 0.348609

w2
33 = 0.60 + 0.3 × (−0.009127) × 0.502250 = 0.598625

and then, finally, update weights connecting elements in the first and the second layers,

w1
11 = 0.50 + 0.3 × (−0.002882) × 0.05 = 0.499957

w1
12 = 0.40 + 0.3 × (−0.003390) × 0.05 = 0.399949

w1
13 = 0.10 + 0.3 × (−0.003609) × 0.05 = 0.099946

w1
21 = 0.20 + 0.3 × (−0.002882) × 0.02 = 0.199983

w1
22 = 0.60 + 0.3 × (−0.003390) × 0.02 = 0.599980

w1
23 = 0.20 + 0.3 × (−0.003609) × 0.02 = 0.199978

Now that all the weights in the neural network have been updated, the input data point
(x1 = 0.05, x2 = 0.02) is again passed through the neural network. The errors in approximating
the output are computed again and redistributed as before. This process is continued until
the errors are within acceptable limits. Next, the second data point (x1 = 0.09, x2 = 0.11,
Table 6.2) and the corresponding membership values (R1 = 1, R2 = 0, Table 6.4) are used to
train the network. This process is continued until all the data points in the training data set
(Table 6.2) are used. The performance of the neural network (how closely it can predict the
value of the membership of the data point) is then checked using the data points in the checking
data set (Table 6.3).

Once the neural network is trained and verified to be performing satisfactorily, it
can be used to find the membership of any other data points in the two fuzzy classes. A
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complete mapping of the membership of different data points in the different fuzzy classes
can be derived to determine the overlap of the different classes (R1 and R2).

Genetic Algorithms

As in the previous section we will first provide a brief introduction to genetic algorithms
and then show how these can be used to determine membership functions. In the previous
section we introduced the concept of a neural network. In implementing a neural network
algorithm, we try to recreate the working of neurons in the human brain. In this section
we introduce another class of algorithms, which use the concept of Darwin’s theory of
evolution. Darwin’s theory basically stressed the fact that the existence of all living things
is based on the rule of ‘‘survival of the fittest.’’ Darwin also postulated that new breeds
or classes of living things come into existence through the processes of reproduction,
crossover, and mutation among existing organisms [Forrest, 1993].

These concepts in the theory of evolution have been translated into algorithms to
search for solutions to problems in a more ‘‘natural’’ way. First, different possible solutions
to a problem are created. These solutions are then tested for their performance (i.e., how
good a solution they provide). Among all possible solutions, a fraction of the good solutions
is selected, and the others are eliminated (survival of the fittest). The selected solutions
undergo the processes of reproduction, crossover, and mutation to create a new generation
of possible solutions (which are expected to perform better than the previous generation).
This process of production of a new generation and its evaluation is repeated until there
is convergence within a generation. The benefit of this technique is that it searches for
a solution from a broad spectrum of possible solutions, rather than restrict the search to
a narrow domain where the results would be normally expected. Genetic algorithms try
to perform an intelligent search for a solution from a nearly infinite number of possible
solutions.

In the following material we show how the concepts of genetics are translated into a
search algorithm [Goldberg, 1989]. In a genetic algorithm, the parameter set of the problem
is coded as a finite string of bits. For example, given a set of two-dimensional data ((x, y)

data points), we want to fit a linear curve (straight line) through the data. To get a linear fit,
we encode the parameter set for a line (y = C1x + C2) by creating independent bit strings
for the two unknown constants C1 and C2 (parameter set describing the line) and then join
them (concatenate the strings). The bit strings are combinations of zeros and ones, which
represent the value of a number in binary form. An n-bit string can accommodate all integers
up to the value 2n − 1. For example, the number 7 requires a 3-bit string, i.e., 23 − 1 = 7,
and the bit string would look like ‘‘111,’’ where the first unit digit is in the 22 place (= 4),
the second unit digit is in the 21 place (= 2), and the last unit digit is in the 20 place (= 1);
hence, 4 + 2 + 1 = 7. The number 10 would look like ‘‘1010,’’ i.e., 23 + 21 = 10, from a
4-bit string. This bit string may be mapped to the value of a parameter, say Ci, i = 1, 2, by
the mapping

Ci = Cmin + b

2L − 1

(
Cmaxi

− Cmini

)
(6.15)

where ‘‘b’’ is the number in decimal form that is being represented in binary form (e.g.,
152 may be represented in binary form as 10011000), L is the length of the bit string (i.e.,
the number of bits in each string), and Cmax and Cmin are user-defined constants between
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which C1 and C2 vary linearly. The parameters C1 and C2 depend on the problem. The
length of the bit strings is based on the handling capacity of the computer being used, i.e.,
on how long a string (strings of each parameter are concatenated to make one long string
representing the whole parameter set) the computer can manipulate at an optimum speed.

All genetic algorithms contain three basic operators: reproduction, crossover, and
mutation, where all three are analogous to their namesakes in genetics. Let us consider the
overall process of a genetic algorithm before trying to understand the basic processes.

First, an initial population of n strings (for n parameters) of length L is created. The
strings are created in a random fashion, i.e., the values of the parameters that are coded
in the strings are random values (created by randomly placing the zeros and ones in the
strings). Each of the strings is decoded into a set of parameters that it represents. This set
of parameters is passed through a numerical model of the problem space. The numerical
model gives out a solution based on the input set of parameters. On the basis of the quality
of this solution, the string is assigned a fitness value. The fitness values are determined for
each string in the entire population of strings. With these fitness values, the three genetic
operators are used to create a new generation of strings, which is expected to perform better
than the previous generations (better fitness values). The new set of strings is again decoded
and evaluated, and a new generation is created using the three basic genetic operators. This
process is continued until convergence is achieved within a population.

Among the three genetic operators, reproduction is the process by which strings with
better fitness values receive correspondingly better copies in the new generation, i.e., we
try to ensure that better solutions persist and contribute to better offspring (new strings)
during successive generations. This is a way of ensuring the ‘‘survival of the fittest’’ strings.
Because the total number of strings in each generation is kept a constant (for computational
economy and efficiency), strings with lower fitness values are eliminated.

The second operator, crossover, is the process in which the strings are able to mix and
match their desirable qualities in a random fashion. After reproduction, crossover proceeds
in three simple steps. First, two new strings are selected at random (Fig. 6.12a). Second, a
random location in both strings is selected (Fig. 6.12b). Third, the portions of the strings to
the right of the randomly selected location in the two strings are exchanged (Fig. 6.13c). In
this way information is exchanged between strings, and portions of high-quality solutions
are exchanged and combined.

Reproduction and crossover together give genetic algorithms most of their searching
power. The third genetic operator, mutation, helps to increase the searching power. In
order to understand the need for mutation, let us consider the case where reproduction or
crossover may not be able to find an optimum solution to a problem. During the creation
of a generation it is possible that the entire population of strings is missing a vital bit of
information (e.g., none of the strings has a one at the fourth location) that is important for
determining the correct or the most nearly optimum solution. Future generations that would
be created using reproduction and crossover would not be able to alleviate this problem.
Here mutation becomes important. Occasionally, the value at a certain string location is
changed, i.e., if there is a one originally at a location in the bit string, it is changed to a zero,
or vice versa. Mutation thus ensures that the vital bit of information is introduced into the
generation. Mutation, as it does in nature, takes place very rarely, on the order of once in
a thousand bit string locations (a suggested mutation rate is 0.005/bit/generation [Forrest,
1993]).
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FIGURE 6.12
Crossover in strings. (a) Two strings are selected at random to be mated; (b) a random location in the
strings is located (here the location is before the last three bit locations); and (c) the string portions
following the selected location are exchanged.

Let us now consider an example that shows how a line may be fit through a given
data set using a genetic algorithm.

Example 6.4. Let us consider the data set in Table 6.6. For performing a line (y = C1x + C2)
fit, as mentioned earlier, we first encode the parameter set (C1, C2) in the form of bit strings.
Bit strings are created with random assignment of ones and zeros at different bit locations. We
start with an initial population of four strings (Table 6.7a, column 2). The strings are 12 bits in
length. The first 6 bits encode the parameter C1, and the next 6 bits encode the parameter C2.
Table 6.7a, columns 3 and 5, shows the decimal equivalent of their binary coding. These binary
values for C1 and C2 are then mapped into values relevant to the problem using Eq. (6.15).
We assume that the minimum value to which we would expect C1 or C2 to go would be
−2 and the maximum would be 5 (these are arbitrary values – any other values could just as
easily have been chosen). Therefore, for Eq. (6.15), Cmin i = −2 and Cmax i = 5. Using these
values, we compute C1 and C2 (Table 6.7a, columns 4 and 6). The values shown in Table 6.7a,
columns 7, 8, 9, and 10, are the values computed using the equation y = C1x + C2, using the

TABLE 6.6
Data set through which a line fit
is required

Data number x y ′

1 1.0 1.0
2 2.0 2.0
3 4.0 4.0
4 6.0 6.0
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TABLE 6.7a
First iteration using a genetic algorithm, Example 6.4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
String String C1 C1 C2 C2 y1 y2 y3 y4 f (x) = Expected Actual

number (bin.) (bin.) 400 − ∑
(yi − yi′ )

2 count =
f /fav

count

1 000111 010100 7 −1.22 20 0.22 −1.00 −2.22 −3.44 −7.11 147.49 0.48 0
2 010010 001100 18 0.00 12 −0.67 −0.67 −0.67 −0.67 −0.67 332.22 1.08 1
3 010101 101010 21 0.33 42 2.67 3.00 3.33 5.00 4.67 391.44 1.27 2
4 100100 001001 36 2.00 9 −1.00 1.00 3.00 3.67 11.00 358.00 1.17 1
– – – – – – – – – – Sum 1229.15 – –
– – – – – – – – – – Average 307.29 – –
– – – – – – – – – – Maximum 391.44 – –

TABLE 6.7b
Second iteration using a genetic algorithm, Example 6.4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Selected New C1 C1 C2 C2 y1 y2 y3 y4 f (x) = Expected Actual
strings strings (bin.) (bin.) 400 − ∑

(yi − yi′ )
2 count = count

f /fav

0101|01 101010 010110 001100 22 0.44 12 −0.67 −0.22 0.22 1.11 2.00 375.78 1.15 1
0100|10 001100 010001 101010 17 −0.11 42 2.67 2.56 2.44 2.22 2.00 380.78 1.17 2
010101 101|010 010101 101001 21 0.33 41 2.56 2.89 3.22 3.89 4.56 292.06 0.90 1
100100 001|001 100100 001010 36 2.0 10 −0.89 1.11 3.11 7.11 11.11 255.73 0.78 0

– – – – – – – – – – Sum 1304.35 – –
– – – – – – – – – – Average 326.09 – –
– – – – – – – – – – Maximum 380.78 – –
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values of C1 and C2 from columns 4 and 6, respectively, for different values of x as given in
Table 6.6. These computed values for the y are compared with the correct values (Table 6.6),
and the square of the errors in estimating the y is estimated for each string. This summation
is subtracted from a large number (400 in this problem) (Table 6.7a, column 11) to convert
the problem into a maximization problem. The values in Table 6.7a, column 11, are the fitness
values for the four strings. These fitness values are added. Their average is also computed. The
fitness value of each string is divided by the average fitness value of the whole population of
strings to give an estimate of the relative fitness of each string (Table 6.7a, column 12). This
measure also acts as a guide as to which strings are eliminated from consideration for the next
generation and which string ‘‘gets reproduced’’ in the next generation. In this problem a cutoff
value of 0.80 (relative fitness) has been used for the acceptability of a string succeeding into
the next generation. Table 6.7a, column 13, shows the number of copies of each of the four
strings that would be used to create the next generation of strings.

Table 6.7b is a continuation of Table 6.7a. The first column in Table 6.7b shows the four
strings selected from the previous generation aligned for crossover at the locations shown in
the strings in the column. After crossover, the new strings generated are shown in Table 6.7b,
column 2. These strings undergo the same process of decoding and evaluation as the previous
generation. This process is shown in Table 6.7b, columns 3–13. We notice that the average
fitness of the second generation is greater than that of the first generation of strings.

The process of generation of strings and their evaluation is continued until we get a
convergence to the solution within a generation.

Computing membership functions using genetic algorithms

Genetic algorithms as just described can be used to compute membership functions
[Karr and Gentry, 1993]. Given some functional mapping for a system, some membership
functions and their shapes are assumed for the various fuzzy variables defined for a problem.
These membership functions are then coded as bit strings that are then concatenated. An
evaluation (fitness) function is used to evaluate the fitness of each set of membership
functions (parameters that define the functional mapping). This procedure is illustrated for
a simple problem in the next example.

Example 6.5. Let us consider that we have a single-input (x), single-output (y) system with
input–output values as shown in Table 6.8. Table 6.9 shows a functional mapping for this
system between the input (x) and the output (y).

In Table 6.9 we see that each of the variables x and y makes use of two fuzzy classes (x
uses S (small) and L (large); y uses L (large) and VL (very large)). The functional mapping
tells us that a small x maps to a small y, and a large x maps to a very large y. We assume that the
range of the variable x is [0, 5] and that that of y is [0, 25]. We assume that each membership
function has the shape of a right triangle, as shown in Fig. 6.13.

The membership function on the right side of Fig. 6.13 is constrained to have the
right-angle wedge at the upper limit of the range of the fuzzy variable. The membership
function on the left side is constrained to have the right-angle wedge on the lower limit of the
range of the fuzzy variable. It is intuitively obvious that under the foregoing constraints the
only thing needed to describe the shape and position of the membership function fully is the
length of the base of the right-triangle membership functions. We use this fact in encoding the
membership functions as bit strings.

The unknown variables in this problem are the lengths of the bases of the four
membership functions (x(S, L) and y(S, VL)). We use 6-bit binary strings to define the base of
each of the membership functions. (The binary values are later mapped to decimal values using
Eq. (6.15).) These strings are then concatenated to give us a 24-bit (6 × 4) string. As shown in
Table 6.10a, column 1, we start with an initial population of four strings. These are decoded to
the binary values of the variables as shown in Table 6.10a, columns 2, 3, 4, and 5. The binary
values are mapped to decimal values for the fuzzy variables using Eq. (6.15)(Table 6.10a,
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TABLE 6.8
Data for a single-input, single-output system

x 1 2 3 4 5
y 1 4 9 16 25

TABLE 6.9
Functional mapping for the system

x S L
y S VL

1.0

Base 1 Base 2 x

S L

µxµ

FIGURE 6.13
Membership functions for the input variables are assumed to be right triangles.

columns 6, 7, 8, and 9). For the fuzzy variable x (range x = 0, 5) we use Cmin = 0 and
Cmax = 5 for both the membership functions S (Small) and L (Large). For the fuzzy variable y
(range y = 0, 25) we use Cmin = 0 and Cmax = 25.

The physical representation of the first string is shown in Fig. 6.14. In this figure the
base values are obtained from Table 6.10a, columns 6, 7, 8, and 9. So, for example, the base
values for the x variable for string number 1 are 0.56 and 5 − 1.59 = 3.41, and the base
values for the y variable are 8.73 and 25 − 20.24 = 4.76. To determine the fitness of the
combination of membership functions in each of the strings, we want a measure of the square
of the errors that are produced in estimating the value of the outputs y, given the inputs x from
Table 6.8. Figure 6.14 shows how the value of the output y can be computed graphically from
the membership functions for string number 1 in Table 6.10a. For example, for x = 4 we see
that the membership of x in the fuzzy class Large is 0.37. Referring to the rules in Table 6.9, we
see that if x is Large then y is Very Large. Therefore, we look for the value in the fuzzy class
Very Large (VL) of fuzzy variable y that has a membership of 0.37. We determine this to be
equal to 12.25. The corresponding actual value for y is 16 (Table 6.8). Therefore, the squared
error is (16 − 12.25)2 = 14.06. Columns 10, 11, 12, 13, and 14 of Table 6.10a show the values
computed for y using the respective membership functions. Table 6.10a, column 15, shows
the sum of the squared errors subtracted from 1000 (this is done to convert the fitness function
from a minimization problem to a maximization problem). Table 6.10a, column 15, thus shows
the fitness values for the four strings. We find the sum of all the fitness values in the generation
and the average fitness of the generation. The average fitness of the generation is used to
determine the relative fitness of the strings in the generation, as seen in Table 6.10a, column
16. These relative fitness values are used to determine which strings are to be eliminated and
which string gets how many copies to make the next generation of strings. In this problem a
cutoff value of 0.75 (relative fitness) has been used for the acceptability of a string propagating
into the next generation. Table 6.10a, column 17, shows the number of copies of each of the
four strings that would be used to create the next generation of strings.

Table 6.10b is a continuation of Table 6.10a. The first column in Table 6.10b shows
the four strings selected from the previous generation aligned for crossover at the locations
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TABLE 6.10a
First iteration using a genetic algorithm for determining optimal membership functions

String
number

(1)
String

(2)
base 1
(bin)

(3)
base 2
(bin)

(4)
base 3
(bin)

(5)
base 4
(bin)

(6)
base 1

(7)
base 2

(8)
base 3

(9)
base 4

(10)
y′

(x = 1)

(11)
y′

(x = 2)

(12)
y′

(x = 3)

(13)
y′

(x = 4)

(14)
y′

(x = 5)

(15)
1000−∑
(yi − yi′ )

2

(16)
Expected
count =

f/fav

(17)
Actual
count

1 000111 010100 010110 110011 7 20 22 51 0.56 1.59 8.73 20.24 0 0 0 12.25 25 887.94 1.24 1
2 010010 001100 101100 100110 18 12 44 38 1.43 0.95 17.46 15.08 12.22 0 0 0 25 521.11 0.73 0
3 010101 101010 001101 101000 21 42 13 40 1.67 3.33 5.16 15.87 3.1 10.72 15.48 20.24 25 890.46 1.25 2
4 100100 001001 101100 100011 36 9 44 35 2.86 0.71 17.46 13.89 6.98 12.22 0 0 25 559.67 0.78 1

Sum 2859.18
Average 714.80
Maximum 890.46

TABLE 6.10b
Second iteration using a genetic algorithm for determining optimal membership functions

(1)
Selected
strings

(2)
New

Strings

(3)
base 1
(bin)

(4)
base 2
(bin)

(5)
base 3
(bin)

(6)
base 4
(bin)

(7)
base 1

(8)
base 2

(9)
base 3

(10)
base 4

(11)
y′

(x = 1)

(12)
y′

(x = 2)

(13)
y′

(x = 3)

(14)
y′

(x = 4)

(15)
y′

(x = 5)

(16)
1000−∑
(yi − yi′ )

2

(17)
Expected
count =

f/fav

(18)
Actual
count

000111 0101|00 010110 110011 000111 010110 001101 101000 7 22 13 40 0.56 1.75 5.16 15.87 0 0 0 15.93 25 902.00 1.10 1
010101 1010|10 001101 101000 010101 101000 010110 110011 21 40 22 51 1.67 3.17 8.73 20.24 5.24 5.85 12.23 18.62 25 961.30 1.18 2
010101 101010 001101 1|01000 010101 101010 001101 100011 21 42 13 35 1.67 3.33 5.16 13.89 3.1 12.51 16.68 20.84 25 840.78 1.03 1
100100 001001 101100 1|00011 100100 001001 101100 101000 36 9 44 40 2.86 0.71 17.46 15.87 6.11 12.22 0 0 25 569.32 0.70 0

Sum 3273.40
Average 818.35
Maximum 961.30
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5.0 x4.03.02.01.00.0

0.37
0.5

1.0

25.0 y20.015.010.05.00.0

0.5

1.0

S L S VL

(8.730)(.555) (3.413) (12.25)(4.762)

µ   x µ   y

FIGURE 6.14
Physical representation of the first string in Table 4.12a and the graphical determination of y for a
given x.

5.04.03.02.01.00.0

0.5

1.0

x 25.020.015.010.05.00.0

0.5

1.0

y

S L

S VL

(1.666) (5.159) (9.13)

µ   x µ   y

FIGURE 6.15
Physical mapping of the best string in the first generation of strings in the genetic algorithm.

shown in the strings in the column. After crossover, the new strings generated are shown in
Table 6.10b, column 2. These strings undergo the same process of decoding and evaluation
as the previous generation. This process is shown in Table 6.10b, columns 3–18. We notice
that the average fitness of the second generation is greater than that of the first generation of
strings. Also, the fitness of the best string in the second generation is greater than the fitness of
the best string in the first generation. Figure 6.15 shows the physical mapping of the best string
in the first generation. Figure 6.16 shows the physical mapping of the best string in the second
generation; notice that the membership values for the y variable in Fig. 6.16 show overlap,
which is a very desirable property of membership functions.

The process of generating and evaluating strings is continued until we get a convergence
to the solution within a generation, i.e., we get the membership functions with the best fitness
value.

Inductive Reasoning

An automatic generation of membership functions can also be accommodated by using the
essential characteristic of inductive reasoning, which derives a general consensus from the
particular (derives the generic from the specific). The induction is performed by the entropy
minimization principle, which clusters most optimally the parameters corresponding to the
output classes [De Luca and Termini, 1972].
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5.0 x4.03.02.01.00.0

0.5

1.0

25.0 y20.015.010.05.00.0

0.5

1.0

S L S VL

(1.826)

(1.666) (4.77) (8.73)

µ   x µ   y

FIGURE 6.16
Physical mapping of the best string in the second generation of strings in the genetic algorithm.

This method is based on an ideal scheme that describes the input and output rela-
tionships for a well-established database, i.e., the method generates membership functions
based solely on the data provided. The method can be quite useful for complex systems
where the data are abundant and static. In situations where the data are dynamic, the method
may not be useful, since the membership functions will continually change with time (see
the chapter summary for a discussion on the merits of this method).

The intent of induction is to discover a law having objective validity and universal
application. Beginning with the particular, induction concludes with the general. The
essential principles of induction have been known for centuries. Three laws of induction
are summarized here [Christensen, 1980]:

1. Given a set of irreducible outcomes of an experiment, the induced probabilities are those
probabilities consistent with all available information that maximize the entropy of the
set.

2. The induced probability of a set of independent observations is proportional to the
probability density of the induced probability of a single observation.

3. The induced rule is that rule consistent with all available information of which the
entropy is minimum.

Among the three laws above, the third one is appropriate for classification (or, for our
purposes, membership function development) and the second one for calculating the mean
probability of each step of separation (or partitioning). In classification, the probability
aspects of the problem are completely disregarded since the issue is simply a binary one: a
data point is either in a class or not.

A key goal of entropy minimization analysis is to determine the quantity of information
in a given data set. The entropy of a probability distribution is a measure of the uncertainty of
the distribution [Yager and Filev, 1994]. This information measure compares the contents of
data to a prior probability for the same data. The higher the prior estimate of the probability
for an outcome to occur, the lower will be the information gained by observing it to occur.
The entropy on a set of possible outcomes of a trial where one and only one outcome is
true is defined by the summation of probability and the logarithm of the probability for all
outcomes. In other words, the entropy is the expected value of information.

For a simple one-dimensional (one uncertain variable) case, let us assume that the
probability of the ith sample wi to be true is {p(wi)}. If we actually observe the sample wi
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in the future and discover that it is true, then we gain the following information, I (wi):

I (wi) = −k ln p(wi) (6.16)

where k is a normalizing parameter. If we discover that it is false, we still gain this
information:

I (wi) = −k ln[1 − p(wi)] (6.17)

Then the entropy of the inner product of all the samples (N) is

S = −k

N∑
i=1

[pi ln pi + (1 − pi) ln(1 − pi)] (6.18)

where pi = p(wi). The minus sign before parameter k in Eq. (6.18) ensures that S ≥ 0,
because ln x ≤ 0 for 0 ≤ x ≤ 1.

The third law of induction, which is typical in pattern classification, says that the
entropy of a rule should be minimized. Minimum entropy (S) is associated with all the pi

being as close to ones or zeros as possible, which in turn implies that they have a very high
probability of either happening or not happening, respectively. Note in Eq. (6.18) that if
pi = 1 then S = 0. This result makes sense since pi is the probability measure of whether
a value belongs to a partition or not.

Membership function generation

To subdivide our data set into membership functions we need some procedure to establish
fuzzy thresholds between classes of data. We can determine a threshold line with an entropy
minimization screening method, then start the segmentation process, first into two classes.
By partitioning the first two classes one more time, we can have three different classes.
Therefore, a repeated partitioning with threshold value calculations will allow us to partition
the data set into a number of classes, or fuzzy sets, depending on the shape used to describe
membership in each set.

Membership function generation is based on a partitioning or analog screening
concept, which draws a threshold line between two classes of sample data. The main idea
behind drawing the threshold line is to classify the samples while minimizing the entropy for
an optimum partitioning. The following is a brief review of the threshold value calculation
using the induction principle for a two-class problem. First, we assume that we are seeking a
threshold value for a sample in the range between x1 and x2. Considering this sample alone,
we write an entropy equation for the regions [x1, x] and [x, x2]. We denote the first region
p and the second region q, as is shown in Fig. 6.17. By moving an imaginary threshold
value x between x1 and x2, we calculate entropy for each value of x.

An entropy with each value of x in the region x1 and x2 is expressed by Christensen
[1980] as

S(x) = p(x)Sp(x) + q(x)Sq(x) (6.19)

where

Sp(x) = −[p1(x) ln p1(x) + p2(x) ln p2(x)] (6.20)

Sq(x) = −[q1(x) ln q1(x) + q2(x) ln q2(x)] (6.21)
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x1
p region

x2

x q region

Class 1 samples
Class 2 samples

FIGURE 6.17
Illustration of threshold value idea.

where pk(x) and qk(x) = conditional probabilities that the class k sample is in the region
[x1, x1 + x] and [x1 + x, x2], respectively

p(x) and q(x) = probabilities that all samples are in the region [x1, x1 + x] and
[x1 + x, x2], respectively

p(x) + q(x) = 1

A value of x that gives the minimum entropy is the optimum threshold value. We
calculate entropy estimates of pk(x), qk(x), p(x), and q(x), as follows [Christensen, 1980]:

pk(x) = nk(x) + 1

n(x) + 1
(6.22)

qk(x) = Nk(x) + 1

N(x) + 1
(6.23)

p(x) = n(x)

n
(6.24)

q(x) = 1 − p(x) (6.25)

where nk(x) = number of class k samples located in [xl, xl + x]
n(x) = the total number of samples located in [xl, xl + x]

Nk(x) = number of class k samples located in [xl + x, x2]
N(x) = the total number of samples located in [xl + x, x2]

n = total number of samples in [x1, x2]
l = a general length along the interval [x1, x2]

While moving x in the region [x1, x2] we calculate the values of entropy for each
position of x. The value of x that holds the minimum entropy we will call the primary
threshold (PRI) value. With this PRI value, we divide the region [x1, x2] in two. We may say
that the left side of the primary threshold is the negative side and the right the positive side;
these labels are purely arbitrary but should hold some contextual meaning for the particular
problem. With this first PRI value we can choose a shape for the two membership functions;
one such shape uses two trapezoids, as seen in Fig. 6.18a. But the particular choice of
shape is arbitrary; we could just as well have chosen to make the threshold crisp and use
two rectangles as membership functions. However, we do want to employ some amount
of overlap since this develops the power of a membership function. As we get more and
more subdivisions of the region [x1, x2], the choice of shape for the membership function
becomes less and less important as long as there is overlap between sets. Therefore, selection
of simple shapes like triangles and trapezoids, which exhibit some degree of overlap, is
judicious. In the next sequence we conduct the segmentation again, on each of the regions
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(a)

PRI
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(b)

SEC1 PRI SEC2
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NB NM NS ZE PS PB
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−∞
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FIGURE 6.18
Repeated partitions and corresponding fuzzy set labels: (a) the first partition, (b) the second partition,
and (c) the third partition.

shown in Fig. 6.18a; this process will determine secondary threshold values. The same
procedure is applied to calculate these secondary threshold values. If we denote a secondary
threshold in the negative area as SEC1 and the other secondary threshold in the positive
area SEC2, we now have three threshold lines in the sample space. The thresholds SEC1
and SEC2 are the minimum entropy points that divide the respective areas into two classes.
Then we can use three labels of PO (positive), ZE (zero), and NG (negative) for each of
the classes, and the three threshold values (PRI, SEC1, SEC2) are used as the toes of the
three separate membership shapes shown in Fig. 6.18b. In fuzzy logic applications we often
use an odd number of membership functions to partition a region, say five labels or seven.
To develop seven partitions we would need tertiary threshold values in each of the three
classes of Fig. 6.18b. Each threshold level, in turn, gradually separates the region into more
and more classes. We have four tertiary threshold values: TER1, TER2, TER3, and TER4.
Two of the tertiary thresholds lie between primary and secondary thresholds, and the other
two lie between secondary thresholds and the ends of the sample space; this arrangement is
shown in Fig. 6.18c. In this figure we use labels such as NB, NM, NS, ZE, PS, PM, and PB.

Example 6.6. The shape of an ellipse may be characterized by the ratio of the length of two
chords a and b, as shown in Fig. 6.19 (a similar problem was originally posed in Chapter 1;
see Fig. 1.3).

Let x = a/b; then as the ratio a/b → ∞, the shape of the ellipse tends to a horizontal
line, whereas as a/b → 0, the shape tends to a vertical line. For a/b = 1 the shape is a



MEMBERSHIP VALUE ASSIGNMENTS 205

a

b

FIGURE 6.19
Geometry of an ellipse.

TABLE 6.11
Segmentation of x into two arbitrary classes (from raw data)

x = a/b 0 0.1 0.15 0.2 0.2 0.5 0.9 1.1 1.9 5 50 100
Class 1 1 1 1 1 2 1 1 2 2 2 2

TABLE 6.12
Calculations for selection of partition point PRI

x 0.7 1.0 1.5 3.45

p1
5 + 1

6 + 1
= 6

7

6 + 1

7 + 1
= 7

8

7 + 1

8 + 1
= 8

9

7 + 1

9 + 1
= 8

10

p2
1 + 1

6 + 1
= 2

7

1 + 1

7 + 1
= 2

8

1 + 1

8 + 1
= 2

9

2 + 1

9 + 1
= 3

10

q1
2 + 1

6 + 1
= 3

7

1 + 1

5 + 1
= 2

6

0 + 1

4 + 1
= 1

5

0 + 1

3 + 1
= 1

4

q2
4 + 1

6 + 1
= 5

7

4 + 1

5 + 1
= 5

6

4 + 1

4 + 1
= 1.0

3 + 1

3 + 1
= 1.0

p(x)
6

12

7

12

8

12

9

12

q(x)
6

12

5

12

4

12

3

12
Sp(x) 0.49 0.463 0.439 0.54
Sq(x) 0.603 0.518 0.32 0.347
S 0.547 0.486 0.4

√
0.49

circle. Given a set of a/b values that have been classified into two classes (class division is
not necessarily based on the value of x alone; other properties like line thickness, shading of
the ellipse, etc., may also be criteria), divide the variable x = a/b into fuzzy partitions, as
illustrated in Table 6.11.

First we determine the entropy for different values of x. The value of x is selected as
approximately the midvalue between any two adjacent values. Equations (6.19)–(6.25) are
then used to compute p1, p2, q1, q2, p(x), q(x), Sp(x), Sq(x), and S; and the results are
displayed in Table 6.12. The value of x that gives the minimum value of the entropy (S) is
selected as the first threshold partition point, PRI. From Table 6.12 (see checkmark at S = 0.4)
we see that the first partition point is selected at x = 1.5, and its location for determining
membership function selection is shown in Fig. 6.20.
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0.5

1

(0) 100(1.5)

NG PO
a/b

FIGURE 6.20
Partitioning of the variable x = a/b into positive (PO) and negative (NG) partitions.

TABLE 6.13
Calculations to determine secondary threshold value: NG side

x 0.175 0.35 0.7

p1
3 + 1

3 + 1
= 1.0

5 + 1

5 + 1
= 1.0

5 + 1

6 + 1
= 6

7

p2
0 + 1

3 + 1
= 1

4

0 + 1

5 + 1
= 1

6

1 + 1

6 + 1
= 2

7

q1
4 + 1

5 + 1
= 5

6

2 + 1

3 + 1
= 3

4

2 + 1

2 + 1
= 1.0

q2
1 + 1

5 + 1
= 2

6

1 + 1

3 + 1
= 2

4

0 + 1

2 + 1
= 1

3

p(x)
3

8

5

8

6

8

q(x)
5

8

3

8

2

8
Sp(x) 0.347 0.299 0.49
Sq(x) 0.518 0.562 0.366
S 0.454 0.398

√
0.459

The same process as displayed in Table 6.12 is repeated for the negative and positive
partitions for different values of x. For example, in determining the threshold value to partition
the negative (NG) side of Fig. 6.20, Table 6.13 displays the appropriate calculations.

Table 6.14 illustrates the calculations to determine the threshold value to partition the
positive side of Fig. 6.20.

The partitions are selected based on the minimum entropy principle; the S values with
a checkmark in Tables 6.13 and 6.14 are those selected. The resulting fuzzy partitions are as
shown in Fig. 6.21. If required, these partitions can be further subdivided into more fuzzy
subpartitions of the variable x.

SUMMARY

This chapter attempts to summarize several methods – classical and modern – that have been
and are being used to develop membership functions. This field is rapidly developing, and
this chapter is simply an introduction. Many methods for developing membership functions
have not been discussed in this chapter. Ideas like deformable prototypes [Bremermann,
1976], implicit analytical definition [Kochen and Badre, 1976], relative preferences [Saaty,
1974], and various uses of statistics [Dubois and Prade, 1980] are just a few of the many
omitted here for brevity.
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TABLE 6.14
Calculations to determine sec-
ondary threshold value: PO side

x 27.5

p1
0 + 1

2 + 1
= 1

3

p2
2 + 1

2 + 1
= 1.0

q1
0 + 1

2 + 1
= 1

3

q2
2 + 1

2 + 1
= 1.0

p(x)
2

4

q(x)
2

4
Sp(x) 0.366
Sq(x) 0.366
S 0.366

√

1

0 1000.35 1.5 27.5

NG ZE PO
a/b

FIGURE 6.21
Secondary partitioning for Example 6.6.

This chapter has dealt at length with only six of the methods currently used in
developing membership functions. There are a growing number of papers in the area of
cognitive systems, where learning methods like neural networks and reasoning systems like
fuzzy systems are being combined to form powerful problem solvers. In these cases, the
membership functions are generally tuned in a cyclic fashion and are inextricably tied to
their associated rule structure [e.g., see Hayashi et al., 1992].

In the case of genetic algorithms a number of works have appeared [see Karr and
Gentry, 1993; Lee and Takagi, 1993]. Vast improvements have been made in the ability of
genetic algorithms to find optimum solutions: for example, the best shape for a membership
function. One of these improvements makes use of gray codes in solving a traditional binary
coding problem, where sometimes all the bits used to map a decimal number had to be
changed to increase that number by 1 [Forrest, 1993]. This problem had made it difficult
for some algorithms to find an optimum solution from a point in the solution space that was
already close to the optimum. Both neural network and genetic algorithm approaches to
determining membership functions generally make use of associated rules in the knowledge
base.
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In inductive reasoning, as long as the database is not dynamic the method will
produce good results; when the database changes, the partitioning must be reaccomplished.
Compared to neural networks and genetic algorithms, inductive reasoning has an advantage
in the fact that the method may not require a convergence analysis, which in the case of
genetic algorithms and neural networks is computationally very expensive. On the other
hand, the inductive reasoning method uses the entire database to formulate rules and
membership functions and, if the database is large, this method can also be computationally
expensive. The choice of which of the three methods to use depends entirely on the problem
size and problem type.
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PROBLEMS

6.1. Using your own intuition, develop fuzzy membership functions on the real line for the fuzzy
number 3, using the following function shapes:
(a) Symmetric triangle
(b) Trapezoid
(c) Gaussian function

6.2. Using your own intuition, develop fuzzy membership functions on the real line for the fuzzy
number ‘‘approximately 2 or approximately 8’’ using the following function shapes:
(a) Symmetric triangles
(b) Trapezoids
(c) Gaussian functions

6.3. Using your own intuition, develop fuzzy membership functions on the real line for the fuzzy
number ‘‘approximately 6 to approximately 8’’ using the following function shapes:
(a) Symmetric triangles
(b) Trapezoids
(c) Gaussian functions

6.4. Using your own intuition and your own definitions of the universe of discourse, plot fuzzy
membership functions for the following variables:
(a) Age of people

(i) Very young
(ii) Young

(iii) Middle-aged
(iv) Old
(v) Very old

(b) Education of people
(i) Fairly educated

(ii) Educated
(iii) Highly educated
(iv) Not highly educated
(v) More or less educated

6.5. Using the inference approach outlined in this chapter, find the membership values for each of
the triangular shapes (I∼, R∼, IR∼ , E∼, T∼) for each of the following triangles:
(a) 80◦

, 75◦
, 25◦

(b) 55◦
, 65◦

, 60◦

(c) 45◦
, 75◦

, 60◦

6.6. Develop a membership function for rectangles that is similar to the algorithm on triangles in
this chapter. This function should have two independent variables; hence, it can be plotted.

6.7. The following raw data were determined in a pairwise comparison of new premium car
preferences in a poll of 100 people. When it was compared with a Porsche (P), 79 of those
polled preferred a BMW (B), 85 preferred a Mercedes (M), 59 preferred a Lexus (L), and 67
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preferred an Infinity (I). When a BMW was compared, the preferences were 21–P, 23–M,
37–L, and 45–I. When a Mercedes was compared, the preferences were 15–P, 77–B, 35–L,
and 48–I. When a Lexus was compared, the preferences were 41–P, 63–B, 65–M, and 51–I.
Finally, when an Infinity was compared, the preferences were 33–P, 55–B, 52–M, and 49–L.
Using rank ordering, plot the membership function for ‘‘most preferred car.’’

6.8. For the data shown in the accompanying table, show the first iteration in trying to compute
the membership values for the input variables x1, x2, and x3 in the output regions R1 and R2.
Assume a random set of weights for your neural network.

x1 x2 x3 R1 R2

1.0 0.5 2.3 1.0 0.0

(a) Use a 3 × 3 × 1 neural network.
(b) Use a 3 × 3 × 2 neural network.
(c) Explain the difference in results when using (a) and (b).

6.9. For the data shown in the following table, show the first iteration in trying to compute the
membership values for the input variables x1, x2, x3, and x4 in the regions R1, R2, and R3.

x1 x2 x3 x4 R1 R2 R3

10 0 −4 2 0 1 0

Use a 4 × 3 × 3 neural network with a random set of weights.
6.10. For the data shown in the accompanying Table A, show the first two iterations using a genetic

algorithm in trying to find the optimum membership functions (use right-triangle functions) for
the input variable x and output variable y in the rule table, Table B.

Table A Data

x 0 45 90
y 0 0.71 1

Table B Rules

x SM MD
y SM LG

For the rule table, the symbols SM, MD, and LG mean small, medium, and large, respectively.
6.11. For the data shown in the following Table A, show the first two iterations using a genetic

algorithm in trying to find the optimum membership functions (use right-triangle functions) for
the input variable x and output variable y in the rule table, Table B. For the rule table, Table
B, the symbols ZE, S, and LG mean zero, small, and large, respectively.

Table A Data

x 0 0.3 0.6 1.0 100
y 1 0.74 0.55 0.37 0

Table B Rules

x LG S
y ZE S
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6.12. The results of a price survey for 30 automobiles is presented here:

Class Automobile prices (in units of $1,000)

Economy 5.5, 5.8, 7.5, 7.9, 8.2, 8.5, 9.2, 10.4, 11.2, 13.5
Midsize 11.9, 12.5, 13.2, 14.9, 15.6, 17.8, 18.2, 19.5, 20.5, 24.0
Luxury 22.0, 23.5, 25.0, 26.0, 27.5, 29.0, 32.0, 37.0, 43.0, 47.5

Consider the automobile prices as a variable and the classes as economy, midsize, and luxury
automobiles. Develop three membership function envelopes for car prices using the method of
inductive reasoning.



CHAPTER

7
AUTOMATED
METHODS
FOR FUZZY
SYSTEMS

Measure what is measurable, and make measurable what is not so.

Galileo Galilei,
circa 1630

It is often difficult or impossible to accurately model complicated natural processes or
engineered systems using a conventional nonlinear mathematical approach with limited
prior knowledge. Ideally, the analyst uses the information and knowledge gained from prior
experiments or trials with the system to develop a model and predict the outcome, but for
new systems where little is known or where experimental analyses are too costly to perform,
prior knowledge and information is often unavailable. This lack of data on, or extensive
knowledge of, the system makes developing a model using conventional means extremely
difficult and often impossible. Furthermore, forming a linguistic rule-base of the system
may be impractical without conducting additional observations. Fortunately, for situations
such as these, fuzzy modeling is very practical and can be used to develop a model for
the system using the ‘‘limited’’ available information. Batch least squares, recursive least
squares, gradient method, learning from example (LFE), modified learning from example
(MLFE), and clustering method are some of the algorithms available for developing a fuzzy
model [Passino and Yurkovich, 1998]. The choice of which method to implement depends
on such factors as the amount of prior knowledge of the system to be modeled. These
methods, which are referred to as automated methods, are provided as additional procedures
to develop membership functions, like those of Chapter 6, but also to provide rules as well.

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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DEFINITIONS

The description of these methods provided by Passino and Yurkovich [1998] is expanded
in this chapter with a detailed example for developing a fuzzy model using each of
the algorithms mentioned above. The explanation is given in such a manner that allows
the reader to easily prepare a MATLAB code for other applications (see the preface
for instructions on accessing this software). Only two-input, single-output systems are
illustrated here but the algorithms can be extended to multiple-input, single-output systems
and even multiple-input, multiple-output systems. An example of a two-input, single-output
system is illustrated in Fig. 7.1, where the information is provided by three points and where
the inputs are x1 and x2 and the output is y. Most of the algorithms used in the examples of
this chapter incorporate Gaussian membership functions for the inputs µ(x),

µ(x) = exp

[
−1

2

(
xi − ci

σi

)2
]

(7.1)

where xi is the ith input variable, ci is the ith center of the membership function (i.e.,
where the membership function achieves a maximum value), and σi is a constant related
to the spread of the ith membership function). Figure 7.2 illustrates a typical Gaussian
membership function and these parameters.

3210

6

4

21

3

6

5

y

x2

x1

FIGURE 7.1
Example of two-input, single-output system for three data points (Reproduced by permission of
Kevin M. Passino and Stephen Yurkovich, from: Kevin M. Passino and Stephen Yurkovich, Fuzzy
Control, Addison Wesley Longman, Menlo Park, CA, 1998).

xi

µ(xi)

ci

si 

FIGURE 7.2
Typical Gaussian membership function.
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xici

si

1.0
µ(xi)

FIGURE 7.3
Typical triangular membership function.

yibi

1.0
µ(yi)

FIGURE 7.4
Delta membership function.

For demonstrative purposes triangular membership functions are used in the example
given for the learning from example algorithm; Eq. (7.2) shows the formula used for the
triangular membership function while Fig. 7.3 illustrates the membership function. In fact
any type of membership function may be used for the input and output functions but only the
Gaussian and triangular membership functions are illustrated here. In most of the examples
provided in this chapter, the output membership function is a delta function, which is
an impulse function of zero width with only one value with full membership located at
bi and all other values have zero (see Fig. 7.4). However, the algorithms provided here
accommodate any type of output membership function.

µ(x) =




max

{
0, 1 + xi − ci

0.5σi

}
if xi ≤ ci

max

{
0, 1 + ci − xi

0.5σi

}
otherwise

(7.2)
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The six automated methods presented here either develop a rule-base or use a
predetermined rule-base (such as the LFE method, batch, and recursive least squares
algorithms) to model the system and predict outputs given the inputs; in any case the rules
are comprised of a premise clause and a consequence. A typical example of a rule for a
multiple-input, single-output system is as follows:

IF premise1 and premise2 THEN consequence

These rules are developed by the algorithms to predict and/or govern an output for the
system with given inputs. Most importantly, the algorithms incorporate the use of fuzzy
values rather than fuzzy linguistic terms in these rules (hence the membership functions).
In other words, the premise and consequence are fuzzy values. In the batch least squares
(BLS), recursive least squares (RLS), and gradient method (GM) algorithms this rule-base
must be specified by the user of the algorithm from other automated procedures (e.g.,
MLFE); however, the gradient method has the capability to update the parameters of the
rule-base (i.e., the parameters of the membership functions). The clustering method (CM)
and modified learning from example (MLFE) form a rule-base from the input–output which
is then used to model the system. The LFE algorithm relies on complete specification of the
membership functions and only constructs the rules of the rule-base. Because of this, some
algorithms can be used together to develop a refined model for the system. For instance, the
MLFE can be used in conjunction with the RLS to develop a more effective model. Once
the parameters of the membership functions of the rule-base have been specified they are
used by the algorithms to predict an output given the inputs. A detailed description of this
process is provided later in the chapter.

The examples to follow all employ a center-average defuzzification, and a product
t-norm for the premise, and a product implication, as given by Eq. (7.3). A Takagi–Sugeno
or other inference mechanism may be used instead but their application and respective
discussion are not included in this chapter [see Passino and Yurkovich, 1998]. As mentioned,
most of our examples use Gaussian membership functions for the premise and delta
functions for the output, resulting in the following equation to predict the output given an
input data-tuple xj :

f (x|θ) =

R∑
i=1

bi

n∏
j=1

exp


−1

2

(
xj − ci

j

σ i
j

)2



R∑
i=1

n∏
j=1

exp


−1

2

(
xj − ci

j

σ i
j

)2



(7.3)

where R is the number of rules in the rule-base and n is the number of inputs per data
data-tuple. For instance, the system of Fig. 7.1 has two inputs (x1 and x2); thus n = 2 and
if there were two rules in the rule-base, R = 2. The parameter R is not known a priori for
some methods, but is determined by the algorithms. The symbol θ is a vector that includes
the membership function parameters for the rule-base, ci , σi , and bi .

The data-tuples we shall use for our examples are the same as those used in Passino
and Yurkovich [1998]. Table 7.1 and Fig. 7.1 contain these data, which are presumably
a representative portion of a larger nonlinear data set, Z = {([x1, x2], y)}. The data of
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TABLE 7.1
Training data set,
Z = {([x1, x2], y)}
x1 x2 y

0 2 1
2 4 5
3 6 6

Table 7.1 are used to train the fuzzy system to model the output y given the two inputs x1

and x2. The BLS and RLS methods are presented first followed by the GM, CM, and LFE
the and finally MLFE methods. In consideration for space, only the training of the fuzzy set
is demonstrated in each example. However, at the end of this chapter the result of a more
thorough application of fuzzy modeling is presented for a system described by numerous
data-tuples.

To illustrate the various algorithms, we will use input–output data from an experiment
on a new, crushable foam material called syntactic foam; the strength of the foam will
be verified by triaxial compression tests. Unfortunately, due to the costs involved in
preparing the foam only a few cylindrical specimens (2.800 inches in length and 1.400
inches in diameter) are tested under various triaxial compressive loads to determine
the longitudinal deformations associated with these loads (see Fig. 7.11). The collected
input–output data consist of the longitudinal stress (major principal stress) and the lateral
stress (minor principal stress), and their respective longitudinal deformation is the output.
These input–output data are then used by various fuzzy algorithms to develop a model to
predict the longitudinal deformation given the lateral and longitudinal stress.

BATCH LEAST SQUARES ALGORITHM

The following example demonstrates the development of a nonlinear fuzzy model for the
data in Table 7.1 using the BLS algorithm. The algorithm constructs a fuzzy model from
numerical data which can then be used to predict outputs given any input. Thus, the data
set Z can be thought of as a training set used to model the system. When using the BLS
algorithm to develop a fuzzy model it is helpful to have knowledge about the behavior of
the data set in order to form a rule-base. In the cases where this knowledge is not available
another algorithm with rule-forming capabilities (such as MLFE or CM) may be used to
develop a rule-base.

To begin with, let us denote the number of input data-tuples, m = 3, where there are
two inputs for each data-tuple, n = 2 (i.e., x1, x2). As required by the algorithm we must
designate the number of rules (two rules, R = 2) and the rule parameters. The consequence
in each rule is denoted by the output membership function centers b1 and b2. Recall that
there are no other parameters needed for the consequence. The two premises of each rule
are defined by the input membership function centers (ci) and their respective spread (σi):

IF premise1 and premise2 THEN consequence
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Say we designate values for the premise and consequence of the rule-base that are close to
the first two data-tuples of Z (presume that Z is a good representation of the data contained
in a larger data set). This way the premise and consequence capture as much of the data
set as possible thus improving the predictability of the model. We have the following
for the input membership functions centers ci

j , where i is the rule number and j denotes
input number:

c1
1 = 1.5 c2

1 = 3

c1
2 = 3 c2

2 = 5

This places the peaks of the membership functions between the input portions of the
training data pairs. We could make a conjecture as to the whereabouts of the respective
output centers for these input centers as well, but for demonstrative purposes we use the
output from the first two data sets for now. Thus, we have the following two rules in
our rule-base:

Rule 1: If x1 is ‘‘about 1.5’’ and x2 is ‘‘about 3’’ then b1 is 1.

Rule 2: If x1 is ‘‘about 3’’ and x2 is ‘‘about 5’’ then b2 is 5.

Next we pick the spreads, σ i
j , for the input membership functions we selected. As

a good start we select σ i
j = 2, for i = 1, 2 and j = 1, 2, to provide reasonable overlap

between membership functions. We may have to increase or decrease the overlap among
the input membership functions in the rule-base to improve the output of the fuzzy model.
The input membership functions for Rules 1 and 2 are Gaussian membership functions and
are displayed in Figs. 7.5 and 7.6. The output membership functions for the rules are delta
functions that are displayed in Fig. 7.7.

The objective is to determine the predicted output using Eq. (7.3) when given an input
data-tuple. Up to now we have only defined the rule-base but have not developed an output
mapping function; we do this next using the training data set.

We calculate the membership value that each input data-tuple has in the specified rules
of the rule-base and multiply these two values by one another, resulting in the membership
value that the input data-tuple has in a particular rule. This is accomplished by

µi(x) =
n∏

j=1

exp


−1

2

(
x − ci

j

σ i
j

)2

 (7.4)

31.5 x1

x1
µ Rule 2 Rule 1 

FIGURE 7.5
Input membership functions for x1.
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53 x2

x2
µ Rule 1Rule 2 

FIGURE 7.6
Input membership functions for x2.

5 y1

yµ
Rule 2Rule 1

FIGURE 7.7
Output membership functions for y.

where n = 2, x are the input data-tuples, and ci
j and µi

j are the rule-base parameters. This
reduces Eq. (7.3) to the following form:

f (x|θ) =

R∑
i=1

biµi(x)

R∑
i=1

µi(x)

(7.5)

Passino and Yurkovich [1998] point out that this is also equal to

f (x|θ) =

R∑
i=1

biµi(x)

R∑
i=1

µi(x)

= b1µ1(x)

R∑
i=1

µi(x)

+ b2µ2(x)

R∑
i=1

µi(x)

+ · · · + bRµR(x)

R∑
i=1

µi(x)

and if we define the regression vector ξ as

ξi(x) = µi(x)

R∑
i=1

µi(x)

=

∏n
j=1 exp


−1

2

(
xj − ci

j

σ i
j

)2



R∑
i=1

n∏
j=1

exp


−1

2

(
xj − ci

j

σ i
j

)2



for i = 1, 2 (7.6)
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we can use Eq. (7.7) to calculate the output. However, since we are using the BLS approach
the output is calculated a little differently [for theory see Passino and Yurkovich; 1998].
The resulting mapping, for the BLS approach, is

f (x|θ̂ ) = θ̂Tξ(x) (7.7)

where θ̂ is the least squares estimate vector from the training set, and θ̂T is the transpose.
The calculation of the least squares estimate and ξi are explained below.

For each input data-tuple we have two (i = 2) values for ξ , one for Rule 1 and another
for Rule 2, resulting in a total of six values:

ξ1(x
1) ξ2(x

1)

ξ1(x
2) ξ2(x

2)

ξ1(x
3) ξ2(x

3)

Using Eq. (7.6), we get

ξ1(x
1) =

exp

[
− 1

2

(
x1 − c1

1

σ 1
1

)2
]

∗ exp

[
− 1

2

(
x2 − c1

2

σ 1
2

)2
]

exp

[
− 1

2

(
x1 − c1

1

σ 1
1

)2
]

∗ exp

[
− 1

2

(
x2 − c1

2

σ 1
2

)2
]

+ exp

[
− 1

2

(
x1 − c2

1

σ 2
1

)2
]

∗ exp

[
− 1

2

(
x2 − c2

2

σ 2
2

)2
]

ξ1(x
1) =

exp

[
− 1

2

(
0 − 1.5

2

)2
]

∗ exp

[
− 1

2

(
2 − 3

2

)2
]

exp

[
− 1

2

(
0 − 1.5

2

)2
]

∗ exp

[
− 1

2

(
2 − 3

2

)2
]

+ exp

[
− 1

2

(
0 − 3

2

)2
]

∗ exp

[
− 1

2

(
2 − 5

2

)2
]

ξ1(x
1) = 0.66614

0.77154
= 0.8634

and

ξ2(x
1) =

exp

[
− 1

2

(
x1 − c2

1

σ 2
1

)2
]

∗ exp

[
− 1

2

(
x2 − c2

2

σ 2
2

)2
]

exp

[
− 1

2

(
x1 − c1

1

σ 1
1

)2
]

∗ exp

[
− 1

2

(
x2 − c1

2

σ 1
2

)2
]

+ exp

[
− 1

2

(
x1 − c2

1

σ 2
1

)2
]

∗ exp

[
− 1

2

(
x2 − c2

2

σ 2
2

)2
]

ξ2(x
1) =

exp

[
− 1

2

(
0 − 3

2

)2
]

∗ exp

[
− 1

2

(
2 − 5

2

)2
]

exp

[
− 1

2

(
0 − 1.5

2

)2
]

∗ exp

[
− 1

2

(
2 − 3

2

)2
]

+ exp

[
− 1

2

(
0 − 3

2

)2
]

∗ exp

[
− 1

2

(
2 − 5

2

)2
]

ξ2(x
1) = 0.13661

For x2 and x3 of data set Z we obtain the following values of ξi(x):

ξ1(x
2) = 0.5234 ξ2(x

2) = 0.4766

ξ1(x
3) = 0.2173 ξ2(x

3) = 0.7827
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With ξi(x) completely specified the transpose of ξi(x) is determined and placed into a
matrix, �:

� =

 ξT(x1)

ξT(x2)

ξT(x3)


 =


 0.8634 0.1366

0.5234 0.4766
0.2173 0.7827




And from Z we have the following outputs placed in vector Y:

Y = [y1 y2 y3]T = [1 5 6]T

Using Y and � we determine θ̂ ,

θ̂ = (�T�)−1�TY (7.8)

thus producing

θ̂ =
{[

0.8634 0.5234 0.2173
0.1366 0.4766 0.7827

]
∗
[

0.8634 0.1366
0.5234 0.4766
0.2173 0.7827

]}−1

∗
[

0.8634 0.5234 0.2173
0.1366 0.4766 0.7827

]
∗
[

1
5
6

]

θ̂ =
[

0.3647
8.1775

]

Using Eq. (7.7) we calculate the output for the training data set:

f (x|θ̂ ) = θ̂Tξ(x)

f (x1|θ̂ ) = [0.3647 8.1775] ∗
[

0.8634
0.1366

]

f (x1|θ̂ ) = 1.4319

f (x2|θ̂ ) = 4.0883

f (x3|θ̂ ) = 6.4798

As seen, the fuzzy system maps the training data set reasonably accurately and if we use
additional points not in the training set, as a test set, to see how the system interpolates, we
find, for example,

f ([1, 2]T|θ̂ ) = 1.8267; f ([2.5, 5]T|θ̂ ) = 5.3981; f ([4, 7]T|θ̂ ) = 7.3673

The accuracy of the fuzzy model developed using BLS primarily depends on the rules
specified in the rule-base and the data set used to train the fuzzy model.

RECURSIVE LEAST SQUARES ALGORITHM

The RLS algorithm is very similar to the BLS algorithm; however, the RLS algorithm
makes updating θ̂ much easier. The algorithm is a recursive version of the BLS method (the
theory behind this algorithm is available [see Passino and Yurkovich, 1998]). It operates
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without using all the training data and most importantly without having to compute the
inverse of �T� each time the θ̂ in updated. RLS calculates θ̂ (k) at each time step k from
the past estimate θ̂ (k − 1) and the latest data pair that is received, xk, yk . The following
example demonstrates the training of a fuzzy model using the RLS algorithm given data set
Z (see Table 7.1).

As before, we use Gaussian membership functions for the input and a delta function
for the output in the rule-base. Recall that bi is the point in the output space at which the
output membership function for the ith rule is a delta function, and ci

j is the point in the
j th input universe of discourse where the membership function for the ith rule achieves a
maximum. The relative width, σ i

j , of the j th input membership function for the ith rule is
always greater than zero.

The RLS algorithm requires that the rule-base be specified, (i.e., number of rules,
input membership function centers, input membership function relative widths, and the
output centers). The training data set should include a good representative subset of the data
set. If the analyst does not have enough knowledge of the system to specify the parameters
needed to define the rule-base he or she can do so by using another algorithm first, such as
the MLFE. In this example we are able to specify these parameters for the rule-base. We
decide on using two rules to model the system and make an educated guess as to where to
set the input membership function centers based on some type of regular spacing so as to
lie in the middle of the training data, just as we did in the BLS example.

Like the BLS we can vary the spread for each premise of the rules and thus achieve
greater or lesser overlap among the input membership functions µxi

j
. This is very useful

when dealing with inputs of different ranges where we would like the spreads of the inputs
to reflect this variability. Again, we select σ i

j = 2, for i = 1, 2 and j = 1, 2, which should
provide sufficient overlap between membership functions for the data in Table 7.1. We tune
f (x|θ) to interpolate the data set Z by selecting two rules (R = 2). If we choose the same
values for ci

j that we used in the BLS example we have

c1
1 = 1.5 c2

1 = 3

c1
2 = 3 c2

2 = 5

We have two inputs for each data-tuple, n = 2, and three input data-tuples in our training
set, m = 3. We assume that the training set may be increased by one each time step, so we
let the time index k = m. In the RLS we can cycle through the training data a number of
times to develop the fuzzy model but in this example we elect to cycle through the data
only once for demonstrative purpose.

Now we calculate the regression vector based on the training data set and obtain the
same regression vector ξ , using Eq. (7.6) as we did for the BLS example. Recall that in
the least squares algorithm the training data xi are mapped into ξ(xi) which is then used to
develop an output f (xi) for the model. We get the identical results for ξ(xi) as for the BLS
approach, i.e.,

ξ1(x
1) = 0.8634 ξ2(x

1) = 0.13661

ξ1(x
2) = 0.5234 ξ2(x

2) = 0.4766

ξ1(x
3) = 0.2173 ξ2(x

3) = 0.7827
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If we decide to use a weighted recursive least squares (WRLS) algorithm because the
parameters of the physical system θ vary slowly we employ a ‘‘forgetting factor,’’ λ, which
gives the more recent data more weight. The forgetting factor varies from 0 to 1 where
λ = 1 results in a standard RLS. For our example we choose to use λ = 1 in order to weight
all the training data equally. Before proceeding to find an estimate of the output, we need
to decide in what order to have the RLS process the data pairs (xi, yi). There are many
possibilities, but in this example we choose to cycle through the data just once beginning
with the first input pair and ending with the last (note that all the data-tuples are weighted
equally). As mentioned above, we could repeat this a number of times which may improve
our results; however, for illustrative purposes we decide to cycle through just once.

For the RLS algorithm we use a covariance matrix to determine θ̂ , which is calculated
using the regression vector and a previous covariant (see Eq. (7.11)). To do this, we must
first calculate an initial covariance matrix P0 using a parameter α and the identity matrix, I
(see Eq. (7.9)). P0 is the covariance matrix at time step 0 (k = 0) and is used to update the
covariance matrix, P, in the next time step. A recursive relation is established to calculate
values of the P matrix for each time step (see Eq. (7.10)). The value of the parameter α

should be greater than 0. Here we use a value of α = 2000; I is an R × R matrix. Next we
set our initial conditions for θ̂ , at time step 0 (k = 0); a good starting point for this would
be to use the results from our BLS example, thus

θ̂ (0) =
[

0.3647
8.1775

]

If these values are not readily available, another set of values may be used but more
cycles may be needed to arrive at good values. As mentioned previously, this example only
demonstrates the training of the fuzzy model using one cycle.

P0 = αI (7.9)

P0 = P(0) = 2000 ∗
[

1 0
0 1

]
=

[
2000 0

0 2000

]

Once P0 is determined we use it along with ξi(x
k=1) to calculate the next P and θ̂ for the

next step, P(k = 1) and θ̂ (k = 1). This is accomplished using Eqs. (7.10) and (7.11):

P(k) = 1

λ
{I − P(k − 1)ξ(xk)[λI + (ξ(xk))TP(k − 1)ξ(xk)]−1(ξ(xk))T}P(k − 1) (7.10)

θ̂ (k) = θ̂ (k − 1) + P(k)ξ(xk)[yk − (ξ(xk))Tθ̂ (k − 1)] (7.11)

For k = 1 and ξ1(x
1) = 0.8634, ξ2(x

1) = 0.1366,

P(1) = 1

1

{[
1 0
0 1

]
−

([
2000 0

0 2000

]
∗
[

0.8634
0.1366

])
∗
(

1 + [0.8634 0.1366] ∗
[

2000 0
0 2000

]

∗
[

0.8634
0.1366

])−1

∗ [0.8634 0.1366]

}
∗
[

2000 0
0 2000

]

P(1) =
([

1 0
0 1

]
−

[
0.9749 0.1543
0.1543 0.0244

])
∗
[

2000 0
0 2000

]
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P(1) =
[

50.12 −308.5
−308.5 1951

]

θ̂ (1) =
[

0.3467
8.1775

]
+

[
50.12 −308.5

−308.5 1951

]
∗
[

0.8634
0.1366

]
∗
(

1 − [
0.8634 0.1366

] ∗
[

0.3467
8.1775

])

θ̂ (1) =
[−0.1232

8.1007

]

The next time step, with k = 2 and ξ1(x
2) = 0.5234, ξ2(x

2) = 0.4766, results in the
following:

P(2) =
[

2.1193 −3.1614
−3.1614 8.7762

]

θ̂ (2) =
[−0.6016

11.1438

]

Finally for the third time step of the cycle, k = 3 and ξ1(x
3) = 0.2173, ξ2(x

3) = 0.7827,
results are

P(3) =
[

1.3684 −0.8564
−0.8564 1.7003

]

θ̂ (3) =
[

0.3646
8.1779

]

We have now calculated the vector parameters θ̂ , based on the three inputs needed
to model the system. For this example, performing another cycle with the training data set
changes θ̂ very little; this is left as an exercise at the end of the chapter. Now that θ̂ has been
determined it is used in conjunction with ξ in Eq. (7.7) to calculate the resulting output
values for the training data-tuples:

f (x1|θ̂ ) = [0.3646 8.1779] ∗
[

0.8634
0.1366

]
= 1.432

f (x2|θ̂ ) = [0.3646 8.1779] ∗
[

0.5234
0.4766

]
= 4.088

f (x3|θ̂ ) = [0.3646 8.1779] ∗
[

0.2173
0.7827

]
= 6.480

This compares well with the original output (Table 7.1). Modifying the input membership
function parameters may improve the predicted output; this is left as an exercise at the end
of this chapter.

GRADIENT METHOD

In the RLS method we noticed that the predicted output for the training data set could have
been improved and recommended modifying the input parameters. The gradient method
(GM) does just that and provides a means for tuning the parameters of the fuzzy model,
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i.e., the parameters of the rule-base. Recall that for the input membership function we have
the membership function centers and the spread of the membership functions. In addition
to the input parameters the GM provides a method to tune the output membership function.

Using the training data set Z of Table 7.1 we illustrate the development of a fuzzy
model using the GM. Like the least squares algorithms we must specify the rules; however,
the GM has the ability to tune the parameters associated with the rules based on the training
set. Thus the data used in the training set are of utmost importance in achieving a good
approximation. We shall illustrate the method with two rules (R = 2). The GM’s goal is to
minimize the error between the predicted output value, f (xm|θ), and the actual output value
ym through the quadratic function em, which we call the ‘‘error surface.’’ The equation for
this error surface is

em = 1
2 [f (xm|θ) − ym]2 (7.12)

Here m denotes the input–output data-tuple from the training data set. We want to find
the minimum value on this error surface which may be used to determine when the model
has achieved desired predictability. In this example we demonstrate how cycling through
the training data updates the rule-base parameters thus reducing the difference between the
predicted output and the actual output as provided here,

εm = f (xm|θ) − ym (7.13)

We can keep cycling through the training data set each time step (k) modifying the rule
parameters, thus decreasing εm and obtaining an improved fuzzy system. In this example
we update the rule-base using the first data-tuple of Table 7.1 which is then used in the first
time step. The second and third time steps, for the remaining data-tuples in Table 7.1, are
reserved for an exercise at the end of the chapter.

The GM requires that a step size λ be specified for each of the three parameters
being tuned (bi , ci

j , and σ i
j ) which are used by the algorithm to determine the updated rule

parameters and decrease the error value. Selecting a large step size will converge faster but
may risk overstepping the minimum value of em, and selecting a small step size means the
parameter converges very slowly [Passino and Yurkovich, 1998]. Here we designate the
step size for the error surface of the output membership centers, input membership centers,
and input membership spreads equal to 1, λ1, λ2, and λ3 = 1, respectively. In this example
the step size values were selected primarily to simplify the calculations.

The algorithm requires that initial values for the rules be designated, but these rules
are updated through the iterations with each time step (i.e., the next data-tuple). Thus, to
initiate the algorithm for the first rule we choose x1, y1 for the input and output membership
function centers and select the input spreads to be equal to 1. For the second rule we choose
x2, y2 as the input and output membership function centers and select the input spreads to
be equal to 1. It is important to note that these values initiate the algorithm and are updated
by the process to obtain a better model to predict the output in the first time step, i.e., k = 1.
These initiating values correspond to the zero time step (k = 0):[

c1
1 (0)

c1
2 (0)

]
=

[
0
2

] [
σ 1

1 (0)

σ 1
2 (0)

]
=

[
1
1

]
b1(0) = 1

[
c2

1 (0)

c2
2 (0)

]
=

[
2
4

] [
σ 2

1 (0)

σ 2
2 (0)

]
=

[
1
1

]
b2(0) = 5
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Let us calculate the predicted outputs for the current fuzzy model. First we need to calculate
the membership values for data-tuples of Table 7.1, using

µi(x
m, k = 0) =

n∏
j=1

exp


−1

2

(
xm

j − ci
j (k = 0)

σ i
j (k = 0)

)2

 (7.14)

µ1(x
1, 0) = exp

[
−1

2

(
0 − 0

1

)2
]

∗ exp

[
−1

2

(
2 − 2

1

)2
]

= 1

µ1(x
2, 0) = exp

[
−1

2

(
2 − 0

1

)2
]

∗ exp

[
−1

2

(
4 − 2

1

)2
]

= 0.0183156

µ1(x
3, 0) = exp

[
−1

2

(
3 − 0

1

)2
]

∗ exp

[
−1

2

(
6 − 2

1

)2
]

= 3.72665 × 10−6

µ2(x
1, 0) = exp

[
−1

2

(
0 − 2

1

)2
]

∗ exp

[
−1

2

(
2 − 4

1

)2
]

= 0.0183156

µ2(x
2, 0) = exp

[
−1

2

(
2 − 2

1

)2
]

∗ exp

[
−1

2

(
4 − 4

1

)2
]

= 1

µ2(x
3, 0) = exp

[
−1

2

(
3 − 2

1

)2
]

∗ exp

[
−1

2

(
6 − 4

1

)2
]

= 0.082085

From the membership values the training data set has in the current rule-base we obtain the
fuzzy output from Eq. (7.3) as follows:

f (xm|θ(k = 0)) =

R∑
i=1

bi (0)

n∏
j=1

exp


− 1

2

(
xm

j − ci
j (k = 0)

σ i
j (k = 0)

)2



R∑
i=1

R∏
j=1

exp


− 1

2

(
xm

j − ci
j (k = 0)

σ i
j (k = 0)

)2



f (x2|θ(0)) =
1 ∗ exp

[
− 1

2

(
2 − 0

1

)2
]

∗ exp

[
− 1

2

(
4 − 2

1

)2
]

+ 5 ∗ exp

[
− 1

2

(
2 − 2

1

)2
]

∗ exp

[
− 1

2

(
4 − 4

1

)2
]

exp

[
− 1

2

(
2 − 0

1

)2
]

∗ exp

[
− 1

2

(
4 − 2

1

)2
]

+ exp

[
− 1

2

(
2 − 2

1

)2
]

∗ exp

[
− 1

2

(
4 − 4

1

)2
]

f (x2|θ(0)) = 1 ∗ µ1(x
2, 0) + 5 ∗ µ2(x

2, 0)

µ1(x2, 0) + µ2(x2, 0)

f (x2|θ(0)) = 1 ∗ 0.0183156 + 5 ∗ 1

1.083156
= 4.92805

f (x3|θ(0)) = 1 ∗ µ1(x
3, 0) + 5 ∗ µ2(x

3, 0)

µ1(x3, 0) + µ2(x3, 0)

f (x3|θ(0)) = 1 ∗ 0.00000372665 + 5 ∗ 0.082085

0.00000372665 + 0.082085
= 4.999818
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f (x1|θ(0)) = 1 ∗ µ1(x
1, 0) + 5 ∗ µ2(x

1, 0)

µ1(x1, 0) + µ2(x1, 0)

f (x1|θ(0)) = 1 ∗ 1 + 5 ∗ 0.0183156

1 + 0.0183156
= 1.0719447

To compute the approximate error between the predicted output values and the actual output
values, we use Eq. (7.12):

em = 1
2 [f (xm|θ(k = 0)) − ym]2

e1 = 1
2 [1.0719447 − 1]2 = 2.58802 × 10−3

e2 = 1
2 [4.928055 − 5]2 = 2.58802 × 10−3

e3 = 1
2 [4.999818 − 6]2 = 0.500182

From the above results it can be seen that the algorithm maps the first two data points much
better than the third. The predicted output is improved by cycling through the model with
the training data set. The rule-base parameters are modified and improved after each time
step; through this process the algorithm will learn to map the third data pair but does not
forget how to map the first two data pairs.

Now we demonstrate how the GM updates the rule-base parameters bi , ci
j , and σ i

j

using the first time step, k = 1. Note that the first time step uses the first data-tuple of the
training set, the second time step uses the second data-tuple, and the third time step uses
the third data-tuple. We could cycle through the training data set repeatedly to improve
the algorithm’s predictability, which is what the GM does. We start by calculating the
difference between the predicted fuzzy output and the actual output for the first data-tuple
of the training data set, using Eq. (7.15). We then use this value to update the parameters of
our rule-base using Eqs. (7.16), (7.17), and (7.18).

εm(k = 0) = f (xm|θ(k = 0)) − ym (7.15)

ε1(0) = 1.0719447 − 1 = 0.0719447

We begin with the output membership function centers using

bi(k) = bi(k − 1) − λ1(εk(k − 1))
µi(x

k, k − 1)

R∑
i=1

µi(x
k, k − 1)

(7.16)

b1(1) = b1(0) − λ1 ∗ (ε1(0))
µ1(x

1, 0)

µ1(x1, 0) + µ2(x1, 0)

b1(1) = 1 − 1 ∗ (0.0719447)

(
1

1 + 0.0183156

)
= 0.964354

b2(1) = b2(0) − λ1 ∗ (ε1(0))
µ2(x

1, 0)

µ1(x1, 0) + µ2(x1, 0)
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b2(1) = 5 − 1 ∗ (0.0719447)

(
0.0183156

1 + .0183156

)
= 4.998706

Then the input membership function centers for the rule-base are updated based on the first
time step k = 1:

ci
j (k) = ci

j (k − 1) − λ2εk(k − 1)




bi(k − 1) − f (xk|θ(k − 1))

R∑
i=1

µi(x
k, k − 1)




∗ µi(x
k, k − 1)

(
xk

j − ci
j (k − 1)

(σ i
j (k − 1))2

)
(7.17)

c1
1(1) = c1

1(0) − 1 ∗ ε1(0)

(
b1(0) − f (x1|θ(0))

µ1(x1, 0) + µ2(x1, 0)

)
∗ µ1(x

1, 0)

(
x1

1 − c1
1(0)

(σ 1
1 (0))2

)

c1
1(1) = 0 − 1 ∗ (0.0719447) ∗

(
1 − 1.0719447

1 + 0.0183156

)
∗ 1 ∗

(
0 − 0

(1)2

)
= 0

c1
2(1) = c1

2(0) − 1 ∗ ε1(0)

(
b1(0) − f (x1|θ(0))

µ1(x1, 0) + µ2(x1, 0)

)
∗ µ2(x

1, 0)

(
x1

2 − c1
2(0)

(σ 1
2 (0))2

)

c1
2(1) = 2 − 1 ∗ (0.0719447) ∗

(
1 − 1.0719447

1 + 0.0183156

)
∗ 0.0183156 ∗

(
2 − 2

(1)2

)
= 2

Since the input membership functions for the first rule are the first data-tuples, the updated
centers do not change. The time step will affect the second rule because the rule’s parameters
are based on the second data-tuple of the training data set:

c2
1(1) = c2

1(0) − 1 ∗ ε1(0)

(
b2(0) − f (x1|θ(0))

µ1(x1, 0) + µ2(x1, 0)

)
∗ µ2(x

1, 0)

(
x1

1 − c2
1(0)

(σ 2
1 (0))2

)

c1
2(1) = 2 − 1 ∗ (0.0719447) ∗

(
5 − 1.0719447

1 + 0.0183156

)
∗ 0.0183156 ∗

(
0 − 2

(1)2

)
= 2.010166

c2
2(1) = c2

2(0) − 1 ∗ ε1(0)

(
b2(0) − f (x1|θ(0))

µ1(x1, 0) + µ2(x1, 0)

)
∗ µ2(x

1, 0)

(
x1

2 − c2
2(0)

(σ 2
2 (0))2

)

c2
2(1) = 4 − 1 ∗ (0.0719447) ∗

(
5 − 1.0719447

1 + 0.0183156

)
∗ 0.0183156 ∗

(
2 − 4

(1)2

)
= 4.010166

As expected, the first time step would have an effect on the input membership functions for
the second rule. This is an iterative process and may take several iterations (time steps) to
obtain a desired fuzzy system model.
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Finally we update the input membership function spreads, using the follow-
ing equation:

σ i
j (k) = σ i

j (k − 1) − λ3 ∗ εk(k − 1) ∗




bi(k − 1) − f (xk|θ(k − 1))

R∑
i=1

µi(x
k, k − 1)




∗ µi(x
k, k − 1) ∗

(
(xk

j − ci
j (k − 1))2

(σ i
j (k − 1))3

)
(7.18)

σ 1
1 (1) = σ 1

1 (0) − 1 ∗ ε1(0)

(
b1(0) − f (x1|θ(0))

µ1(x1, 0) + µ2(x1, 0)

)
∗ µ1(x

1, 0) ∗
(

(x1
1 − c1

1(0))2

(σ 1
1 (0))3

)

σ 1
1 (1) = 1 − 1 ∗ (0.0719447)

(
1 − 1.0719447

1.0183156

)
∗ 1 ∗

(
(0 − 0)2

(1)3

)
= 1

σ 1
2 (1) = σ 1

2 (0) − 1 ∗ (0.0719447)

(
b1(0) − f (x1|θ(0))

µ1(x1, 0) + µ2(x1, 0)

)
∗ µ1(x

1, 0) ∗
(

(x1
2 − c1

2(0))2

(σ 1
2 (0))3

)

σ 1
2 (1) = 1 − 1 ∗ (0.0719447)

(
1 − 1.0719447

1.0183156

)
∗ 1 ∗

(
(2 − 2)2

(1)3

)
= 1

σ 2
1 (1) = σ 2

1 (0) − 1 ∗ (0.0719447)

(
b2(0) − f (x3|θ(0))

µ1(x1, 0) + µ2(x1, 0)

)
∗ µ2(x

1, 0) ∗
(

(x1
1 − c2

1(0))2

(σ 2
1 (0))3

)

σ 2
1 (1) = 1 − 1 ∗ (0.0719447)

(
5 − 1.0719447

1.0183156

)
∗ 0.0183156 ∗

(
(0 − 2)2

(1)3

)
= 0.979668

σ 2
2 (1) = σ 2

2 (0) − 1 ∗ (0.0719447)

(
b2(0) − f (x1|θ(0))

µ1(x1, 0) + µ2(x1, 0)

)
∗ µ2(x

1, 0) ∗
(

(x1
2 − c2

2(0))2

(σ 2
2 (0))3

)

σ 2
2 (1) = 1 − 1 ∗ (0.0719447)

(
5 − 1.0719447

1.0183156

)
∗ 0.0183156 ∗

(
(2 − 4)2

(1)3

)
= 0.979668

We now have completed one iteration (using one time step), which updated the parameters
of the rule-base. Further iterations with the training set will improve the predictive power
of the rule-base.

CLUSTERING METHOD

Fuzzy clustering is the partitioning of a collection of data into fuzzy subsets or clusters based
on similarities between the data [Passino and Yurkovich, 1998]. The clustering method
(CM), like the other methods described previously, develops a fuzzy estimation model, to
predict the output given the input. The algorithm forms rules (or clusters) with training
data using a nearest neighbor approach for the fuzzy system. This is demonstrated in the
following example where the same training data set used in the previous examples is again
used here (see Table 7.1).
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Recall that these data consist of two inputs (n = 2) and one output for each data-
tuple. Again we employ Gaussian membership functions for the input fuzzy sets, and delta
functions for the output functions. In addition, we make use of center-average defuzzification
and product premise for developing our fuzzy model which is given by f (x|θ) in Eq. (7.3);
however, for the clustering method we employ slightly different variables as shown below:

f (x|θ) =

R∑
i=1

Ai

n∏
j=1

exp


−

(
xj − vi

j

2σ

)2



R∑
i=1

Bi

n∏
j=1

exp


−

(
xj − vi

j

2σ

)2



(7.19)

In the above equation, R is the total number of rules, vi
j are the input membership function

centers, xj is the input, and σ is spread for the input membership functions.
In this example we initiate the parameters Ai and Bi which are then updated or

optimized by the algorithm during training of the fuzzy model to predict the output. This
is clarified later on in this section. Passino and Yurkovich [1998] make the following
recommendations on σ :

• A small σ provides narrow membership functions that may yield a less smooth fuzzy
system, which may cause the fuzzy system mapping not to generalize well for the data
points in the training set.

• Increasing the parameter σ will result in a smoother fuzzy system mapping.

The use of only one value for the spread may pose a problem when developing a
model for the inputs of different ranges. For instance, suppose it is desired to use five input
membership function centers for each input variable. Presume that the first input has a range
of 0 to 10, that the second input has a range of 20 to 200, and that the resulting width of
the membership functions for the first input would have to be much smaller than that of
the second. The use of only one spread to develop a model for systems such as this would
not work very well. This could be remedied by increasing the number of input membership
function centers for the second input.

The above parameters make up the vector θ , shown below, which is developed during
the training of the fuzzy model f (x|θ). The dimensions of θ are determined by the number
of inputs n and the number of rules, R, in the rule-base.

θ = [A1, . . . , AR, B1, . . . , BR, v1
1, . . . , v1

n, . . . , vR
1 , . . . , vR

n , σ ]T

The CM develops its rules by first forming cluster centers vj = [vj

1 , v
j

2 , . . . , v
j
n]T for the

input data. These cluster centers are formed by measuring the distance between the existing
R cluster centers and the input training data; if the distance is greater than a specified
maximum εf we add another cluster center (i.e., rule), otherwise the available cluster center
will suffice and we update the parameters A and B for that rule.

Let us begin the training of the fuzzy model by specifying the above parameters using
the first data-tuple in Table 7.1 to initiate the process. For this we use A1 = y1 = 1, B1 =
1, v1

1 = x1
1 = 0, v1

2 = x1
2 = 2, and σ = 0.3. We also specify the maximum distance between
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our cluster centers and the input data as εf = 3.0. Our fuzzy model f (x|θ) now has one
rule (R = 1) and the cluster centers for the input of this rule are

v1 =
[

0
2

]

Now using the second data-tuple

(
x2, y2

) =
([

2
4

]
, 5

)

we check if the clusters are applicable for this data-tuple or if another rule is needed. We
accomplish this by measuring the distance ε for each data-tuple and compare this value to
the specified εf :

εij = ∣∣xi − vl
∣∣ (7.20)

ε21 = ∣∣x2
1 − v1

1

∣∣
ε21 = |2 − 0| = 2 < εf = 3

ε22 = ∣∣x2
2 − v1

2

∣∣
ε22 = |4 − 2| = 2 < εf = 3

Thus there is no need to incorporate an additional cluster, as both ε11 and ε12 are
less than εf . However, we must update the existing parameters A1 and B1 to account for
the output of the current input data-tuple. Updating A1 modifies the numerator to better
predict the output value for the current input data-tuple while the updated B1 normalizes
this predicted output value. This is accomplished using the following equations:

Al = Aold
l + yi (7.21)

Bl = Bold
l + 1 (7.22)

A1 = Aold
1 + y1 = 1 + 5 = 6

B1 = Bold
1 + 1 = 1 + 1 = 2

This results in the following parameters for our fuzzy model:

θ = [A1 = 6, B1 = 2, v1
1 = 0, v1

2 = 2, σ = 0.3]T

Let us continue training our fuzzy model using the third data-tuple,

(x3, y3) =
([

3
6

]
, 6

)

ε31 = |x3
1 − v1

1 | = |3 − 0| = 3 = εf

ε32 = |x3
2 − v1

2 | = |6 − 0| = 6 > εf = 3

ε32 = 6 > εf = 3
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Since both the calculated distances are not less than the specified maximum distance
(εf = 3) we include another two additional clusters for the next rule. We now have two
rules, the second of which is based on the third data-tuple. The cluster centers for the second
rule are assigned the values equivalent to the input of the third data-tuple and parameter A2

is assigned a value equivalent to the output of the third data-tuple while B2 is assigned a
value of 1. The parameters needed for the fuzzy model are displayed below in the updated
parameter vector θ :

θ = [A1 = 6, A2 = 6, B1 = 2, B2 = 1, v1
1 = 0, v1

2 = 2, v2
1 = 3, v2

2 = 6, σ = 0.3]T

LEARNING FROM EXAMPLE

The LFE training procedure relies entirely on a complete specification of the membership
functions by the analyst and it only constructs the rules. Again we use the data set Z

illustrated in Table 7.1 as the training data set for the fuzzy model. Like the other examples
we initiate the algorithm by designating two rules for this data set, R = 2. For this method
we use triangular membership functions rather than Gaussian for both the input and output.
This is done to demonstrate the use of other types of membership functions.

We define the expected range of variation in the input and output variables:

Xi = [x−
i , x+

i ], i = 1, 2 Y = [y−, y+]

We designate x−
1 = 0, x+

1 = 4, x−
2 = 0, x+

2 = 8, y− = −1 and y+ = 9 as a choice for known
regions within which all data points lie. Recall that a triangular membership function was
defined mathematically in Eq. (7.2), which is rewritten here as

µc(u) =




max

{
0, 1 + u − c

0.5w

}
if u ≤ c

max

{
0, 1 + c − u

0.5w

}
if u > c

In the above equation, u is the point of interest, c is the membership function center, and w

is the base width of the membership function (see Fig. 7.3).
Next the membership functions are defined for each input and output universe of

discourse. Our system has two inputs and one output, thus we have X
j

1 , Xk
2, and Y l .

It is important to recognize that the number of membership functions on each universe
of discourse affects the accuracy of the function approximations and in this example
X1 has fewer membership functions than does X2. This may occur if the first input
is limited to a few values and the second input has more variability. Here X

j

1 , Xk
2,

and Y l denote the fuzzy sets with associated membership functions µ
X

j

i

(xi) and µYj (y)

respectively. These fuzzy sets and their membership functions are illustrated in Figs. 7.8, 7.9,
and 7.10.

In both Figs. 7.8 and 7.9 the membership functions are saturated (membership value
for the fuzzy set is equal to 1) at the far left and right extremes. In this case we use
Eqs. (7.23) and (7.24) to determine the membership values for the leftmost and rightmost
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FIGURE 7.8
Specified triangular input membership functions for x1.
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FIGURE 7.9
Specified triangular input membership functions for x2.
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FIGURE 7.10
Output membership functions for y.

membership functions, respectively:

µL(u) =



1, if u ≤ cL

max

{
0, 1 + cL − u

0.5wL

}
, otherwise

(7.23)

µR(u) =

 max

{
0, 1 + u − cR

0.5wR

}
, if u ≤ cR

1, otherwise
(7.24)
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In the above equations cL and cR specify the point on the horizontal axis when full
membership begins for the leftmost and rightmost membership functions (µL and µR),
respectively, while wL and wR specify two times the width of the nonunity and nonzero
part of µL and µR, respectively.

Now for the first training data (d) point for the fuzzy system we have

d(1) = (x1, y1) =
([

0
2

]
, 1

)

which we add to the rule-base since there are currently no other rules in the set:

R1 := if x1 is X1
1 and x2 is X3

2 then y is Y 1.

Using Eqs. (7.2), (7.23), or (7.24) we can determine the membership values that the
first training data point has in the two existing rules. These values are then used to calculate
the ‘‘degree of attainment’’ using Eq. (7.25). The data-tuple in d(1) has full membership
in the leftmost membership of Fig. 7.8 (fuzzy value 0 or X1

1), full membership in the third
membership function from the left in Fig. 7.9 (fuzzy value 2 or X3

2) and membership equal
to 1 in the output membership function for the determined rule-base:

µX1
1
(x1 = 0) = 1

µX3
2
(x2 = 2) = 1

µY 1(y = 1) = 1

degree(Ri ) = µ
X

j

1
(x1)

∗µXk
2
(x2)

∗µYl (y) (7.25)

Then,
degree(R1) = µX1

1
(x1)

∗µX3
2
(x2)

∗µY 1(y) = 1∗1∗1 = 1

We now move on to the next data-tuple, d(2):

d(2) =
([

2
4

]
, 5

)

Since the existing rule does not model d(2) we add another rule to the rule-base, which is
as follows:

R2 := if x1 is X3
1 and x2 is X5

2 then y is Y 3.

The data tuple in d(2) has full membership in the center membership function of
Fig. 7.8 (fuzzy value 2 or X3

1), full membership in the fifth membership function from the
left in Fig. 7.9 (fuzzy value 4 or X5

2), and a membership value of 1 in the fuzzy set of 4:

µX3
1
(x1 = 2) = 1

µX5
2
(x2 = 4) = 1

µY 3(y = 5) = 1
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where we get

degree(R1) = µX1
1
(x1)

∗µX3
2
(x2)

∗µY 1(y) = 0∗0∗0 = 0

degree(R2) = µX3
1
(x1)

∗µX5
2
(x2)

∗µY 3(y) = 1∗1∗1 = 1

Of the rules specified, the second training data-tuple has zero membership in Rule 1, R1,
and full membership in Rule 2, R2. Thus, it was beneficial to add Rule 2 to the rule-base,
since it represents d(2) better than any other existing rule.

Now we move on to the third data-tuple in the training data set:

d(3) =
([

3
6

]
, 6

)

Again the existing rules in the rule-base do not model d(3), thus another rule should be
added. Since the data set is so small we find that we are including an additional rule for
each data-tuple in the data set. Ideally we do not prefer that a rule be specified for every
data-tuple in the training set; although, earlier, it was mentioned that Z is a representative
portion of a larger data set, so in this example there would be more data points in the entire
set. If we were to train a fuzzy system with a much larger data set Z, we would find that
there will not be a rule for each of the m data-tuples in Z. Some rules will adequately
represent more than one data pair. Nevertheless, the system can be improved by designating
the fuzzy sets X

j

1 , Xk
2, and Y l differently and perhaps avoiding the addition of unnecessary

rules to the rule-base. We do not attempt this correction here but continue with the addition
of another rule to the rule-base:

R3 = if x1 is X4
1 and x2 is X7

2 then y is Y 3.

degree(R1) = µX1
1
(x1)

∗µX3
2
(x2)

∗µY 1(y) = 0∗0∗0 = 0

degree(R2) = µX3
1
(x1)

∗µX5
2
(x2)

∗µY 3(y) = 0∗0∗0.5 = 0

degree(R3) = µX4
1
(x1)

∗µX7
2
(x2)

∗µY 3(y) = 1∗1∗0.5 = 0.5

The third data-tuple has 0.5 membership in Rule 3 but has zero membership in the other
rules. We now have a complete rule-base and, thus, a fuzzy model for the system. LFE is
a very useful algorithm for developing a fuzzy model because it can be used as a basis in
other algorithms for developing a stronger model. For instance, it can be used to form a
rule-base which can then be improved in the RLS algorithm to refine the fuzzy model.

MODIFIED LEARNING FROM EXAMPLE

Unlike the LFE algorithm which relies entirely on user-specified membership functions,
the MLFE calculates both membership functions and rules.

In this example we again employ delta functions for the outputs and Gaussian
membership functions for the inputs. Again, bi is the output value for the ith rule, ci

j is the
point in the j th input universe of discourse where the membership function for the ith rule
achieves a maximum, and σ i

j (σ i
j > 0) is the spread of the membership function for the j th

input and the ith rule. Recall that θ is a vector composed of the above parameters, where
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the dimensions of θ are determined by the number of inputs n and the number of rules R in
the rule-base.

Again we use the data in Table 7.1 to develop a fuzzy model. Let us begin by
specifying an ‘‘initial fuzzy system’’ that the MLFE procedure will use to initialize the
parameters in θ . We initiate the process by setting the number of rules equal to 1, R = 1,
and for b1, c1

1, and c1
2 we use the first training data-tuple in Z and the spreads will be

assumed to be equal to 0.5. It is important to note that the spreads cannot be set at zero, to
avoid a division by zero error in the algorithm.

b1 = y1 = 1 c1
1 = 0 c1

2 = 2 σ 1
1 = σ 1

2 = 0.5

For this example we would like the fuzzy system to approximate the output to within a
tolerance of 0.25, thus we set εf = 0.25. We also introduce a weighting factor W which is
used to calculate the spreads for the membership functions, as given later in Eq. (7.28). The
weighting factor W is used to determine the amount of overlap between the membership
function of the new rule and that of its nearest neighbor. This is demonstrated later in this
section. For this example we will set the value of W equal to 2.

Following the initial procedure for the first data-tuple, we use the second data-tuple,

(x2, y2) =
([

2
4

]
, 5

)

and compare the data-tuple output portion y2 with the existing fuzzy system output value,
f (x2|θ). The existing fuzzy system contains only the one rule which was previously added
to the rule-base:

f (x2|θ) =
1∗ exp

[
−1

2

(
2 − 0

0.5

)2
]

∗ exp

[
−1

2

(
4 − 2

0.5

)2
]

exp

[
−1

2

(
2 − 0

0.5

)2
]

∗ exp

[
−1

2

(
4 − 2

0.5

)2
] = 1

Next we determine how accurate or adequate our fuzzy system is at mapping the
information. To do this we take the absolute value of Eq. (7.15), where m denotes the
data-tuple m = 2:

|f (x2|θ) − y2| = |1 − 5| = 4

This value is much greater than the tolerance specified, εf = 0.25. Thus we add a rule
to the rule-base to represent (x2, y2) by modifying the current parameters θ by letting
R = 2, b2 = y2, and c2

j = x2
j for j = 1, 2:

b2 = 5 c2
1 = 2 c2

2 = 4

If the calculated εf had been less than the specified tolerance there would have been no
need to add another rule.

Next we develop the spreads σ i
j to adjust the spacing between membership functions

for the new rule. MLFE does this in a manner that does not distort what has already been
learned, so there is a smooth interpolation between training points. The development of σ i

j
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for i = R is accomplished through a series of steps, the first step being the calculation of
the distances between the new membership function center and the existing membership
function centers for each input,

|ci ′
j − ci

j | (7.26)

These values are then placed in the vector hj below:

h
i ′
j = {|ci ′

j − ci
j | : i ′ = 1, 2, . . . , R, i ′ �= i}

For each input j the smallest nonzero element of this vector of distances h
i ′
j is the nearest

neighbor to the newly developed input membership function center for any added rule. This
nearest neighbor is then used to create the relative width of the membership function for
the new rule. If all the distances are zero in this vector, which means all the membership
functions defined before are at the same center value, do not modify the relative width of
the new rule but keep the same width defined as for the other input membership functions.
The determination of this minimum is accomplished using

kj = min(hj ) (7.27)

where j = 1, 2, . . . , n and ci
j are fixed.

For instance, in our example we have the following:

i ′ = 1 and j = 1 |ci ′
j − ci

j | : i = 2

|c1
1 − c2

1| = |2 − 0| = 2

i ′ = 1 and j = 2 |ci ′
j − ci

j | : i = 2

|c1
2 − c2

2| = |4 − 2| = 2

and our vector of distances for each input consists of only one nonzero value:

h
2
1 = {2} h

2
2 = {2}

Therefore, c1
1 is closest to c2

1 and is used to develop the relative width of the membership
function for the first input of the new rule and c1

2 is the nearest neighbor to c2
2. The weighting

factor W is used to determine the amount of overlap between the membership function of
the new rule with that of its nearest neighbor. This is accomplished using

σ i ′
j = 1

W
|ci ′

j − cmin
j | (7.28)

where cmin
j is the nearest membership function center to the new membership function

center ci ′
j .

As mentioned above, we select a value of W = 2 which results in the following
relative widths for the membership functions of the new rule:

σ 2
1 = 1

W
|c2

1 − c1
1| = 1

2
|2 − 0| = 1

σ 2
2 = 1

W
|c2

2 − c1
2| = 1

2
|4 − 2| = 1
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The spread (relative width of the membership function) could be altered by increasing
or decreasing W , which results in more or less, respectively, overlapping of the input
membership functions.

We now have a rule-base consisting of two rules and θ consists of

θ = [b1, b2, c1
1, c1

2, c2
1, c2

2, σ 1
1 , σ 1

2 , σ 2
1 , σ 2

2 ]T

where b1 = 1 b2 = 5

c1
1 = 0 c2

1 = 2

c1
2 = 2 c2

2 = 4

σ 1
1 = 0.5 σ 2

1 = 1

σ 2
1 = 0.5 σ 2

2 = 1

We now move on to the third data-tuple in the training set to determine if our rule-base is
adequate and if we have to include any additional rules:

f (x3|θ) =
1 ∗ exp

[
− 1

2

(
3 − 0

1

)2
]

∗ exp

[
− 1

2

(
6 − 2

1

)2
]

+ 5 ∗ exp

[
− 1

2

(
3 − 2

1

)2
]

∗ exp

[
− 1

2

(
6 − 4

1

)2
]

exp

[
− 1

2

(
3 − 0

1

)2
]

∗ exp

[
− 1

2

(
6 − 2

1

)2
]

+ exp

[
− 1

2

(
3 − 2

1

)2
]

∗ exp

[
− 1

2

(
6 − 4

1

)2
]

f (x3|θ) = 0.410428

0.08208872
= 5

Again we determine how accurate or adequate our fuzzy system is at mapping the
information:

|f (x3|θ) − y3| = |5 − 6| = 1 > εf = 0.25

According to our specified tolerance, another rule is necessary to adequately model our
training data:

b3 = 6 c3
1 = 2 c3

2 = 4

We now can determine the spreads for the third rule. We begin with Eq. (7.26) to form the
vector of distances:

i ′ = 3 and j = 1 {|ci ′
j − ci

j | : i = 1, 2}
{|c3

1 − c1
1|, |c3

1 − c2
1|}

{3, 1}
i ′ = 3 and j = 2 {|ci ′

j − ci
j | : i = 1, 2}

{|c3
2 − c1

2|, |c3
2 − c1

2|}
{4, 2}

h
3
1 =

{
3
1

}
h

3
2 =

{
4
2

}

In the distance vector h
3
1 the minimum nonzero value is 1 and in the distance vector

h
3
2 the minimum nonzero value is 2. Therefore, the nearest neighbor to the first input
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membership function center is c2
1 and the nearest neighbor to the second input membership

function center is c2
2, which are both used with the weighting factor and Eq. (7.28) to

calculate the spreads for each membership function:

σ 3
1 = 1

W
|c3

1 − c2
1| = 1

2
|3 − 2| = 1

2

σ 3
2 = 1

W
|c3

2 − c2
2| = 1

2
|6 − 4| = 1

The resulting rule-base is the following:

θ = [b1, b2, b3, c1
1, c1

2, c2
1, c2

2, c3
1, c3

2, σ 1
1 , σ 1

2 , σ 2
1 , σ 2

2 , σ 3
1 , σ 3

2 ]T

where b1 = 1 b2 = 5 b3 = 6

c1
1 = 0 c2

1 = 2 c3
1 = 2

c1
2 = 2 c2

2 = 4 c3
2 = 4

σ 1
1 = 0.5 σ 2

1 = 1 σ 3
1 = 0.5

σ 2
1 = 0.5 σ 2

2 = 1 σ 3
2 = 1

Example 7.1. Fuzzy modeling has been employed to generate a rule-base to model a ‘‘syntactic
foam’’ from only limited input–output data obtained through various compressive tests. Due
to their light weight and high compressive strength, foams have been incorporated into the
design of many engineering systems. This is especially true in the aircraft industry where these
characteristics are extremely important. For instance, aluminum syntactic foam is theorized
to have a shear strength that is three times greater than existing aluminum [Erikson, 1999].
Syntactic foams are composite materials formed by mechanically combining manufactured
material bubbles or microspheres with resin. They are referred to as syntactic because the
microspheres are arranged together, unlike blown foams which are created by injecting gas
into a liquid slurry causing the bubbles to solidify and producing foam [Erikson, 1999]. As is
often the case with newly developed materials, the cost of preparing the material is high; thus,
only limited information is available on the material.

A newly developed syntactic foam has been selected as an encasing material due to
its light weight, high compressive strength, isotropic behavior, low porosity, and because the
material is noncombustible and can be machined to a specific shape and tolerance. Due to the
high costs involved in preparing the syntactic foam, only a limited amount has been made.
Fortunately, in addition to the two pieces of syntactic foam specimens prepared for use as
the encasing material, four specimens were prepared for conducting triaxial compression tests.
The four specimens each had a height of 2.800 ± 0.001 inches and a diameter of 1.400 ±
0.001 inches, as shown in Fig. 7.11. The triaxial compression test is capable of applying two
different compressive stresses to the sample, a radial (minor principal) and a longitudinal
(major principal) stress. In each test performed the compressive pressure (stress) was gradually
increased causing the sample to deform. The first test applied a continuous equivalent major
and minor principal compressive stress to the specimen (hydrostatic compression) and the
yield stress was observed at about 10,000 psi. In the second test the major and minor principal
stresses were gradually increased to a value of 3750 psi; the minor principal stress was then
held constant at this value while the major principal stress was continuously increased. In order
to probe a good portion of stress space the same procedure was followed for the third and
fourth tests; however, the minor principal stress was held constant at values of 6500 and 9000
psi, respectively, for these.

In each of the previous tests, the experimentalist found that maintaining the minor
principal stress constant was difficult and the minor principal stress was noted to fluctuate by as
much as ±200 psi. The experimentalist also noted that at about the yielding stress the syntactic
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FIGURE 7.11
Syntactic foam cylinders.

foam began to harden and exhibit nonlinear behavior. A portion of the nonlinear data collected
from the triaxial compression tests is provided in Table 7.2. Using the information provided
by the experimentalist and the portion of the input–output data we develop a fuzzy model
using the modified learning from example (MLFE) algorithm to obtain a general rule-base for
governing the system, followed by the recursive least squares (RLS) algorithm to fine-tune the
rule-base and the model parameters.

We begin by specifying a rule and its parameters that is used by the MLFE algorithm to
develop the remainder of the rules in the rule-base. To do this we use one of the data-tuples from

TABLE 7.2
Major and minor principal stress and resulting longitudinal deformation

Training set Testing set

Major (x1 psi) Minor (x2 psi) δL (inch) Major (x1 psi) Minor (x2 psi) δL (inch)

12,250 3750 3.92176E-2 12,911.1 12,927 2.0273E-2
11,500 6500 2.90297E-2 11,092.4 10,966.4 1.59737E-2
11,250 9000 2.51901E-2 14,545.8 14,487.1 2.40827E-2
11,000 11,000 1.63300E-2 13,012.1 12,963.8 2.02157E-2
11,960 9000 2.50463E-2 12,150 3750 3.8150E-2
12,140 6510 3.22360E-2 12,904 3744.8 4.28953E-2
13,000 3750 4.37127E-2 14,000 3770.4 5.05537E-2
13,800 3750 4.91016E-2 11,406 6520.3 2.83967E-2
12,950 6500 3.60650E-2 12,100 6535.5 3.2120E-2
12,600 9000 2.80437E-2 13,109 6525.3 3.69773E-2
11,170 11,110 1.65160E-2 11,017.6 9000.7 2.11967E-2
12,930 13,000 2.02390E-2 12,105.9 8975.1 2.57443E-2
13,000 12,500 2.36600E-2 12,700 900.0 2.8504E-2
11,130 9000 2.19333E-2
11,250 6500 2.77190E-2
12,000 3750 3.88243E-2
12,900 3750 4.28953E-2
11,990 6500 3.15040E-2
12,010 9000 2.58113E-2
12,000 12,000 1.95610E-2
14,490 14,450 2.41490E-2
12,900 9000 2.97153E-2
13,220 6500 3.81633E-2
14,000 3750 5.05537E-2
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FIGURE 7.12
Membership functions for major principal stress.
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FIGURE 7.13
Membership functions for minor principal stress.

the training set: say we use x1 = 12,600 psi and x2 = 9000 psi as initial input membership
function centers and δL = 2.8 inch as the initial output (to simplify the accounting we use 2.8
rather than 0.028). We set the relative width of the first input membership functions center
at 250 based on the range between similar inputs. For instance, two similar input tuples are
x1 = 12,250 psi and x2 = 3750 psi, and x1 = 12,100 psi and x2 = 3750 psi. The relative width
of the second input membership function is set at 150 based on the information provided by the
experimentalist. For the weighting factor we choose a value of 2.1 and set the test factor equal
to 0.45. MLFE uses this to develop the remainder of the membership functions (Figs. 7.12
and 7.13) and the rule-base shown in Table 7.3. Note that the actual output is moved two
decimal places to the left because of the simplification to the output mentioned above.

For example,

If A∼1 and B∼1 then f (x) = 2.80 × 10−2

If A∼2 and B∼2 then f (x) = 3.9218 × 10−2

If A∼3 and B∼3 then f (x) = 3.9218 × 10−2

We now have the information needed to employ the RLS algorithm to improve our fuzzy model.
Before we move on to specifying the rule parameters needed by the RLS algorithm we

point out that the experimentalist, in this example, observed that the minor principal stress
fluctuated by as much as 200 psi and the spread for this input developed by MLFE is as high as
1309 psi. This is a direct result of the weighting factor, which forces the adjacent membership
functions to approach one another by increasing the spread. For instance, the spreads of the
membership functions with c1 = 12,250 psi and c1 = 12,000 psi increase. Since the input
membership functions are significantly apart from one another, a low value for the weighting
factor forces the spread of the membership functions to be greater. Both of the inputs (x1 and
x2) are based on the one weighting factor and we can improve the spreads by designating one
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TABLE 7.3
Rule-base

Input parameters Output parameter

c1(psi) c2 (psi) σ1 σ2
f (x) (inch)

A∼1 = 12,600 B∼1 = 9000 250 25 2.80E-2
A∼2 = 12,250 B∼2 = 3750 166.7 2500 3.9218E-2
A∼3 = 11,500 B∼3 = 6500 357.143 1190.476 2.9030E-2
11,250 9000 119.048 1190.476 2.2519E-2
11,000 11,000 119.048 950.2381 1.6330E-2
11,960 9000 138.095 950.2381 2.5046E-2
13,000 3750 190.476 1309.524 4.3712E-2
13,800 3750 380.952 1309.524 4.9102E-2
12,950 6500 23.810 1190.476 3.6065E-2
12,930 13,000 9.524 952.381 2.0239E-2
13,000 12,500 23.81 238.095 2.3660E-2
12,000 12,000 19.048 238.095 1.9561E-2
14,490 14,450 328.571 690.476 2.4149E-2
13,220 6500 104.762 1166.667 3.8163

TABLE 7.4
Rule-base parameters for RLS algorithm

Input parameters Regression parameter

c1 (psi) c2 (psi) σ1 σ2
θ̂

12,600 9000 250 250 5
12,250 3750 166.7 250 5
11,500 6500 357.143 250 5
11,250 9000 119.048 250 5
11,000 11,000 119.048 250 5
11,960 9000 138.095 250 5
13,000 3750 190.476 250 5
13,800 3750 380.952 250 5
12,950 6500 23.810 250 5
12,930 13,000 9.524 250 5
13,000 12,500 23.81 250 5
12,000 12,000 19.048 250 5
14,490 14,450 328.571 250 5
13,220 6500 104.762 250 5

weighting factor for each input. For now we simply modify the spread of the second input to
about 250 psi and continue with the RLS algorithm.

The rule-base used by the RLS algorithm is shown in Table 7.4; additionally, we use the
data-tuples of Table 7.2 as the training set, and the initial θ̂ (a vector, in this case consisting
of 14 values for the 14 rules used) with values equal to 5. We use nonweighted least squares
regression (so λ = 1), set α = 2000, and cycle through the training set 100 times to develop a
fuzzy model.
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TABLE 7.5
Resulting values included in vector θ̂ from RLS algorithm

θ̂ 2.8884 3.9018 3.0122 2.2226 1.6423 2.5246 4.2712 4.9832 3.5991
θ̂ 2.0232 2.4142 1.9561 2.4149 3.8163

TABLE 7.6
Predicted output values for the testing set

Testing set Predicted output

Major (x1 psi) Minor (x2 psi) δL (inch)
δL (inch)

12,911.1 12,927 2.0273E-2 2.0231E-2
11,092.4 10,966.4 1.59737E-2 1.6423E-2
14,545.8 14,487.1 2.40827E-2 2.4149E-2
13,012.1 12,963.8 2.02157E-2 2.0820E-2
12,150 3750 3.8150E-2 3.9020E-2
12,904 3744.8 4.28953E-2 4.3184E-2
14,000 3770.4 5.05537E-2 4.9384E-2
11,406 6520.3 2.83967E-2 3.0122E-2
12,100 6535.5 3.2120E-2 3.0122E-2
13,109 6525.3 3.69773E-2 3.8163E-2
11,017.6 9000.7 2.11967E-2 2.2226E-2
12,105.9 8975.1 2.57443E-2 2.5963E-2
12,700 900.0 2.8504E-2 2.8884E-2

Once the fuzzy model has been developed we use the testing data of Table 7.2 to verify
that the model is working properly. The resulting values included in vector θ̂ are shown in
Table 7.5 and the testing set with its predicted output is shown Table 7.6.

SUMMARY

This chapter has summarized six methods for use in developing fuzzy systems from
input–output data. Of these six methods, the LFE, MLFE, and clustering methods can be
used to develop fuzzy systems from such data. The remaining three methods, RLS, BLS,
and the gradient methods, can be used to take fuzzy systems which have been developed by
the first group of methods and refine them (or tune them) with additional training data.

Fuzzy systems are useful in the formulation and quantification of human observations.
These observations eventually are manifested in terms of input–output data; these data
can take the form of numbers, images, audio records, etc., but they all can be reduced
to unit-based quantities on the real line. We might ask: ‘‘in what forms are the human
observations manifested?’’ We could suggest that one form is linguistic, which would be
a conscious form where a human could express directly their observations as knowledge
expressed in the form of rules. Or, the form of knowledge could be subconscious in the
sense that the observations could be measured or monitored by some device, but where the
behavior cannot yet be reduced to rules by a human observer (an example of this would be
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the parallel parking of a car: a human can do it, but they might have difficulty describing
what they do in a canonical rule form). The latter form of information, that from measurable
observations, comprises the input–output data that are dealt with in this chapter. Once the
rules of the system are derived from the input–output data, they can be combined with other
rules, perhaps rules that come from a human, and together (or separately) they provide a
contextual meaning to the underlying physics of the problem.

But, whether the rules come directly from a human or from methods such as those
illustrated in this chapter, the resulting simulations using fuzzy systems theory are the
same. A unique property of a fuzzy system is that the rules derived from the observational
data provide knowledge of the system being simulated; this knowledge is in the form of
linguistic rules which are understandable to a human in terms of the underlying physical
system behavior. In contrast to this, other model-free methods such as neural networks can
also be used in simulation, but the information gleaned about the number of layers, number
of neurons in each layer, path weights between neurons, and other features of a neural
network reveals to the human almost nothing about the physical process being simulated.
This is the power and utility of a fuzzy system model.
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PROBLEMS

7.1. Earlier in this chapter the recursive least squares algorithm was demonstrated using training set
Z of Table 7.1; however, only one cycle was performed using the input data tuples. Perform an
additional cycle with the input data-tuples to determine if the predicted output changes.

7.2. Earlier in this chapter the recursive least squares algorithm was demonstrated using training set
Z of Table 7.1.
(a) Modify the input membership functions centers to the following values and develop a fuzzy

model for the Z of Table 7.1 using the RLS algorithm (perform two cycles). Note that the
remaining rule-base parameters are the same as those used in the text, e.g.,

σ i
j = 2 and θ̂ (0) =

[
0.3647
8.1775

]

c1
1 = 1 c2

1 = 3

c1
2 = 3 c2

2 = 6

(b) In part (a) the input membership function centers were slightly different than those used
in the text but the spreads were the same values as those used in the text. Now change the
spreads to the following values, σ 1

1 = 3, σ 2
1 = 2, σ 1

2 = 1, σ 2
2 = 2, and the remaining values

should be the same as in part (a). Develop a fuzzy model for the Z of Table 7.1 using the
RLS algorithm (perform two cycles.)

7.3. Using the software provided on the publisher’s website (see the preface), improve the output of
the recursive least squares model presented in Example 7.1 by modifying the input membership
function parameters of Table 7.4 using the gradient method.
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7.4. Earlier in the chapter an example using the gradient method was presented using only one time
step; provide the second and third time steps.

7.5. Using the clustering method develop a fuzzy model for the input–output data presented in
Table 7.2.

7.6. In Example 7.1 an initial rule was specified for the application of the MLFE algorithm. Change
these values for the input membership function centers to x1 = 12,140 psi and x2 = 6510 psi
and the output membership function center to dL = 3.22360 inch. Also incorporate two test
factors, one for x1 and another for x2, equal to 2.1 and 5 respectively. Keeping all other values
the same as in Example 7.1 develop a fuzzy model using MLFE. Will the predictability of the
developed fuzzy model be improved by changing the test factor for x2? If so, does increasing or
decreasing the test factor improve the output MLFE?

7.7. Using the batch least squares algorithm improve the fuzzy model produced in Problem 7.4.



CHAPTER

8
FUZZY SYSTEMS

SIMULATION

As the complexity of a system increases, our ability to make precise and yet significant
statements about its behavior diminishes until a threshold is reached beyond which precision
and significance (or relevance) become almost mutually exclusive characteristics.

Lotfi Zadeh
Professor, Systems Engineering, 1973

The real world is complex; complexity in the world generally arises from uncertainty in
the form of ambiguity. Problems featuring complexity and ambiguity have been addressed
subconsciously by humans since they could think; these ubiquitous features pervade most
social, technical, and economic problems faced by the human race. Why then are computers,
which have been designed by humans after all, not capable of addressing complex and
ambiguous issues? How can humans reason about real systems, when the complete
description of a real system often requires more detailed data than a human could ever
hope to recognize simultaneously and assimilate with understanding? The answer is that
humans have the capacity to reason approximately, a capability that computers currently
do not have. In reasoning about a complex system, humans reason approximately about its
behavior, thereby maintaining only a generic understanding about the problem. Fortunately,
this generality and ambiguity are sufficient for human comprehension of complex systems.
As the quote above from Dr. Zadeh’s principle of incompatibility suggests, complexity and
ambiguity (imprecision) are correlated: ‘‘The closer one looks at a real-world problem, the
fuzzier becomes its solution’’ [Zadeh, 1973].

As we learn more and more about a system, its complexity decreases and our
understanding increases. As complexity decreases, the precision afforded by computational
methods becomes more useful in modeling the system. For systems with little complexity
and little uncertainty, closed-form mathematical expressions provide precise descriptions
of the systems. For systems that are a little more complex, but for which significant data
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exist, model-free methods, such as artificial neural networks, provide a powerful and robust
means to reduce some uncertainty through learning, based on patterns in the available data;
unfortunately this learning is very shallow. For very complex systems where few numerical
data exist and where only ambiguous or imprecise information may be available, fuzzy
reasoning provides a way to understand system behavior by allowing us to interpolate
approximately between observed input and output situations. Finally, for the most complex
problems there are required forms of learning due to induction, or combinations of deduction
and induction, that are necessary for even a limited level of understanding. This text does
not address the most complex forms of learning due to induction, but the deductive methods
involved in fuzzy reasoning are addressed here in terms of fuzzy systems models.

In constructing a fuzzy system model, Klir and Yuan [1995] describe the relationship
among three characteristics that can be thought to maximize a model’s usefulness. These
characteristics of any model are: complexity, credibility, and uncertainty. This relationship
is only known in an abstract sense. Uncertainty, of course, plays a crucial role in any
efforts to maximize a systems model; but this crucial role can only be considered in the
context of the other two characteristics. For example, allowing more uncertainty in a model
reduces complexity and increases credibility of the resulting model. In developing models
of complex systems one needs to seek a balance of uncertainty and utility; a model that
is extremely limited in terms of its robustness is one which cannot accommodate much
uncertainty.

All models are mathematical abstractions of the real physical world. The more
assumptions one needs to make to get the model into a form where known mathematical
structures can be used to address the real problem, the more uncertainty has crept into
the modeling process. To ignore this uncertainty is to ignore the real world, and our
understanding of it. But, we can make the models robust and credible by addressing the fact
that complexity and uncertainty are inextricably related; when one is high, the other tends
to be high, just as described by the quote above, by Zadeh.

The illustrations in Fig. 8.1 and 8.2 provide some thoughts on the relationship of
complexity and uncertainty. In Fig. 8.1 we see that the case of ignorance is a situation
involving high levels of complexity and uncertainty. Ignorance is the case where we have
no specific information and we have no ideas about the physics that might describe the
behavior of a system; an example might be our attempt to understand the concept of infinity.
When we have information about a problem, perhaps described by a random collection
of data, we see that our complexity and uncertainty are reduced somewhat, but we still
do not have good understanding about a problem; an example might be an attempt to
invest in a new technology in the stock market. As uncertainty and complexity diminish
further we get to the case of knowledge. In this instance we have enough information
and enough learning about a problem that we can actually pose rules, or algorithms that
describe the essential characteristics of a problem; an example here is the knowledge of a
nonlinear system on the basis of a robust collection of deductive inferences. The final step
in understanding I shall term wisdom. This is the case where uncertainty and complexity
are at their lowest levels. This is because with wisdom we fully understand a problem in all
its manifestations and possible configurations. An example of wisdom might be Newton’s
second law, where we have a mathematical algorithm that describes fully the relationship
among mass, acceleration, and force.

In Fig. 8.2 this idea is illustrated in a more specific way. We might have a collection
of data points that, together as a population of information, is meaningless without some
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FIGURE 8.1
Complexity and uncertainty: relationships to ignorance, information, knowledge, and wisdom.
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FIGURE 8.2
Specific example of information and knowledge in a simple one-dimensional relationship.

knowledge of how they are related. If we can find an algorithm that relates all of the data,
and leaves no data point outside of its description, then we have a case of knowledge; we
know the relationship between the inputs and outputs in a limited domain of applicability.

In the process of abstraction from the real world to a model, we need to match the
model type with the character of the uncertainty exhibited in the problem. In situations
where precision is available in the information fuzzy systems are less efficient than the
more precise algorithms in providing us with the best understanding of the problem. On the
other hand, fuzzy systems can focus on models characterized by imprecise or ambiguous
information; such models are sometimes termed nonlinear models.

Virtually all physical processes in the real world are nonlinear or complex in some
other way. It is our abstraction of the real world that leads us to the use of linear systems
in modeling these processes. The linear systems are simple and understandable, and,
in many situations, they provide acceptable simulations of the actual processes that we
observe. Unfortunately, only the simplest of systems can be modeled with linear system
theory and only a very small fraction of the nonlinear systems have verifiable solutions.
The bulk of the physical processes that we must address are too complex to be reduced
to algorithmic form – linear or nonlinear. Most observable processes have only a small
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amount of information available with which to develop an algorithmic understanding.
The vast majority of information we have on most processes tends to be nonnumeric and
nonalgorithmic. Most of the information is fuzzy and linguistic in form.

There is a quote from H. W. Brand [1961] that forms an appropriate introduction to
matters in this chapter: ‘‘There is no idea or proposition in the field, which cannot be put
into mathematical language, although the utility of doing so can very well be doubted.’’ We
can always reduce a complicated process to simple mathematical form. And, for a while at
least, we may feel comfortable that our model is a useful replicate of the process we seek
to understand. However, reliance on simple linear, or nonlinear, models of the algorithmic
form can lead to quite disastrous results, as many engineers have found in documented
failures of the past.

A classic example in mechanics serves to illustrate the problems encountered in
overlooking the simplest of assumptions. In most beginning textbooks in mechanics,
Newton’s second law is described by the following equation:

∑
F = m · a (8.1)

which states that the motion (acceleration) of a body under an imbalance of external forces
acting on the body is equal to the sum of the forces (

∑
F) divided by the body’s mass

(m). Specifically, the forces and acceleration of the body are vectors containing magnitude
and direction. Unfortunately, Eq. (8.1) is not specifically Newton’s second law. Newton
hypothesized that the imbalance of forces was equivalent to the rate of change in the
momentum (m · v) of the body, i.e.,

∑
F = d(m · v)

dt
= m · dv

dt
+ v · dm

dt
(8.2)

where ν is the velocity of the body and t is time. As one can see, Eqs. (8.1) and (8.2)
are not equivalent unless the body’s mass does not change with time. In many mechanics
applications the mass does not change with time, but in other applications, such as in the
flight of spacecraft or aircraft, where fuel consumption reduces total system mass, mass
most certainly changes over time. It may be asserted that such an oversight has nothing
to do with the fact that Newton’s second law is not a valid algorithmic model, but rather
it is a model that must be applied against an appropriate physical phenomenon. The point
is this: algorithmic models are useful only when we understand and can observe all the
underlying physics of the process. In the aircraft example, fuel consumption may not have
been an observable phenomenon, and Eq. (8.1) could have been applied to the model. Most
complex problems have only a few observables, and an understanding of all the pertinent
physics is usually not available. As another example, Newton’s first and second laws are
not very useful in quantum mechanics applications.

If a process can be described algorithmically, we can describe the solution set for a
given input set. If the process is not reducible to algorithmic form, perhaps the input–output
features of the system are at least observable or measurable. This chapter deals with systems
that cannot be simulated with conventional crisp or algorithmic approaches but that can
be simulated because of the presence of other information – observed or linguistic – using
fuzzy nonlinear simulation methods.

This chapter proposes to use fuzzy rule-based systems as suitable representations of
simple and complex physical systems. For this purpose, a fuzzy rule-based system consists
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FIGURE 8.3
A general static physical system with observed inputs and outputs.

of (1) a set of rules that represent the engineer’s understanding of the behavior of the
system, (2) a set of input data observed going into the system, and (3) a set of output
data coming from the system. The input and output data can be numerical, or they can
be nonnumeric observations. Figure 8.3 shows a general static physical system, which
could be a simple mapping from the input space to the output space, an industrial control
system, a system identification problem, a pattern recognition process, or a decision-making
process.

The system inputs and outputs can be vector quantities. Consider an n-input and
m-output system. Let X be a Cartesian product of n universes Xi , for i = 1, 2, . . . , n,
i.e., X = X1 × X2 × · · · × Xn, and let Y be a Cartesian product of m universes Yj for
j = 1, 2, . . . , m, i.e., Y = Y1 × Y2 × · · · × Ym. The vector X = (X1, X2, . . . , Xn) is the
input vector to the system defined on real space Rn, and Y = (Y1, Y2, . . . , Ym) is the output
vector of the system defined on real space Rm. The input data, rules, and output actions
or consequences are generally fuzzy sets expressed by means of appropriate membership
functions defined on an appropriate universe of discourse. The method of evaluation of
rules is known as approximate reasoning or interpolative reasoning and is commonly
represented by the composition of the fuzzy relations that are formed by the IF–THEN
rules (see Chapter 5).

Three spaces are present in the general system posed in Fig. 8.3 [Ross, 1995]:

1. The space of possible conditions of the inputs to the system, which, in general, can
be represented by a collection of fuzzy subsets A∼

k , for k = 1, 2, . . ., which are fuzzy
partitions of space X, expressed by means of membership functions

µA∼
k (x) where k = 1, 2, . . . (8.3)

2. The space of possible output consequences, based on some specific conditions of the
inputs, which can be represented by a collection of fuzzy subsets B∼

p, for p = 1, 2, . . .,
which are fuzzy partitions of space Y, expressed by means of membership functions

µB∼
p (y) where p = 1, 2, . . . (8.4)

3. The space of possible mapping relations from the input space X onto the output space Y.
The mapping relations are, in general, represented by fuzzy relations R∼

q , for q = 1, 2, . . .,
and expressed by means of membership functions

µR∼
q (x, y) where q = 1, 2, . . . (8.5)

A human perception of the system shown in Fig. 8.3 is based on experience and
expertise, empirical observation, intuition, a knowledge of the physics of the system, or
a set of subjective preferences and goals. The human observer usually puts this type of
knowledge in the form of a set of unconditional as well as conditional propositions in natural
language. Our understanding of complex systems is at a qualitative and declarative level,
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FIGURE 8.4
Two paths for knowledge to result in a fuzzy system.

based on vague linguistic terms; this is our so-called fuzzy level of understanding of the
physical system. We have also seen in Chapters 6 and 7 that fuzzy rules and membership
functions can be derived from a family of input–output data, but this form of the knowledge
has the same utility whether it was derived by human understanding or observation, or
developed in an automated fashion. Figure 8.4 shows this comparison. In the formulation
of knowledge we can have two paths: a conscious path where the rules and membership
functions (MFs) are derived intuitively by the human; and a subconscious path where we
only have input–output (I/O) data or information and we use automated methods, such as
those illustrated in Chapters 6 and 7, to derive the rules and MFs. The result of both paths
is the construction of a fuzzy system, as shown in Fig. 8.4.

FUZZY RELATIONAL EQUATIONS

Consider a typical crisp nonlinear function relating elements of a single input variable,
say x, to the elements of a single output variable, say y, as shown in Fig. 8.5. Notice in
Fig. 8.5 that every x in the domain of the independent variable (each x ′) is ‘‘related’’ to
a y (y ′) in the dependent variable (we call this relation a mapping in Chapter 12). The
curve in Fig. 8.5 represents a transfer function, which, in generic terms, is a relation. In
fact, any continuous-valued function, such as the curve in Fig. 8.5, can be discretized and
reformulated as a matrix relation (see Chapter 12).

Example 8.1. For the nonlinear function y = x2, we can formulate a matrix relation to model
the mapping imposed by the function. Discretize the independent variable x (the input variable)
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FIGURE 8.5
A crisp relation represented as a nonlinear function.

on the domain x = −2, −1, 0, 1, 2. We find that the mapping provides for the dependent
variable y (the output variable) to take on the values y = 0, 1, 4. This mapping can be
represented by a matrix relation, R, or

R =




0 1 4
−2 0 0 1
−1 0 1 0

0 1 0 0
1 0 1 0
2 0 0 1




The elements in the crisp relation, R, are the indicator values as given later in Chapter 12 (by
Eq. (12.2)).

We saw in Chapter 5 that a fuzzy relation can also represent a logical inference.
The fuzzy implication IF A∼ THEN B∼ is known as the generalized modus ponens form of
inference. There are numerous techniques for obtaining a fuzzy relation R∼ that will represent
this inference in the form of a fuzzy relational equation given by

B∼ = A∼◦R∼ (8.6)

where ◦ represents a general method for composition of fuzzy relations. Equation (8.6)
appeared previously in Chapter 5 as the generalized form of approximate reasoning, where
Eqs. (5.4) and (5.5) provided two of the most common forms of determining the fuzzy
relation R∼ from a single rule of the form IF A∼ THEN B∼.

NONLINEAR SIMULATION USING FUZZY SYSTEMS

Suppose our knowledge concerning a certain nonlinear process is not algorithmic, like the
algorithm y = x2 in Example 8.1, but rather is in some other more complex form. This
more complex form could be data observations of measured inputs and measured outputs.
Relations can be developed from these data that are analogous to a lookup table, and
methods for this step have been given in Chapter 3. Alternatively, the complex form of the
knowledge of a nonlinear process could be described with some linguistic rules of the form
IF A∼ THEN B∼. For example, suppose we are monitoring a thermodynamic process involving
an input heat, measured by temperature, and an output variable, pressure. We observe that
when we use a ‘‘low’’ temperature, we get out of the process a ‘‘low’’ pressure; when we
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FIGURE 8.6
A fuzzy nonlinear relation matching patches in the input space to patches in the output space.

input a ‘‘moderate’’ temperature, we see a ‘‘high’’ pressure in the system; when we input
‘‘high’’ temperature into the thermodynamics of the system, the output pressure reaches an
‘‘extremely high’’ value; and so on. This process is shown in Fig. 8.6, where the inputs are
now not points in the input universe (heat) and the output universe (pressure), but patches
of the variables in each universe. These patches represent the fuzziness in describing the
variables linguistically. Obviously, the mapping describing this relationship between heat
and pressure is fuzzy. That is, patches from the input space map, or relate, to patches in
the output space; and the relations R1, R2, and R3 in Fig. 8.6 represent the fuzziness in
this mapping. In general, all the patches, including those representing the relations, overlap
because of the ambiguity in their definitions.

Each of the patches in the input space shown in Fig. 8.6 could represent a fuzzy set,
say A∼ , defined on the input variable, say x; each of the patches in the output space could
be represented by a fuzzy set, say B∼, defined on the output variable, say y; and each of
the patches lying on the general nonlinear function path could be represented by a fuzzy
relation, say R∼

k , where k = 1, 2, . . ., r represents r possible linguistic relationships between
input and output. Suppose we have a situation where a fuzzy input, say x, results in a series
of fuzzy outputs, say yk , depending on which fuzzy relation, R∼

k , is used to determine the
mapping. Each of these relationships, as listed in Table 8.1, could be described by what is
called a fuzzy relational equation, where yk is the output of the system contributed by the kth
rule, and whose membership function is given by µyk (y). Both x and yk (k = 1, 2, . . . , r) can
be written as single-variable fuzzy relations of dimensions 1 × n and 1 × m, respectively.
The unary relations, in this case, are actually similarity relations between the elements of
the fuzzy set and a most typical or prototype element, usually with membership value equal
to unity.

The system of fuzzy relational equations given in Table 8.1 describes a general fuzzy
nonlinear system. If the fuzzy system is described by a system of conjunctive rules, we
could decompose the rules into a single aggregated fuzzy relational equation by making use
of Eqs. (5.35)–(5.36) for each input, x, as follows:

y = (x◦R∼
1) AND (x◦R∼

2) AND . . . AND (x◦R∼
r )

and equivalently,
y = x◦(R∼

1 AND R∼
2 AND . . . AND R∼

r )
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TABLE 8.1
System of fuzzy rela-
tional equations

R∼
1: y1 = x◦R∼

1

R∼
2: y2 = x◦R∼

2

...
...

R∼
r : yr = x◦R∼

r

and finally
y = x◦R∼ (8.7)

where R∼ is defined as
R∼ = R∼

1 ∩ R∼
2 ∩ · · · ∩ R∼

r (8.8)

The aggregated fuzzy relation R∼ in Eq. (8.8) is called the fuzzy system transfer
relation for a single input, x. For the case of a system with n noninteractive fuzzy inputs
(see Chapter 2), xi , and a single output, y, described in Eq. (5.33), the fuzzy relational
Eq. (8.7) can be written in the form

y = x1◦x2◦ · · · ◦xn◦R∼ (8.9)

If the fuzzy system is described by a system of disjunctive rules, we could decom-
pose the rules into a single aggregated fuzzy relational equation by making use of
Eqs. (5.37)–(5.38) as follows:

y = (x◦R∼
1) OR (x◦R∼

2) OR . . . OR (x◦R∼
r )

and equivalently,
y = x◦(R∼

1 OR R∼
2 OR . . . OR R∼

r )

and finally
y = x◦R∼ (8.10)

where R∼ is defined as
R∼ = R∼

1 ∪ R∼
2 ∪ · · · ∪ R∼

r (8.11)

The aggregated fuzzy relation, i.e., R∼, again is called the fuzzy system transfer relation.
For the case of a system with n noninteractive (see Chapter 2) fuzzy inputs, xi , and

single output, y, described as in Eq. (5.33), the fuzzy relational Eq. (8.10) can be written in
the same form as Eq. (8.9).

The fuzzy relation R∼ is very context-dependent and therefore has local properties
with respect to the Cartesian space of the input and output universes. This fuzzy relation
results from the Cartesian product of the fuzzy sets representing the inputs and outputs
of the fuzzy nonlinear system. However, before the relation R∼ can be determined, one
must consider the more fundamental question of how to partition the input and output
spaces (universes of discourse) into meaningful fuzzy sets. Ross [1995] details methods in
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TABLE 8.2
Canonical rule-based form of fuzzy
relational equations

R∼
1: IF x is A∼

1, THEN y is B∼
1

R∼
2: IF x is A∼

2, THEN y is B∼
2

...
...

R∼
r : IF x is A∼

r , THEN y is B∼
r

x

y
High

Low

1.0µ   (y)

R1
~

R2
~

R3
~Medium

µ     (x)

1.0
MediumLow High

FIGURE 8.7
Fuzzy set inputs and fuzzy set outputs (the most general case).

partitioning that are due to human intuition, and Chapters 6 and 7 show how partitioning is
a natural consequence of automated methods.

A general nonlinear system, such as that in Fig. 8.6, which is comprised of n inputs
and m outputs, can be represented by fuzzy relational equations in the form expressed in
Table 8.1. Each of the fuzzy relational equations, i.e., R∼

r , can also be expressed in canonical
rule-based form, as shown in Table 8.2.

The rules in Table 8.2 could be connected logically by any of ‘‘and,’’ ‘‘or,’’ or
‘‘else’’ linguistic connectives; and the variables in Table 8.2, x and y, are the input and
output vectors, respectively, of the nonlinear system. Ross [1995] discusses in more details
the various forms of nonlinear systems that can result from a rule-based approach, but this
level of detail is not needed in conducting general nonlinear simulations. Only the most
general form of a nonlinear system is considered here, shown in Fig. 8.7, where the inputs
(x) and outputs (y) are considered as fuzzy sets, and where the input–output mappings (R)
are considered as fuzzy relations.

FUZZY ASSOCIATIVE MEMORIES (FAMS)

Consider a fuzzy system with n noninteractive (see Chapter 2) inputs and a single output.
Also assume that each input universe of discourse, i.e., X1, X2, . . ., Xn, is partitioned into
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k fuzzy partitions. Based on the canonical fuzzy model given in Table 8.2 for a nonlinear
system, the total number of possible rules governing this system is given by

l = kn (8.12a)

l = (k + 1)n (8.12b)

where l is the maximum possible number of canonical rules. Equation (8.12b) is to be used
if the partition ‘‘anything’’ is to be used, otherwise Eq. (8.12a) determines the number of
possible rules. The actual number of rules, r , necessary to describe a fuzzy system is much
less than l, i.e., r � l, because of the interpolative reasoning capability of the fuzzy model
and because the fuzzy membership functions of the partitions overlap. If each of the n

noninteractive inputs is partitioned into a different number of fuzzy partitions, say, X1 is
partitioned into k1 partitions and X2 is partitioned into k2 partitions and so forth, then the
maximum number of rules is given by

l = k1k2k3 · · · kn (8.13)

For a small number of inputs, e.g., n = 1 or n = 2, or n = 3, there exists a compact
form of representing a fuzzy rule-based system. This form is illustrated for n = 2 in Fig. 8.8.
In the figure there are seven partitions for input A (A1 to A7), five partitions for input B
(B1 to B5), and four partitions for the output variable C (C1 to C4). This compact graphical
form is called a fuzzy associative memory table, or FAM table. As can be seen from the
FAM table, the rule-based system actually represents a general nonlinear mapping from the
input space of the fuzzy system to the output space of the fuzzy system. In this mapping,
the patches of the input space are being applied to the patches in the output space. Each
rule or, equivalently, each fuzzy relation from input to the output represents a fuzzy point
of data that characterizes the nonlinear mapping from the input to the output.

In the FAM table in Fig. 8.8 we see that the maximum number of rules for this
situation, using Eq. (8.13), is l = k1k2 = 7(5) = 35; but as seen in the figure, the actual
number of rules is only r = 21.

We will now illustrate the ideas involved in simulation with three examples from
various engineering disciplines.

Example 8.2. For the nonlinear function y = 10 sin x1, we will develop a fuzzy rule-based
system using four simple fuzzy rules to approximate the output y. The universe of discourse for
the input variable x1 will be the interval [−180, 180] in degrees, and the universe of discourse
for the output variable y is the interval [−10, 10].

Input B

C1 C4 C4 C3 C3

B2 C1 C2

B3 C4 C1 C2 C2

B4 C1 C1 C2

B5 C3 C4 C1 C3

A1 A2 A3 A4 A5 A6 A7

B1

C3 C3

C4

Input A

FIGURE 8.8
FAM table for a two-input, single-output fuzzy rule-based system.
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First, we will partition the input space x1 into five simple partitions on the interval
[−180◦, 180◦], and we will partition the output space y on the interval [−10, 10] into
three membership functions, as shown in Figs. 8.9a and 8.9b, respectively. In these figures
the abbreviations NB, NS, Z, PS, and PB refer to the linguistic variables ‘‘negative-big,’’
‘‘negative-small,’’ ‘‘zero,’’ ‘‘positive-small,’’ and ‘‘positive-big,’’ respectively.

Second, we develop four simple rules, listed in Table 8.3, that we think emulate the
dynamics of the system (in this case the system is the nonlinear equation y = 10 sin x1 and we
are observing the harmonics of this system) and that make use of the linguistic variables in
Fig. 8.9. The FAM table for these rules is given in Table 8.4.

The FAM table of Table 8.4 is one-dimensional because there is only one input variable,
x1. As seen in Table 8.4, all rules listed in Table 8.3 are accommodated. Not all the four rules
expressed in Table 8.3 are expressed in canonical form (some have disjunctive antecedents),
but if they were transformed into canonical form, they would represent the five rules provided
in the FAM table in Table 8.4.

µ

(a)

0–90°–180° 180°90°
x1

NB NS 1 Z PS PB

µ

1 ZNB PB

0–10 10
y

(b)

FIGURE 8.9
Fuzzy membership functions for the input and output spaces: (a) five partitions for the input
variable, x1; (b) three partitions for the output variable, y.

TABLE 8.3
Four simple rules for y = 10 sin x1

1 IF x1 is Z or PB, THEN y is Z
2 IF x1 is PS, THEN y is PB
3 IF x1 is Z or NB, THEN y is Z
4 IF x1 is NS, THEN y is NB
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TABLE 8.4
FAM for the four simple rules in Table 8.3

xi NB NS Z PS PB
y Z NB Z PB Z

In developing an approximate solution for the output y we select a few input points and
employ a graphical inference method similar to that illustrated in Chapter 5. We will use the
centroid method for defuzzification. Let us choose four crisp singletons as the input:

x1 = {−135◦
,−45◦

, 45◦
, 135◦}

For input x1 = −135◦, Rules 3 and 4 are fired, as shown in Figs. 8.10c and 8.10d . For input
x1 = −45◦, Rules 1, 3, and 4 are fired. Figures 8.10a and 8.10b show the graphical inference
for input x1 = −45◦ (which fires Rule 1), and for x1 = 45◦ (which fires Rule 2), respectively.

For input x1 = −45◦, Rules 3 and 4 are also fired, and we get results similar to those
shown in Figs. 8.10c and 8.10d after defuzzification:

Rule 3: y = 0

Rule 4: y = −7

For x1 = 45◦, Rules 1, 2, and 3 are fired (see Fig. 8.10b for Rule 2), and we get the
following results for Rules 1 and 3 after defuzzification:

Rule 1: y = 0

Rule 3: y = 0

For x1 = 135◦, Rules 1 and 2 are fired and we get, after defuzzification, results that are
similar to those shown in Fig. 8.10b:

Rule 1: y = 0

Rule 2: y = 7

When we combine the results, we get an aggregated result summarized in Table 8.5 and
shown graphically in Fig. 8.11. The y values in each column of Table 8.5 are the defuzzified
results from various rules firing for each of the inputs, xi . When we aggregate the rules using
the union operator (disjunctive rules), the effect is to take the maximum value for y in each
of the columns in Table 8.5 (i.e., maximum value irrespective of sign). The plot in Fig. 8.11
represents the maximum y for each of the xi , and it represents a fairly accurate portrayal of the
true solution, given only a crude discretization of four inputs and a simple simulation based on
four rules. More rules would result in a closer fit to the true sine curve (see Problem 8.8).

Example 8.3. Suppose we want to model a serial transmission of a digital signal over a
channel using RS232 format. Packets of information transmitted over the channel are ASCII
characters composed of start and stop bits plus the appropriate binary pattern. If we wanted to
know whether a valid bit was sent we could test the magnitude of the signal at the receiver
using an absolute value function. For example, suppose we have the voltage (V ) versus time
trace shown in Fig. 8.12, a typical pattern. In this pattern the ranges for a valid mark and a
valid space are as follows:

−12 to −3 V or +3 to +12 V A valid mark (denoted by a one)
−3 to +3 A valid space (denoted by a zero)



258 FUZZY SYSTEMS SIMULATION

(b)

45°

PS

x1 y–10 10

PB

–180°

NB

x1

Z

(d)

NS

x1 y–10 0

NB

–180°

1 1

(c)

(a)

0–90° 90°

µ   (x1)

PBZ

x1

µ   (y)

Z

y–10 10

y =  0

–45°

µ   (x1)

Centroid at approximately y = 7

µµ   (x1)

–135°

–135°

Centroid at approximately y = –7

Z

y–10 10

y =  0

µµ   (x1)

µ(y)µ

µ(y)µ

µ(y)µ

FIGURE 8.10
Graphical inference method showing membership propagation and defuzzification: (a) input
x1 = −45◦ fires Rule 1; (b) input x1 = 45◦ fires Rule 2; (c) input x1 = −135◦ fires Rule 3; (d)
input x1 = −135◦ fires Rule 4.
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TABLE 8.5
Defuzzified results for simulation ofy = 10 sin x1

x1 −135◦ −45◦ 45◦ 135◦

y 0 0 0 0
−7 0 0 7

−7 7

10

5

–5

–10

–45°–90°–135° 0 45° 90° 135° 180°

y

x1–180°

FIGURE 8.11
Simulation of nonlinear system y = 10 sin x1 using a four-rule fuzzy rule-base.

Time

+12 volts

–12 volts

FIGURE 8.12
Typical pattern of voltage vs. time for a valid bit mark.

The absolute value function used to make this distinction is a nonlinear function, as
shown in Fig. 8.13. To use this function on the scale of voltages [−12, +12], we will attempt to
simulate the nonlinear function y = 12|x|, where the range of x is [−1, 1]. First, we partition
the input space, x = [−1, 1], into five linguistic partitions as in Fig. 8.14. Next, we partition
the output space. This task can usually be accomplished by mapping prototypes of input space
to corresponding points in output space, if such information is available. Because we know
the functional mapping (normally we would not know this for a real, complex, or nonlinear
problem), the partitioning can be accomplished readily; we will use three equally spaced output
partitions as shown in Fig. 8.15.

Since this function is simple and nonlinear, we can propose a few simple rules to
simulate its behavior:

1. IF x = zero, THEN y = zero.
2. IF x = NS or PS, THEN y = PS.
3. IF x = NB or PB, THEN y = PB.
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y = 12|x|

x

y

FIGURE 8.13
Nonlinear function y = 12|x|.

µ

0–.5–1 1.5 x

NB NS 1 Z PS PB

  (x)

FIGURE 8.14
Partitions on the input space for x = [−1, 1].

µ

1 Z PS PB

60 12 y

   (y)

FIGURE 8.15
Output partitions on the range y = [0, 12].

We can now conduct a graphical simulation of the nonlinear function expressed by these
three rules. Let us assume that we have five input values, the crisp singletons x = −0.6, −0.3,
0, 0.3, and 0.6. The input x = −0.6 invokes (fires) Rules 2 and 3, as shown in Fig. 8.16. The
defuzzified output, using the centroid method, for the truncated union of the two consequents
is approximately 8. The input x = −0.3 invokes (fires) Rules 1 and 2, as shown in Fig. 8.17.
The defuzzified output for the truncated union of the two consequents is approximately 5. The
input x = 0 invokes (fires) Rule 1 only, as shown in Fig. 8.18. The defuzzified output for the
truncated consequent (y = Z) is a centroidal value of 2. By symmetry it is easy to see that crisp
inputs x = 0.3 and x = 0.6 result in defuzzified values for y ≈ 5 and y ≈ 8, respectively.

If we plot these simulated results and compare them to the exact relationship (which,
again, we would not normally know), we get the graph in Fig. 8.19; the simulation, although
approximate, is quite good.
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x1–0.5–1

NB NS

y126

PS PBµ   (x)
1 1

µ   (y)

FIGURE 8.16
Graphical simulation for crisp input x = −0.6.

x10–0.5

Z
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Z

x1–0.5–1
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12

6

µ   (x1) µ   (y)
1 1

µ   (x1) µ   (y)
1 1

FIGURE 8.17
Graphical simulation for crisp input x = −0.3.

x10.5–0.5 y62

Z Z

µ   (x1)
1

µ   (y)

FIGURE 8.18
Graphical simulation for crisp input x = 0.
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x1

y

10.50–0.5–1

6

12
Simulation

Exact

FIGURE 8.19
Simulated versus exact results for Example 8.3.

Reference
point

r(d)

R0

d1

d

FIGURE 8.20
Schematic of aircraft SAR problem.

Example 8.4. When an aircraft forms a synthetic aperture radar (SAR) image, the pilot needs
to calculate the range to a reference point, based on the position of the craft and the output of
an inertial navigator, to within some fraction of a wavelength of the transmitted radar pulse.
Assume that at position d = 0, the aircraft knows that the reference point is distance R0 off
the left broadside (angle = 90◦) of the aircraft, and that the aircraft flies in a straight line; see
Fig. 8.20. The question is: What is the range, r(d), to the reference point when the aircraft is at
the position d1? The exact answer is r(d) = (R2

0 + d2
1 )1/2; however, the square root operation

is nonlinear, cumbersome, and computationally slow to evaluate. In a typical computation this
expression is expanded into a Taylor series. In this example, we wish to use a fuzzy rule-based
approach instead.

If we normalize the range, i.e., let d1/R0 = k1 · x1, then r(x1) = R0(1 + k2
1x

2
1 )1/2,

where now x1 is a scaled range and k1 is simply a constant in the scaling process. For
example, suppose we are interested in the range |d1/R0| ≤ 0.2; then k1 = 0.2 and |x1| ≤ 1.
For this particular problem we will let R0 = 10,000 meters = 10 kilometers (km); then
r(x1) = 10,000[1 + (0.04)x2

1 ]1/2. Table 8.6 shows exact values of r(x1) for typical values of x1.
Let y = r(x1) with x1 partitioned as shown in Fig. 8.21, and let the output variable, y,

be partitioned as shown in Fig. 8.22. In Fig. 8.22, the partitions S∼ and L∼ have symmetrical
membership functions. We now pose three simple rules that relate the input and output
variables:

Rule 1: IF x ∈ Z∼, THEN y ∈ S∼.

Rule 2: IF x ∈ PS∼ or NS∼ , THEN y ∈ M∼ .

Rule 3: IF x ∈ PB∼ or NB∼ , THEN y ∈ L∼.

If we conduct a graphical simulation like that in Example 8.2 we achieve the results
shown in Fig. 8.23. In this figure the open circle denotes exact values and the cross denotes the
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TABLE 8.6
Relationships for dis-
tance in SAR problem

x1 r(x1)

−1.0 10,198
−0.5 10,050

0.0 10,000
0.5 10,050
1.0 10,198

µ

0–0.5–1 10.5 x1

NB NS 1 Z PS PB

  (x1)

FIGURE 8.21
Partitioning for the input variable, x1.

µ  (y)

9,950

S M L
1

10,000 10,050 10,198 10,346 y

FIGURE 8.22
Partitioning for the output variable, y.

1

y

x1.50–.5–1

10,000

10,100

10,200

FIGURE 8.23
Exact and fuzzy values compared for SAR problem.
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centroidal value of the fuzzy output as determined in the graphical simulation (in some cases
the exact value and the fuzzy value coincide; this is represented by an open circle with a cross
in it). The ‘‘approximate’’ curve follows the exact curve quite well. As a reminder, we would
not normally know the exact values for a real problem whose algorithmic description was not
known (this would be the case of knowledge, as described earlier in Fig. 8.2).

SUMMARY

A wide class of complex dynamic processes exists where the knowledge regarding
the functional relationship between the input and output variables may be established
on numerical or nonnumerical information. The numerical information is usually from
a limited number of data points and the nonnumerical information is in the form of
vague natural language protocols gathered from interviews with humans familiar with
the input–output behavior or the real-time control of the system or process. Complexity
in the system model arises as a result of many factors such as (1) high dimensionality,
(2) too many interacting variables, and (3) unmodeled dynamics such as nonlinearities, time
variations, external noise or disturbance, and system perturbations [Ross, 1995]. Hence, the
information gathered on the system behavior is never complete, sharp, or comprehensive.

It has been shown that fuzzy systems theory is analogous to both a linear and an
abstract algebra [Lucero, 2004]. The context in which fuzzy systems theory is analogous to
linear algebra and to abstract algebra is that they are common for the concepts of mapping
and domain. A mapping is intuitively a correspondence between two elements. But, when
used with an aggregate of various mappings, the simple relations are weighted and the
mapping is no longer intuitive. Stated simply, a fuzzy system is a mapping of a state.
This state is defined on restricted domains. And the input variables are partitioned using
a series of functions (membership functions) that transform the variable to a degree on
the interval [0 1]. This degree is used to weigh the importance of a rule. More rules are
defined and used, as the complexity of the system requires. The final output is a weighted
value. The field of algebra encompasses a vast wealth of theories. In this field are the
general disciplines of abstract algebra and linear algebra. Abstract algebra describes sets,
relations, algebraic systems in general, and a linear algebra in part. Fuzzy systems do
this abstraction as well, with sets which are isomorphic with linguistic knowledge. Linear
algebra, as the computational kernel of this theory, contains the actual implementations,
analogous to fuzzy compositions and implications. The foundation on which fuzzy systems
theory is a universal approximator is based upon a fundamental theorem from real analysis,
the Stone–Weierstrass theorem (see references and discussion in Chapter 1).

Fuzzy mathematics provides a range of mathematical tools that helps the analyst
formalize ill-defined descriptions about complex systems into the form of linguistic rules
and then eventually into mathematical equations, which can then be implemented on digital
computers. These rules can be represented by fuzzy associative memories (FAMs). At
the expense of relaxing some of the demands on the requirements for precision in some
nonlinear systems, a great deal of simplification, ease of computation, speed, and efficiency
are gained when using fuzzy models. The ill-defined nonlinear systems can be described
with fuzzy relational equations. These relations are expressed in the form of various fuzzy
composition operations, which are carried out on classes of membership functions defined
on a number of overlapping partitions of the space of possible inputs (antecedents), possible
mapping restrictions, and possible output (consequent) responses.
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The membership functions used to describe linguistic knowledge are enormously
subjective and context-dependent [Vadiee, 1993]. The input variables are assumed to be
noninteractive, and the membership functions for them are assigned based on the degree of
similarity of a corresponding prototypical element. Appropriate nonlinear transformations
or sensory integration and fusion on input and/or output spaces are often used to reduce a
complex process to a fuzzy system model. The net effect of this preprocessing on the input
data is to decouple and linearize the system dynamics.

This chapter has dealt with the idea of fuzzy nonlinear simulation. The point made
in this chapter is not that we can make crude approximations to well-known functions;
after all, if we know a function, we certainly do not need fuzzy logic to approximate it.
But there are many situations where we can only observe a complicated nonlinear process
whose functional relationship we do not know, and whose behavior is known only in
the form of linguistic knowledge, such as that expressed for the sine curve example in
Table 8.3 or, for more general situations, as that expressed in Table 8.2. Then the power
of fuzzy nonlinear simulation is manifested in modeling nonlinear systems whose behavior
we can express in the form of input–output data-tuples, or in the form of linguistic rules
of knowledge, and whose exact nonlinear specification we do not know. Fuzzy models to
address such complex systems are being published in the literature at an accelerating pace;
see, for example, Huang and Fan [1993] who address complex hazardous waste problems
and Sugeno and Yasukawa [1993] who address problems ranging from a chemical process
to a stock price trend model. The ability of fuzzy systems to analyze dynamical systems
that are so complex that we do not have a mathematical model is the point made in this
chapter. As we learn more about a system, the data eventually become robust enough to
pose the model in analytic form; at that point we no longer need a fuzzy model.
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PROBLEMS

8.1. A video monitor’s CRT has a nonlinear characteristic between the illuminance output and the
voltage input. This nonlinear characteristic is y = x2.2, where y is the illumination and x is the
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voltage. The CCD (Charge-Coupled Device) in a video camera has a linear light-in to voltage-
out characteristic. To compensate for the nonlinear characteristic of the monitor, a ‘‘gamma
correction’’ circuit is usually employed in a CCD camera. This nonlinear circuit has a transfer
function of y = xgamma, where the gamma factor is usually 0.45 (i.e., 1/2.2) to compensate for
the 2.2 gamma characteristic of the monitor. The net result should be a linear response between
the light incident on the CCD and the light produced by the monitor. Figure P8.1 shows the
nonlinear gamma characteristic of a CCD camera (yactual). Both the input, x, and the output, y,
have a universe of discourse of [0, 1].

0 0.25 0.5 0.75 1
0

x

y actual

y fuzzy

1

y 0.5

FIGURE P8.1

Partition the input variable, x, into three partitions, say small, S, medium, M, and big, B,
and partition the output variable, y, into two partitions, say small, SM, and large, L. Using your
own few simple rules for the nonlinear function y = x0.45 and the crisp inputs x = 0, 0.25, 0.5,
0.75, 1.0, determine whether your results produce a solution roughly similar to yfuzzy in Fig. P8.1
(which was developed with another fuzzy model [Ross, 1995]). Comment on the form of your
solution and why it does or does not conform to the actual result.

8.2. A very widely used component in electrical engineering is the diode. The voltage–current
relation is extremely nonlinear and is modeled by the expression

Vf = Vt ln(If /Is)

where Vf = forward voltage developed across the diode
Vt = terminal voltage (∼0.026 V)
Is = saturation current of a given diode (assume ∼10−12 A)
If = forward current flowing through the diode

The resulting exact voltage–current curve is shown in Fig. P8.2 (rotated 90◦). For this highly
nonlinear function discuss the following:
(a) How would you go about partitioning the input space (If ) and the output space (Vf )?
(b) Propose three to five simple rules to simulate the nonlinearity.

8.3. One of the difficulties with the Gaussian probability distribution is that it has no closed-form
integral. Integration of this function must be conducted numerically. Because of this difficulty,
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approximations to the Gaussian distribution have been developed over the years. One of these
approximations is the expression shown in Fig. P8.3a.

If  (amps)

Vf  (V)

.5

.3

.2

.1

–.3

.4

–.1–.2 .1 .2 .3 .4 .5 .6 .7 .8

FIGURE P8.2

G =   –2 log |x |

y

x

FIGURE P8.3a

0–.5–1 1.5 x

NB NS 1

µ(x)

PS PBZ

µ

FIGURE P8.3b

This expression provides a reasonably good approximation to the Gaussian except for
values of x near zero; as can be seen, the function G has a singularity at x = 0. Table P8.3
shows the exact values for this approximate function, G, and Fig. P8.3a shows the function.

If one uses the partitioning for the input variable, x, as shown in Fig. P8.3b, the discrete
membership values for each of the quantities x shown in Table P8.3 for the following three
fuzzy inputs,
1. x1 = NB or PB
2. x2 = Z or PS
3. x3 = Z or NS
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TABLE P8.3

x −1 −34 −12 −14 0.01 14 12 34 1

G 0 0.5 0.776 1.10 2 1.10 0.776 0.5 0

would be
x1 = [1, 0.5, 0, 0, 0, 0, 0, 0.5, 1]

x2 = [0, 0, 0, 0.5, 1, 0.5, 1, 0.5, 0]

x3 = [0, 0.5, 1, 0.5, 1, 0.5, 0, 0, 0]

The membership functions for G for the first five elements in the table (the function is symmetric)
corresponding to the three fuzzy inputs are

G1 =
{

1

0
+ 0.5

0.5
+ 0

0.776
+ 0

1.10
+ 0

2

}
= [1, 0.5, 0, 0, 0]

G2 = [0, 0, 0, 0.5, 1]

G3 = [0, 0.5, 1, 0.5, 1]

(a) Develop fuzzy relations (these matrices all will be of size 9 × 5) between the three fuzzy
inputs and outputs using a Cartesian product operation.

(b) Find the overall fuzzy relation by taking the union of the three relations found in part (a).
(c) If the matrix relation in part (b) is replaced by a continuous surface, composition with crisp

singleton inputs for x results in the following table of results for the output G. Verify some
of these results.

x G

−1 0.17
−3/4 0.88
−1/2 1.20
−1/4 1.09

0 1.20
1/4 1.09
1/2 1.20
3/4 0.88

1 0.17

8.4. A constant force, F , acts on a body with mass, m, moving on a smooth surface at velocity, v.
The effective power of this force will be EP = F(v) cos θ (Fig. P8.4a). Using the partitioning
for the input variable, θ , as shown in Fig. P8.4b, and the partitioning for the output variable, EP,
as shown in Fig. P8.4c, and the following three simple rules:
1. IF Z∼ THEN ME∼ (most efficient)
2. IF NS∼ or PS∼ THEN NE∼ (not efficient)
3. IF PB∼ or NB∼ THEN NME∼ (negative most efficient such as braking)
conduct a graphical simulation and plot the results on a graph of EP vs. θ . Show the associated
exact solution on this same graph.
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8.5. Psycho-acoustic research has shown that white noise has different effects on people’s moods,
depending on the average pitch of the tones that make up the noise. Very high and very low
pitches make people nervous, whereas midrange noise has a calming effect. The annoyance level
of white noise can be approximated by a function of the square of the deviance of the average
pitch of the noise from the central pitch of the human hearing range, approximately 10 kHz.
As shown in Fig. P8.5a, the human annoyance level can be modeled by the nonlinear function
y = x2, where x = deviance (in kHz) from 10 kHz. The range of x is [−10, 10]; outside that
range pitches are not audible to humans.

The partitions for the input variable, x, are the five partitions on the range [−10, 10]
kHz, as shown in Fig. P8.5b, and the partitions for the output space for y = x2 are shown in
Fig. P8.5c. Using the following three simple rules,
1. IF x = Z, THEN y = N
2. IF x = NS or PS, THEN y = S
3. IF x = NB or PB, THEN y = V
show how a similar plot of fuzzy results as shown in Fig. 8.5d is determined.
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8.6. Let us consider the case of a series motor under the influence of a load and a constant voltage
source, as shown in Fig. P8.6a. A series motor should always be operated with some load,
otherwise the speed of the motor will become excessively high, resulting in damage to the motor.
The speed of the motor, N , in rpm, is inversely related to the armature current, Ia, in amps, by the
expression N = k/Ia, where k is the flux. For this problem, we will estimate the flux parameter
based on a motor speed of 1500 rpm at an armature current of 5 amps; hence, k = 5(1500) = 7500
rpm-amps. Suppose we consider the armature current to vary in the range Ia = [−∞,+∞], and
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we partition this universe of discourse as shown in Fig. 8.6b (note that the extremes at −∞ and
+∞ are contained in the partitions NB and PB, respectively). Suppose we also partition the
output variable, N , as shown in Fig. P8.6c. Using the input and output partitioning provided in
Figs. P8.6b and P8.6c and the following five rules, conduct a graphical numerical simulation for
the crisp inputs Ia = −8, −2, 3, 9 A. Plot this response on a graph of N vs. Ia.

IF Ia is Z, THEN N is HSC or HSAC

IF Ia is PS, THEN N is HSC

IF Ia is NS, THEN N is HSAC

IF Ia is PB, THEN N is MSC

IF Iais NB, THEN N is MSAC

Constant
voltage

Eb

Ia

LoadM

FIGURE P8.6a

8.7. In the field of image processing a limiter function is used to enhance an image when background
lighting is too high. The limiter function is shown in Fig. P8.7a.
(a) Using the following rules, construct three matrix relations using the input (see Fig. P8.7b)

and output (see Fig. P8.7c) partitions:

Rule 1: IF x = Z, THEN y = S

Rule 2: IF x = PB, THEN y = PM

Rule 3: IF x = NB, THEN y = NM
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(b) For crisp input values x = −1, −0.8, −0.6, −0.4, −0.2, and 0, use graphical techniques
or max–min composition and centroidal defuzzification to determine the associated fuzzy
outputs. Because of symmetry, values for 0 ≤ x ≤ 1 are equal to |x| for −1 ≤ x ≤ 0. Verify
that these results follow Fig. P8.7d .

8.8. Do the example problem on the sine curve, Example 8.2, using (a) six rules and (b) eight rules.
Does your result look more, or less, like a sine curve than the result in Example 8.2?



CHAPTER

9
RULE-BASE
REDUCTION
METHODS

In spite of the insurmountable computational limits, we continue to pursue the many problems
that possess the characteristics of organized complexity. These problems are too important for
our well being to give up on them. The main challenge in pursuing these problems narrows
down fundamentally to one question: how can we deal with these problems if no computational
power alone is sufficient?

George Klir
Professor of Systems Science, SUNY Binghamton, 1995

The quote, above, addresses two main concerns in addressing large, complex problems.
First, organized complexity is a phrase describing problems that are neither linear with a
small number of variables nor random with a large number of variables; they are typical
in life, cognitive, social, environmental sciences, and medicine. These problems involve
nonlinear systems with large numbers of components and rich interactions which are
usually non-random and non-deterministic [Klir and Yuan, 1995]. Second, the matter of
computational power was addressed by Hans Bremermann [1962] when he constructed
a computational limit based on quantum theory: ‘‘no data processing system, whether
artificial or living, can process more than 2 × 1047 bits per second per gram of its mass.’’
In other words, some problems involving organized complexity cannot be solved with an
algorithmic approach because they exceed the physical bounds of speed and mass-storage.
How can these problems be solved?

Such problems can be addressed by posing them as systems that are models of
some aspect of reality. Klir and Yuan [1995] claim that such systems models contain three
key characteristics: complexity, credibility, and uncertainty. Two of these three have been
addressed in the previous chapters. Uncertainty is presumed to play a key role in any
attempts to make a model useful. That is, the allowance for more uncertainty tends to

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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reduce complexity and increase credibility; Chapter 1 discusses how a model can be more
robust by accommodating some levels of uncertainty. In a sense, then, fuzzy logic models
provide for this robustness because they assess in a computational way the uncertainty
associated with linguistic, or human, information expressed in terms of rules. However,
even here there is a limit. A robust and credible fuzzy system would be represented by a
very large rule-base, and as this rule-base gets more robust, and hence larger, the pressure
on computational resources increases. This chapter addresses two methods to reduce the
size of typical fuzzy rule-bases.

FUZZY SYSTEMS THEORY AND RULE REDUCTION

Fuzzy systems theory provides a powerful tool for system simulation and for uncertainty
quantification. However, as powerful as it is, it can be limited when the system under
study is complex. The reason for this is that the fuzzy system, as expressed in terms of a
rule-base, grows exceedingly large in terms of the number of rules. Most fuzzy rule-bases
are implemented using a conjunctive relationship of the antecedents in the rules. This
has been termed an intersection rule configuration (IRC) by Combs and Andrews [1998]
because the inference process maps the intersection of antecedent fuzzy sets to output
consequent fuzzy sets. This IRC is the general exhaustive search of solutions that utilizes
every possible combination of rules in determining an outcome. Formally, this method of
searching is described as a k-tuple relation. A k-tuple is an ordered collection of k objects
each with li possibilities [Devore, 1995]. In the present situation k represents the input
variables with li linguistic labels for each. The product of these possible labels for each
input variable gives the number of possible combinations for such k-tuples as li li+1 . . . lk .
This IRC method is not efficient since it uses significant computational time and results in
the following exponential relation:

R = ln or R = li li+1 . . . (9.1)

where R = the number of rules
l = the number of linguistic labels for each input variable (assumed a constant

for each variable)
n = the number of input variables

Equation (9.1) represents a combinatorial explosion in rules. Conceptually, this rule for-
mulation can be thought of as a hypercube relating n input variables to single-output
consequences. In the literature this is termed a fuzzy associative mapping (see Chapter 8).

This chapter discusses two rule-reduction schemes. These methods attempt to amelio-
rate the combinatorial explosion of rules due to the traditional IRC approach. The benefits
of these methods are to simplify simulations and to make efficient use of computation time.

NEW METHODS

Two relatively recent methods of rule reduction are described and compared here. These
two methods operate on fundamentally different premises. The first, singular value decom-
position (SVD), uses the concepts of linear algebra and coordinate transformation to
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produce a reduced mapping in a different coordinate system. The second method, the
Combs method for rapid inference (called the Combs method), is a result of a logical
Boolean set-theoretic proof that transforms a multi-input, single-output system to a series
of single-input, single-output rules.

The advantages of each are different and they address different needs for model
development. The SVD method allows the practitioner to choose the amount of reduction
based on error analysis. The Combs method gives good scalability; by this we mean
that as new antecedents are added the number of rules grows linearly not exponentially.
Therefore, the Combs method allows the user quick simulation times with transparent
rules. Transparent rules are single-input, single-output rules making rule-base relations
transparent.

The simulations in this chapter use triangular membership functions with a
sum/product inference scheme on zero-order Takagi–Sugeno output functions. In
other words, the output sets are singleton values. Furthermore, the weighted average
defuzzification method is used to calculate the final output value, Z, from i = 1 to R

output subsets, zi , weighted by input fuzzy set membership values, µj , for j = 1 to n,
antecedents as

Z =

R∑
i=1

zi

n∏
j=1

µj

R∑
i=1

n∏
j=1

µj

(9.2)

The t-norm and t-conorm aggregators of this system are, respectively, the operators
product and addition (sum). These reside in the numerator of Eq. (9.2) and are shown in
Eq. (9.3). The product operator aggregates rule antecedent sets linguistically with ‘‘and,’’
an intersection of input sets. And the addition operator (sum) aggregates the individual rules
themselves linguistically with ‘‘or,’’ a union of rules:

∑
i

zi

∏
j

µj = sum/product inference (9.3)

Singular Value Decomposition

The basic idea of the singular value decomposition (SVD) on a rule-base is to perform a
coordinate transformation of the original rule-base, Z. This transformation uses singular
values to illuminate information regarding rule importance within the rule-base because
the largest singular values show their associated rules as column vectors having the biggest
influence on the aggregated output of the rule-base. This method can be used to condense
information from a rule-base by eliminating redundant or weakly contributing rules. This
process allows the user to select and use the most contributing (important) rule antecedents
forming a new reduced rule-base, Zr , shown schematically in Fig. 9.1.

The effectiveness of the SVD on reducing fuzzy systems that model functions has
been well documented [Yam, 1997]. SVD is used for diagonalization and approximation of
linear maps in linear algebra typically defined as

Z = U � VT (9.4)
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Zr

Z

FIGURE 9.1
Coordinate transformation via the SVD method.

where U and V are orthogonal matrices and � is a diagonal matrix of singular values. Here
the SVD is used to reduce fuzzy systems that approximate functions or other mappings.
However, application of the SVD on the rule-base does not directly yield a fuzzy system with
properly scaled membership functions. A few additional steps are necessary to supplement
the SVD in order to produce properly scaled membership functions.

The foundation of a fuzzy system lies with the definitions of membership functions
that relate the fuzzy sets that make up the system. The following three conditions define
the membership functions and must be satisfied in order for an SVD application to a fuzzy
system to be successful. First, the membership functions must have some degree of overlap
such that

∑
µ = 1.0 for each xi in the universe of discourse of the variable. Second,

the membership functions must map membership values on the unit interval. And third,
each membership function should have a prototypical value. Once these requirements are
met, the fuzzy system will have resulted in a reduced system as desired. To meet these
requirements, three sequential steps of linear algebra will be applied to the decomposed
system of matrices.

The reduced-rule system is developed around the column vectors of the orthogonal
matrices U and V from Z = U�V T. Each matrix contains the fuzzy sets of an input variable.
More specifically, each column vector represents individual fuzzy sets or labels for that
input variable. As such, conditioning and conforming will take place on each column.

Overlapping membership functions

This conditioning will be the first step in the process that establishes a compact mapping
of the input space to the output space. One reason why overlapping membership functions,
where

∑
xi

µ = 1.0, ∀xi in X, is important is because this allows for a good interpolation of
the input values. In other words, the entire input space is accommodated. A proof showing
how a series of column vectors representing membership functions sum to unity is given
in Lucero [2004].

The orthogonal matrix, U, is separated according to the desired number of retained
singular values, r , into two matrices, the reduced matrix Ur and the discarded matrix Ud :

U = [Ur |Ud ] (9.5)

where d = n − r for n total singular values.
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The reduced matrix, Ur , represents the input columns we wish to retain in our
simulation. And the discarded matrix represents the collection of discarded columns of the
orthogonal matrix U from the initial SVD. The objective in this separation process is to
form a reduced matrix that includes the retained columns plus one column representing the
discarded columns, condensed into one. Shown here is a brief justification that the matrix
product of two matrices, one partitioned as reduced and discarded column vectors and the
other partitioned as row sums of their transpose, gives this desired condition of row sums
equaling one, and hence overlapping membership functions

[Ur |Ud ]

[
sum(UT

r )

sum(UT
d )

]
= [1]nx1 (9.6)

It is important to note that the discarded set as a whole represents the last remaining column
supplementing the retained columns. Completing this first step is another matrix product to
get the first conditioned matrix, U1:

U1 = [Ur |U∗
dsum(UT

d )]∗�C (9.7)

where

�C = diag

[
sum(UT

r )

1

]
(9.8)

More explicitly, the matrix is transformed as

U1 =



⇀
u1r

⇀
u2r

...
...

∣∣∣∣∣∣

 ⇀

u3d

⇀
u4d

⇀
u5d

...
...

...


 ∗




sum(
⇀
u3d)

sum(
⇀
u4d)

sum(
⇀
u5d)







∗

 sum(

⇀
u1r ) 0 0

0 sum(
⇀
u2r ) 0

0 0 1


 (9.9)

However, if sum(UT
d ) = [0]nx1 then the last column can be omitted since there will be no

information to condense from the discarded columns. As a result, Eq. (9.8) simply becomes
�C = diag[sum(UT

r )]. Again, we need a conditioned matrix, U1, in this process to give us
overlapping membership functions.

Non-negative membership values

The next step of the procedure is required because of the constraint that membership values
must range from 0 to 1.0; hence, the values must also be ‘‘non-negative.’’

A matrix is formed by replacing the minimum element of U1 with δ, by

δ =



1, if min U1m,n
≥ −1

1

| min U1m,n
| , otherwise

(9.10)
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A doubly stochastic matrix �D with the same dimension as U1 can then be found,

�D = 1

(n + δ)




(1 + δ) 1 · · · 1
1 (1 + δ) · · · 1
...

...
. . .

...

1 1 · · · (1 + δ)


 (9.11)

where n is the number of columns of U1. The doubly stochastic matrix is needed to shift
the membership values from U1 to the unit interval.

The matrix product U1 �D generates the matrix U2, which is now conditioned for both
overlapping with non-negative elements.

U2 = U1 ∗ �D (9.12)

Prototypical value

Here, the third step in the SVD process creates prototypical values for the fuzzy sets. A
prototypical value is the value in the universe of a specific fuzzy set that has the highest
membership value, usually a value of unity. This allows for ease of interpretation, especially
for linguistic variables where the fuzzy set can be defined according to the input value that
gives the maximum membership. In other words, having a prototypical value establishes
a center value on the membership function that also helps to define the ‘‘nearness’’ of
prototypical values of adjacent fuzzy sets. The convex hull, a concept necessary to achieve
this third condition, is next defined.

Definition

Consider points on a two-dimensional plane; a convex hull (Fig. 9.2) is the smallest convex
set (Fig. 9.3) that includes all of the points. This is the tightest polygon containing all the
points. In other words, imagine a set of pegs. Stringing a rope around the extreme pegs
such that all the pegs are enclosed forms a convex hull. However, stringing the rope around
virtual pegs outside this set may give a convex set, but not a convex hull since it does not
represent the smallest set.

Notice that a line drawn between any two points in either Figs. 9.2 or 9.3 does not exit
the area created by the convex set. The convex hull becomes useful to rescale the columns
of U2, thus producing valid membership functions.

x

y

0

FIGURE 9.2
Convex hull.



280 RULE-BASE REDUCTION METHODS

x

y

0

FIGURE 9.3
Convex set.

Let U2 be defined as U2 = [
⇀
u1

⇀
u2 . . .

⇀
un] consisting of n column vectors and i =

1, 2, . . . , m row vectors. For m > n, U2 has rank equal to n and is therefore of dimension
n. As such, each row vector U2i

= [
⇀
ui,1

⇀
ui,2 . . .

⇀
ui,n] represents a point in n-dimensional

space. In other words, each row is a coordinate in n-dimensional space. The convex
hull now becomes the n − 1 dimensional space onto which U2 is projected, where the
vertices represent the new prototypical values [Yam, 1997]. These vertices comprise a new
matrix, �E,

�E =

 U2j

(∗, : )
U2j+1(∗, : )
U2n

(∗, : )




−1

j = 1, 2, . . . , n (9.13)

The product of this matrix with the conditioned matrix of the second step, U2, becomes the
final matrix U3, of the conditioned membership functions,

U3 = U2 ∗ �E (9.14)

By rescaling the columns of U2 as is accomplished in Eq. (9.14), this final operation allows
for interpolation between the input column vectors and the new reduced rule-base.

In a similar fashion, steps 1, 2, and 3 are conducted on the orthogonal matrix V. After
the conditioning of both matrices is complete the reduced rule-base is developed.

Reduced matrix of rule consequent values

In effect three matrix products are conducted on a reduced orthogonal matrix, i.e.,
U3 = Ur · �C · �D · �E. Since these products are not made on the original system, Z, in
Z ∼= Ur�rVT

r , a left-sided triple inverse matrix product must be made on �r , the diagonal
matrix of singular values to account for the conditioning of Ur . Likewise, a right-sided
triple inverse matrix product must be made to �r accounting for those matrix products
made to VT

r . Doing these multiplications leaves the system Z ∼= Ur�rVT
r unchanged since

all matrix products cancel. A matrix multiplied by its inverse returns the identity matrix.
This results in the following:

Zr = �E−1
U �D−1

U �C−1
U �r �CT−1

V �DT−1

V �ET−1

V (9.15)

which now becomes our new reduced matrix of rule consequent values. And thus our SVD
procedure is complete providing a reduced rule-base approximation to the original rule-base.
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Having obtained the reduced matrix of rule consequent values along with the conditioned
column vectors, the system can then be implemented as the new reduced rule-base fuzzy
system. However, sometimes the constraints from conditioning are only closely met, but
are still effective as seen in Simon [2000] since the system is in a new coordinate system.
Moreover, this new coordinate system might have negative values as a result of the numerical
approximation of the convex hull and its inverse. Still, since the input sets are orthogonal,
the interpolation will still yield a good approximation to the original system. In other words,
some intuitive interpretation might be lost, but the procedure remains sound mathematically.

It is important to emphasize that keeping the entire set of singular values will give
back the original rule-based system; but, retaining the most influential singular values and
the corresponding column vectors will keep the essential features of the system (mapping).
The most influential rules are those which are associated with the largest singular values
of the initial decomposition. The singular values are positioned along the diagonal in
descending order of impact from greatest to least. The largest (first) value will give the most
important rule, then decreasing in importance to the least contributing rule to the system.
Since this method reduces an already developed rule-base or matrix of function samplings,
an error analysis can be conducted on the difference between the original system and the
reduced system. If a user-specified error tolerance is not met, then one can include more
singular values in the approximation resulting in more reduced rules to the system.

This method is analogous to a grid point function sampling. What this means is that
the rule-base or function samplings must be taken from an evenly spaced grid. In fuzzy
systems theory, the grid is the partition of variables into labels. So the labels (membership
functions) must be evenly spaced.

Summary of operations

Given a rule-base or matrix of sampled function values, Z, the rules generalize to

Rule: If (A∼(x1) and B∼(x2)) then Z

where A∼ and B∼ are fuzzy sets for the input values x1 and x2. Z, the rule consequent matrix,
is decomposed using SVD. This becomes

Z = U� VT (9.16)

After choosing the most important or most contributing r singular values, Z gets approxi-
mated as

Z ≈ Z = Ur�rV
T
r (9.17)

Following the procedures described previously, the matrices Ur and Vr are conditioned so
that Ur becomes Ar and Vr becomes Br and �r is updated to become Zr . This yields the
new approximation,

Z ≈ Z = ArZrBT
r (9.18)

Now the columns of matrices Ar and Br are the new fuzzy sets, membership functions, or
labels for input values x1 and x2. And Zr is the reduced-rule consequent matrix of this new
system, i.e.,

New Rule: If (Ar (x1) and Br (x2)) then Zr
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Combs Method

Combs and Andrews [1998] discovered a classical logic equivalent to the traditional
conjunctive fuzzy system rule-base, a disjunctive relation that inspired a new approach to
fuzzy systems modeling. In other words, a traditional system that connects multi-antecedent
subsets using an intersection operator, which Combs and Andrews called an intersection
rule configuration or IRC, has been transformed to a system of single antecedent rules that
use a union operator, which Combs and Andrews termed a union rule configuration or
URC, as given in the proof table of Fig. 9.4.

IRC −→ [(p ∩ q) ⇒ r]
∼⇔[(p ⇒ r) ∪ (q ⇒ r)] ← URC (9.19)

In Eq. (9.19), p and q are the antecedents, r is the consequent, ∩ is intersection,
∪ is union, ⇒ represents implication, and

∼⇔ represents equivalence but not necessarily
equality for fuzzy systems. This means that for certain conditions equality between the
IRC and URC can be achieved directly. These cases for which equality holds are defined
as additively separable systems in Weinschenk, et al. [2003]. Additively separable systems
are systems that satisfy the following condition:

F = ⇀
x 1 ⊕ ⇀

x 2 ⊕ · · · ⊕ ⇀
x n, ⊕ is the outer sum (9.20)

where xi are input vectors; in other words, the set of labels for each variable i. The outer
sum of input vectors is analogous to the outer product; however, the sum operation is used
in place of the product operator. When this is not the case, i.e., when the system of rules
is not additively separable, the URC must be augmented with additional rules. The Combs
method uses a series of single-input to single-output (SISO) rules to model the problem
space with one powerful advantage: the avoidance of an explosion in the rule-base as
the number of input variables increases. This method turns an exponential increase in the
number of rules into a linear increase with the number of input variables.

The benefits of the Combs method are the following: the solution obtained is
equivalent to the IRC in many cases, it is simple to construct, and it is fast computationally.

In the IRC approach it is the intersection of the input values that is related to the
output. This intersection is achieved with an ‘‘and’’ operation. In the URC, accumulation
of SISO rules is achieved with an ‘‘or’’ operation. An important but subtle feature of the
‘‘or’’ operation is that it is not an ‘‘exclusive or’’ (see Chapter 5) but an ‘‘inclusive or.’’
This is important to satisfy the additively separable condition just described where each rule

(p and q) then r IRC
not (p and q) or r
not p or not q or r
not p or not q or (r or r)
(not p or r) or (not q or r)

Classical implication 
De Morgan’s principle
Idempotency
Commutativity

(p then r) or (q then r)
Classical implication,
URC

FIGURE 9.4
Proof table of the IRC–URC equivalence.
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Output

Input fuzzy sets

IRC

Output

Output

Output

Output

Output

Input fuzzy sets

URC

FIGURE 9.5
Schematic of IRC and URC input to output relations.

may contribute to the outer sum of input vectors. This accumulation of SISO rules gives
the problem space representation, and is shown schematically in Fig. 9.5.

Specifically, an IRC rule such as

Rule: If (A and B) then Z

now becomes structured to the form

Rule: If (A then Z) or If (B then Z)

Unlike the IRC, which is described by a hypercube, relating n input variables to single-
output consequences (also termed a fuzzy associative mapping), this method can use a
union rule matrix (URM) or a network of SISO relations.

This matrix (URM) has as its cells the SISO rules. Product inference occurs in these
individual cells as in Eq. (9.3) where only one antecedent membership value µ is multiplied
by an output subset, z. Hence, each column in the URM is a series of such products
as rules. Aggregating these rules is achieved by the union aggregator as in Eq. (9.3), an
algebraic sum. An accumulator array accounts for this union of the rules as a summation
of SISO products, µ∗z. This array is the last row of the matrix in Fig. 9.6. This is basically
an accounting mechanism that results in a similar centroidal defuzzification as previously
described in Eq. (9.2).

The Combs method generalizes to a system of double summations, as described in
Eq. (9.21) [Weinschenk et al., 2003]. It becomes a double summation because the entries
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Input A If A is Low then z1

If B is Low then z1Input B

Accumulator   * z1µ

If A is Medium then z2

If B is Medium then z2

  * z2µ

If A is High then z3

If B is High then z3

  * z3µΣΣΣ

FIGURE 9.6
Union rule matrix (URM) showing the accounting mechanism for rules.

Input 1, A(x1)

Input 2, B(x2)

Accumulator

  1,1 *z1,1µ

  2,1 *z2,1µ

  i,1 zi,1µΣ
2

i=1

  1,2 *z1,2µ

  2,2 *z2,2µ

  i,2 zi,2µΣ
2

i=1

  1,3 *z1,3µ

  2,3 *z2,3µ

  i,3 zi,3µΣ
2

i=1

FIGURE 9.7
A typical URM with cells replaced by membership values and output values according to Eq. (9.21).

of the accumulator array are summed. For each output subset there corresponds a sum of
i = 1 to P (variables) as SISO rules. Consequently these sums are themselves summed over
j = 1 to Ni fuzzy labels:

ZURC =

Ni∑
j=1

P∑
i=1

µi,j (xi)zi,j

Ni∑
j=1

P∑
i=1

µi,j (xi)

(9.21)

where xi is the input crisp value to fuzzy variable i, µi,j is the membership value of xi

in fuzzy set j for variable i, and zi,j is the zero-order Takagi–Sugeno output function for
fuzzy set j in variable i.

Figure 9.7 demonstrates this in the general URM form of Fig. 9.6 and the system is
updated according to Eq. (9.21). Each cell in Fig. 9.7 represents a rule. The double sum
takes place when summing the final row of Fig. 9.7 which has been defined in Combs and
Andrews [1998] as the accumulator array in the URM format. It is important to note that
not all input antecedents will have the same number of sets. This is what is meant by the
summation from j = 1 to Ni where Ni is the total number of labels for the ith variable.

SVD AND COMBS METHOD EXAMPLES

Example 9.1. Fuzzy rule-bases will be developed to simulate the additively separable function

f (x, y) = x + y (9.22)

shown in Fig. 9.8. This function is additively separable conforming to Eq. (9.20) where the
solution surface represents an outer sum of the vectors x and y in the range [−5.0, 5.0]. The
first rule-base simulation will be a traditional IRC rule-base. The simulations to follow this will
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xy

Analytical solution

−5−5

5

10
8
6
4
2
0

−2
−4
−6
−8

−10
4 3

2 1 0 −1 −2 −3 −4 −4 −3 −2 −1 0 1 2 3 4 5

FIGURE 9.8
Solution surface for Eq. (9.22).

be reduced rule-bases using the SVD and the Combs method for rapid inference. This trivial
linear example will highlight the essential features of each method.

IRC rule-base simulation

The IRC system begins by partitioning the input space into a representative number of fuzzy
sets. Here five sets are chosen. This is an arbitrary selection and is based only on the user’s
judgment. Figures 9.9 and 9.10 show these five triangular membership functions representing
the linguistic labels, i.e., fuzzy sets for the two input variables, x and y.

Figure 9.11 is the FAM table listing the 25 rules that will be used to simulate the
function. The values in the cells represent the rule consequent prototypical values and are
chosen based on the output of Eq. (9.22) and can be regarded as observations. Since the output
sets are singleton values and not fuzzy sets, numbers are used to show the direct relationship to
the analytical function values. The input fuzzy sets account for the interpolation between these
output values.

Stepping along the x and y axes, the input x and y values map to the solution surface of
Fig. 9.12.

SVD simulation

Now the number of rules shown in the previous IRC table, Fig. 9.11, is reduced using the
SVD. First the original FAM is represented as matrix Z along orthogonal vectors x and y.

1.0

x, distance

x−5.0 0.0 5.0−2.5 2.5

NegS Zero PosS 

NegB PosB

µ

FIGURE 9.9
Fuzzy sets for the variable x represented by triangular membership functions.
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1.0

y, distance

y−5.0 0.0 5.0−2.5 2.5

NegS Zero PosS 

NegB PosB

µ

FIGURE 9.10
Fuzzy sets for the variable y represented by triangular membership functions.

25 fuzzy rules

−10.0

−7.5
Zerox

Zero

y

−5.0
PosS

PosS

−2.5
PosB

PosB

0.0

−7.5

−5.0
−2.5

0.0
2.5

−5.0

−2.5
0.0

2.5
5.0

−2.5

0.0
2.5

5.0
7.5

0.0

2.5
5.0

7.5
10.0

NegB

NegB

NegS

NegS

FIGURE 9.11
FAM table for the IRC simulation.

xy

25-rule fuzzy IRC simulation

−5−5

5

10
8
6
4
2
0

−2
−4
−6
−8

−10

4 3
2 1 0 −1 −2 −3 −4 −4 −3 −2 −1 0 1 2 3 4 5

FIGURE 9.12
Fuzzy IRC simulation using 25 rules.

Here, like the previous IRC case, the rule consequent values are stored in each cell of matrix
Z. Additionally, the fuzzy sets for x and y have been replaced with their prototypical values to
emphasize the requirement of an evenly spaced grid as seen in Fig. 9.13. Therefore, it is seen
that this system degenerates to a system of sampled points along the x and y axes.

The matrix Z is decomposed according to the SVD procedure previously described (see
Eq. (9.4)). The initial decomposition results in three matrices. Matrices U and V are orthogonal
and represent the input variables. Matrix � is the diagonal matrix of singular values. These
singular values are used to relate the importance of the input sets yielding the most important



SVD AND COMBS METHOD EXAMPLES 287

Z = f (x, y)

x

y

2.5
−2.5

0
2.5

5
7.5

5.0
0

2.5
5

7.5
10

−10

−7.5
−5

−2.5
0

−5

0
2.5

5

−5
−2.5

−7.5

−5
−2.5

0
2.5

−2.5 0
−5

−2.5
0

2.5
5

FIGURE 9.13
Output of Eq. (9.22) to be used for SVD simulation.

rules of a reduced set to approximate the rule-based system. The singular values and the U and
V matrices are in a new coordinate space. All the subsequent calculations occur in this space.
For this simple example, i.e., for the data in Fig. 9.13, we get

Z = U�VT =




−0.7303 0.2582 −0.4620 −0.3644 −0.2319
−0.5477 0.0 0.8085 0.1624 −0.1411
−0.3651 −0.2582 −0.1260 0.1537 0.8721
−0.1826 −0.5164 −0.3255 0.6629 −0.3932

0.0 −0.7746 0.1050 −0.6146 −0.1059




∗




17.6777 0 0 0 0
0 17.6777 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 ∗




0.7746 0.0 −0.0047 0.5588 0.2961
0.5164 −0.1826 0.1155 −0.8092 0.1782
0.2582 −0.3651 0.2545 0.0958 −0.8520

0.0 −0.5477 −0.8365 0.0008 −0.0150
−0.2582 0.7303 0.4712 0.1538 0.3927




T

Before the matrices are conditioned to become a reduced fuzzy system, singular values are
selected to simulate the system. This example yields only two singular values because this
system is a rank 2 system. Only two independent vectors are necessary to define the space.
However, the simulation continues as if there were more singular values from which to select,
and the procedure uses the two largest singular values. The column vectors for the fuzzy system
must now be conditioned. This means that the matrices, soon to contain membership values of
fuzzy sets, must overlap, must lie on the unit interval, and must have a prototypical value (a
single maximum membership value). We begin with operations on the matrix, U.

Overlapping membership functions: matrix U
Two submatrices representing the retained, Ur , and discarded Ud , columns of the U matrix are
developed from the first two columns of U, and the last three columns of U, respectively:

Ur =




−0.7303 0.2582
−0.5477 0.0
−0.3651 −0.2582
−0.1826 −0.5164

0.0 −0.7746


 , Ud =




−0.4620 −0.3644 −0.2319
0.8085 0.1624 −0.1411

−0.1260 0.1537 0.8721
−0.3255 0.6629 −0.3932
0.1050 −0.6146 −0.1059




The discarded columns, Ud , are then condensed into one column to augment Ur forming the
first matrix term in the product of Eq. (9.7) as

[Ur

∣∣Ud ∗ sum(UT
d ) ] =




−0.7303 0.2582
−0.5477 0.0
−0.3651 −0.2582
−0.1826 −0.5164

0.0 −0.7746

∣∣∣∣∣∣∣∣∣∣




−0.4620 −0.3644 −0.2319
0.8085 0.1624 −0.1411

−0.1260 0.1537 0.8721
−0.3255 0.6629 −0.3932
0.1050 −0.6146 −0.1059


 ∗


 0.0

0.0
0.0
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Next, the column sums of Ur and one additional unity value form the diagonal matrix �CU as
(see Eq. (9.8))

�CU =
[ −1.8257 0 0

0 −1.291 0
0 0 1

]
=

[
sum(UT

r )
1

]

where the ‘‘1’’ is the required additional column to account for the discarded U columns.
Now applying Eq. (9.7), the product of [Ur

∣∣Ud ∗ sum(UT
d ) ] and the diagonal matrix of

column sums, �CU, forms the matrix U1 satisfying the special overlapping condition:

U1 =




−0.7303 0.2582
−0.5477 0.0
−0.3651 −0.2582
−0.1826 −0.5164

0.0 −0.7746

∣∣∣∣∣∣∣∣∣

0.0
0.0
0.0
0.0
0.0


 ∗

[ −1.8257 0 0
0 −1.291 0
0 0 1

]

U1 =




1.3333 −0.3333
0.9999 0.0
0.6666 0.3333
0.3333 0.6666

0.0 1.0

∣∣∣∣∣∣∣∣∣

0.0
0.0
0.0
0.0
0.0


 =




1.3333 −0.3333
0.9999 0.0
0.6666 0.3333
0.3333 0.6666

0.0 1.0




The third column gives no useful information and is removed to provide the same U1 that
would have resulted using the smaller matrix �CU = diag[sum(UT

r )] originally developed in
Eq. (9.8).

Non-negative membership values: matrix U

This next operation relies on determining the minimum element in U1 and assigning a variable,
δ, a value 1 or 1/ min(U1). We have min(U1) = −0.3333, therefore δ = 1.0 in accordance
with Eq. (9.10). We can now form a doubly stochastic matrix using Eq. (9.11),

�DU = 1

(n + δ)




(1 + δ) 1 · · · 1
1 (1 + δ) · · · 1
...

...
. . .

...
1 1 · · · (1 + δ)


 = 1

(2 + 1)

[
1 + 1 1

1 1 + 1

]

=
[

0.6667 0.3333
0.3333 0.6667

]

By Eq. (9.12), the product U1 �DU gives U2, the matrix satisfying both the overlapping and
non-negative conditions:

U2 = U1 ∗ �DU =




1.3333 −0.3333
0.9999 0.0
0.6666 0.3333
0.3333 0.6666

0.0 1.0


 ∗

[
0.6667 0.3333
0.3333 0.6667

]
=




0.7778 0.2222
0.6666 0.3333
0.5555 0.4444
0.4444 0.5555
0.3333 0.6667




Prototypical membership value: matrix U
We now conduct the final step of conditioning the matrix U for membership functions. The
convex hull of U2, i.e., the extreme data points represented as rows in U2, is used to construct
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the rescaling matrix, �EU. In this case these minimum and maximum points occur at the first
and fifth rows of U2. The inverse of these two rows generates �EU according to Eq. (9.13):

�EU =
[

U2(1, : )
U2(5, : )

]−1

=
[

0.7778 0.2222
0.3333 0.6667

]−1

=
[

1.4999 −0.4999
−0.7498 1.7498

]

Applying Eq. (9.14), the product of �EU with U2 produces the final matrix U3 that satisfies all
the necessary requirements of overlapping, non-negative values and prototypical values:

U3 = U2 ∗ �EU =




0.7778 0.2222
0.6666 0.3333
0.5555 0.4444
0.4444 0.5555
0.3333 0.6667


 ∗

[
1.4999 −0.4999

−0.7498 1.7498

]

=




1.0000 0.0000
0.7500 0.2500
0.5000 0.5000
0.2500 0.7500
0.0000 1.0000




The columns of U3 become the membership functions for the input x in the reduced rule-base
system, Fig. 9.14.

Overlapping membership functions: matrix V
As with matrix U, two submatrices representing the retained, Vr , and discarded, Vd , columns
of the V matrix are developed:

Vr =




0.7746 0.0
0.5164 −0.1826
0.2582 −0.3651

0.0 −0.5477
−0.2582 −0.7303


 , Vd =




−0.0048 0.5588 0.2961
0.1156 −0.8092 0.1782
0.2545 0.0958 −0.8521

−0.8365 0.0008 −0.0151
0.4712 0.1538 0.3928




The discarded columns Vd are condensed into one column to augment Vr forming the first
matrix term in the product of Eq. (9.7) as

[Vr |Vd ∗ sum(VT
d )] =




0.7746 0.0
0.5164 −0.1826
0.2582 −0.3651

0.0 −0.5477
−0.2582 −0.7303

∣∣∣∣∣∣∣∣∣∣




−0.0048 0.5588 0.2961
0.1156 −0.8092 0.1782
0.2545 0.0958 −0.8521

−0.8365 0.0008 −0.0151
0.4712 0.1538 0.3928


 ∗


 0.0

0.0
0.0







x, distance

1.0

µ

PosNeg

x−5.0 0.0 5.0−2.5 2.5

FIGURE 9.14
Plotted columns of U3 representing two right triangle membership functions.
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Using Eq. (9.8) the diagonal matrix �CV is formed from V as

�CV =
[

1.2910 0 0
0 −1.8257 0
0 0 1

]
=

[
sum(VT

r )
1

]

where, again, the ‘‘1’’ is the required additional column to account for the discarded V columns.
The product of [Vr

∣∣Vd ∗ sum(VT
d ) ] and the diagonal matrix of column sums, �CV, forms

the matrix V1 by Eq. (9.7); this satisfies the special overlapping condition:

V1 =




0.7746 0.0
0.5164 −0.1826
0.2582 −0.3651

0.0 −0.5477
−0.2582 0.7303

∣∣∣∣∣∣∣∣∣

0.0
0.0
0.0
0.0
0.0


 ∗

[
1.2910 0 0

0 −1.8257 0
0 0 1

]

V1 =




1.0 0.0
0.6666 0.3333
0.3333 0.6666

0.0 1.0
−0.3333 1.3333

∣∣∣∣∣∣∣∣∣

0.0
0.0
0.0
0.0
0.0


 =




1.0 0.0
0.6666 0.3333
0.3333 0.6666

0.0 1.0
−0.3333 1.3333




Once more, as with matrix U, the third column gives no useful information and is removed to
provide the same V1 that would have resulted using the smaller matrix �CV = diag[sum(VT

r )]
as in Eq. 9.8.

Non-negative membership values: matrix V

The minimum element in V1 is min(V1) = −0.3333. Therefore, δ = 1.0 by Eq. (9.10) and is
used to form the doubly stochastic matrix (see Eq. 9.11)

�DV = 1

(n + δ)




(1 + δ) 1 · · · 1
1 (1 + δ) · · · 1
.
.
.

.

.

.
. . .

.

.

.

1 1 · · · (1 + δ)


 = 1

(2 + 1)

[
1 + 1 1

1 1 + 1

]
=

[
0.6667 0.3333
0.3333 0.6667

]

From Eq. (9.12) V2 becomes

V2 = V1 ∗ �DV =




1.0 0.0
0.6666 0.3333
0.3333 0.6666

0.0 1.0
−0.3333 1.3333


 ∗

[
0.6667 0.3333
0.3333 0.6667

]
=




0.6667 0.3333
0.5555 0.4444
0.4444 0.5555
0.3333 0.6667
0.2222 0.7778




Prototypical membership value: matrix V

The final step of conditioning matrix V, following the same step as for matrix U, uses the
convex hull of V2. By Eq. (9.13), the inverse of the maximum and minimum rows of V2
generates �EV:

�EV =
[

V2(1, : )(r)

V2(5, : )(r)

]−1

=
[

0.6667 0.3333
0.2222 0.7778

]−1

=
[

1.7498 −0.7498
−0.4999 1.4999

]
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y, distance

y−5.0

1.0

µ

0.0 5.0−2.5 2.5 

PosNeg

FIGURE 9.15
Plotted columns of V3 representing two right triangle membership functions.

The final matrix V3, satisfying the membership function constraints, is produced using
Eq. (9.14):

V3 = V2 ∗ �EV =




0.6667 0.3333
0.5555 0.4444
0.4444 0.5555
0.3333 0.6667
0.2222 0.7778


 ∗

[
1.7498 −0.7498

−0.4999 1.4999

]

=




1.0000 0.0000
0.7500 0.2500
0.5000 0.5000
0.2500 0.7500
0.0000 1.0000




The columns of V3 become the membership functions for the input y of the reduced rule-base
system, as seen in Fig. 9.15.

Reduced matrix of rule consequent values

Inverse matrix transformations of the previous operations help to form the reduced matrix of
the rule consequent values, Zr . This matrix will then be considered a FAM table for the new
reduced system. The original orthogonal matrices U and V were conditioned by means of three
matrix transformations �CU,V, �DU,V, and �EU,V. Now, the inverse of each of these matrices is
multiplied with �r (the reduced diagonal matrix of singular values) on both the left side and
right side resulting in a multiple matrix product, as described Eq. (9.15):

Zr = �E−1
U �D−1

U �C−1
U �r �CT−1

V �DT−1

V �ET−1

V

The following substitution shows the process on �r from the initial approximation, using
unconditioned matrices, to one with conditioned matrices:

Z ∼= Ur�rVT
r

Z ∼= [[[Ur ∗ �CU] ∗ �DU] ∗ �EU]�r [[[Vr ∗ �CV] ∗ �DV] ∗ �EV]T

Z ∼= [[[Ur ∗ �CU] ∗ �DU] ∗ �EU]�r [�ET
V ∗ [�DT

V ∗ [�CT
V ∗ VT

r ]]]

The approximation of matrix Z remains unchanged by ‘‘undoing’’ all the matrix products by
multiplying the conditioning matrices with their inverses. For example, �EU �E−1

U = I. Doing
this gives the following system equality: Z ∼= Ur�rVT

r = Ur ∗ I ∗ �r ∗ I ∗ VT
r . Now expanding
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this, including all the matrix products with their inverses, gives

Z ∼= [[[Ur ∗ �CU] ∗ �DU] ∗ �EU]{�E−1
U

�D−1
U

�C−1
U �r �CT−1

V
�DT−1

V
�ET−1

V }[ �ET
V ∗ [ �DT

V ∗ [ �CT
V ∗ VT

r ]]]

where Zr = {�E−1
U �D−1

U �C−1
U �r �CT−1

V �DT−1

V �ET−1

V } corresponds to the final reduced matrix of conse-
quent output values.

Therefore, calculating the inverses from the previous matrices yields the following set:

�C−1
U =

[−0.5477 0
0 −0.7746

]
�C−1

V =
[

0.7746 0
0 −0.5477

]

�D−1
U =

[
1.9997 −0.9997

−0.9997 1.9997

]
�D−1

V =
[

1.9997 −0.9997
−0.9997 1.9997

]

�E−1
U =

[
0.7778 0.2222
0.3333 0.6667

]
�E−1

V =
[

0.6667 0.2222
0.3333 0.7778

]

This set of inverses, when multiplied with the matrix of retained singular values,

�r =
[

17.6777 0
0 17.6777

]

gives the following matrix product:

Zr =
[

0.7778 0.2222
0.3333 0.6667

] [
1.9997 −0.9997

−0.9997 1.9997

][ −0.5477 0
0 −0.7746

][
17.6777 0

0 17.6777

]

∗
[

0.7746 0
0 −0.5477

] [
1.9997 −0.9997

−0.9997 1.9997

][
0.6667 0.2222
0.3333 0.7778

]

Hence

Zr =
[−10.0 0

0 10.0

]

becomes the reduced matrix of consequent values. In other words, the FAM table result for the
reduced rule-base system is now determined, and is shown in Fig. 9.16.

A simulation using this reduced four-rule system is shown in Fig. 9.17; the results
correlate exactly to the analytical and IRC cases.

Combs method for rapid inference

Here a somewhat more direct approach simulates the system using the same membership
functions as in the 25-rule IRC approach as shown in Fig. 9.11. This is an additively separable
system. Therefore the simulation is expected to be exact to that of the IRC. The URM as

Pos
Neg

x

Zr Neg

y

Pos
−10.0

0.0
0.0

10.0

FIGURE 9.16
Reduced FAM table due to the SVD method.
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y

Four-rule fuzzy SVD simulation

x−5−5
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4
2
0
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−10

4 3
2 1 0 −1 −2 −3 −4 −4 −3 −2 −1 0 1 2 3 4 5

FIGURE 9.17
SVD simulation using four rules.

previously described maps the system as an outer sum. In other words, when x is −5.0 or
‘‘NegB’’ (Negative Big) the function is −10.0. And similarly, when y is −5.0 or ‘‘NegB’’ the
function is −10.0. In progressing this way we get the results shown in the table in Fig. 9.18.
Each row represents all the labels associated with that specific input variable. Moreover, there
are two input variables in this example. Therefore, the URM consists of two rows plus one
accumulator row. Here again, the output values are singletons using the defined crisp output
values of Eq. (9.22). This method of rule-base development consists of 10 rules, the total
number of input cells shown in Fig. 9.18.

Figure 9.18 gets transformed to the URM of Fig. 9.19 in accordance with Eq. (9.21).
This shows how the computations of the system are implemented.

The results of this simulation do in fact correlate exactly to the IRC case, as can be seen
in Fig. 9.20, where the solution surface simulates Eq. (9.22).

Error analysis of the methods

This section gives a brief comparison of the three methods in this example using absolute
and relative errors. Since the operations are matrix computations on the rule consequent tables

X(x), distance
If x is NegB then

−10.0

Y(y), distance
If y is NegB then

−10.0 

Accumulator   i,1 zi,1µΣ
2

i=1

If x is NegS then
−5.0

If y is NegS then
−5.0 

  i,2 zi,2µΣ
2

i=1

If x is Zero then
0.0

If y is Zero then
0.0 

  i,3 zi,3µΣ
2

i=1

If x is PosS then
5.0

If y is PosS then
5.0 

  i,4 zi,4µΣ
2

i=1

If x is PosB then
10.0

If y is PosB then
10.0 

  i,5 zi,5µΣ
2

i=1

FIGURE 9.18
URM showing 10 rules, linguistic input labels, and output consequent values.

Input 1, X(x)

Input 2, Y(y)

Accumulator

   1,1 *−10.0µ

   2,1 *−10.0µ

  i,1 zi,1µΣ
2

i=1

   1,2 *−5.0µ

   2,2 *−5.0µ

  i,2 zi,2µΣ
2

i=1

   1,3 *0.0µ

   2,3 *0.0µ

  i,3 zi,3µΣ
2

i=1

   1,3 *5.0µ

   2,3 *5.0µ

  i,4 zi,4µΣ
2

i=1

   1,3 *10.0µ

   2,3 *10.0µ

  i,5 zi,5µΣ
2

i=1

FIGURE 9.19
URM showing 10 rules, membership values, and output consequent values for Eq. (9.21).
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10-rule fuzzy Combs method
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FIGURE 9.20
Combs Method simulation using 10 rules.

(FAM tables) the use of matrix norms is appropriate to estimate the size of error attributed
to each method. The three matrix norms used are: the one norm, the Frobenius norm and the
infinity norm.

Given a matrix A, the following equations define the three norms [Meyer, 2000]:

One norm:

||A||1 = maxj

∑
i

∣∣aij

∣∣ (9.23)

Frobenius norm:

||A||F =

∑

ij

∣∣aij

∣∣2




1/2

(9.24)

Infinity norm:

||A||∞ = maxi

∑
j

∣∣aij

∣∣ (9.25)

We can use these norm measures to calculate the total error based on the difference between
the exact solution matrix A and the approximate solution matrix Â, for example, using an
absolute error metric,

Absolute error:

||Â − A||p p = 1, F, or ∞ (for the one, Frobenius, and infinity norms, (9.26)
respectively)

A more explicit indicator of an approximation is given by its relative error. The error can be
relative to the approximate solution or to the exact solution. Here both absolute and relative
errors complete our analysis.

Relative error 1 with respect to the exact solution A:

||Â − A||p
||A||p p = 1, F, or ∞ (9.27)
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Relative error 2 with respect to the approximate solution Â:

||Â − A||p
||Â||p

p = 1, F, or ∞ (9.28)

All error measures for this problem are on the order of 10−14 or smaller since the function we
are approximating is a simple linear surface. The small error (<10−14) confirms that additively
separable IRC fuzzy systems are equivalent to the Combs method. In addition to providing
good simulation results the reduction methods also prove to be very effective. The IRC system
is reduced from 25 rules to 10 rules using the Combs method. This is a 60% reduction.
Similarly, the SVD reduced the 25-rule system by 84%. The benefit of these reduction methods
would become even more apparent when applied to large 10,000 rule-base systems. Either a
60% or an 84% reduction in rules on such large systems would result in direct savings of time.

Example 9.2. To make the simulation a little more complex, we now apply the rule-reduction
methods to simulate the function

f (x, y) = √
x + y2 (9.29)

as shown in Fig. 9.21. Again, this function also represents an additively separable system,
because the system can be broken into two vectors one, v1 representing

√
x and the other,

v2 representing y2. The outer sum, Eq. (9.20), of these vectors provides the rule-base for
simulation.

IRC rule-base simulation

As in Example 9.1, five partitions are used for the two input variables, x and y. They
again consist of triangular membership functions representing the linguistic labels. However,
the ranges of each variable change according to the function results plotted in Fig. 9.21,
x → [0, 5.0] and y → [0, 1.0]. (See Figs. 9.22–9.23.)

Like Example 9.1, an FAM table, Fig. 9.24, showing crisp rule consequent values maps
the input fuzzy sets, x and y, to the output of Eq. (9.29).

This results in the solution surface of Fig. 9.25 by simply fitting a surface through the
points given in Fig. 9.24.

Analytical solution

y x
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1

0.5

0

FIGURE 9.21
Solution surface for Eq. (9.29).
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1.0

x, distance

x0.0 2.5 5.01.25 3.75

Pos2 Pos3 Pos4

Pos1 Pos5

µ

FIGURE 9.22
Fuzzy sets for the variable x represented by triangular membership functions.

1.0

y, distance

y0.0 0.50 1.00.25 0.75

Pos2 Pos3 Pos4

Pos1 Pos5

µ

FIGURE 9.23
Fuzzy sets for the variable y represented by triangular membership functions.

y
25 fuzzy rules

x

Pos1
Pos2
Pos3
Pos4
Pos5

Pos1
0.0

1.1180
1.5811
1.9365
2.2361

Pos2
0.0625
1.1805
1.6436
1.9990
2.2986

Pos3
0.2500
1.3680
1.8311
2.1865
2.4861

Pos4
0.4900
1.6080
2.0711
2.4265
2.7261

Pos5
1.0000
2.1180
2.5811
2.9365
3.2361

FIGURE 9.24
FAM table for IRC simulation.

25-rule fuzzy IRC simulation

y x0
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FIGURE 9.25
Fuzzy IRC simulation using 25 rules.
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y
Z = f (x, y)

x

0 
1.25
2.5
3.75
5.0

0 
0.0

1.1180
1.5811
1.9365
2.2361

0.25
0.0625
1.1805
1.6436
1.9990
2.2986

0.5 
0.2500
1.3680
1.8311
2.1865
2.4861

0.75
0.4900
1.6080
2.0711
2.4265
2.7261

1.0
1.0000
2.1180
2.5811
2.9365
3.2361

FIGURE 9.26
Output of Eq. (9.29) to be used for SVD simulation.

SVD simulation

The IRC FAM table, Fig. 9.26, is used as the matrix, Z, on which the SVD will be processed;
refer to Example 9.1.

The matrix Z is decomposed as in Example 9.1 initially into three matrices, two
orthogonal and one diagonal, U, V, and �, respectively. Again, the singular values of � are
used to indicate the importance of the input sets to approximating a function or rule-base:

Z = U�VT =




−0.0967 −0.8993 0.0738 −0.0146 −0.4198
−0.3517 −0.3128 0.2079 −0.3126 0.7984
−0.4573 −0.0698 −0.3168 0.8102 0.1709
−0.5383 0.1166 −0.6345 −0.4955 −0.2201
−0.6067 0.2738 0.6696 0.0125 −0.3294


 ∗




9.6575 0 0 0 0
0 0.7334 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




∗




−0.3640 0.5152 −0.0883 0.1984 −0.7449
−0.3773 0.4392 0.1123 0.5241 0.6144
−0.4171 0.2113 −0.5536 −0.6445 0.2439
−0.4680 −0.0805 0.7810 −0.4047 −0.0273
−0.5763 −0.7004 −0.2513 0.3267 −0.0860




T

Just as in Example 9.1, there are only two singular values. The reason for this is that the original
system, Z, is rank 2, requiring only two singular values in its decomposition. Even though this
makes for a simple problem, the same procedures will be highlighted that can be generalized
to more complex problems, i.e., systems with more than two singular values. Therefore, the
two singular values are used as the rule-base reduction continues. Matrix U is the subject of
the first step of operations. The procedures in this example follow the same development as
those in Example 9.1. Therefore, only the step-by-step calculations will be presented.

Overlapping membership functions: matrix U

Two submatrices representing the retained and discarded columns of the U partition are

Ur =




−0.0967 −0.8993
−0.3517 −0.3128
−0.4573 −0.0698
−0.5383 0.1166
−0.6067 0.2738


 , Ud =




0.0738 −0.0146 −0.4198
0.2079 −0.3126 0.7984

−0.3168 0.8102 0.1709
−0.6345 −0.4955 −0.2201
0.6696 0.0125 −0.3294




The column sums of Ur and one additional unity value form the diagonal matrix �CU, Eq. (9.8):

�CU =
[ −2.0507 0 0

0 −0.8915 0
0 0 1

]
=

[
sum(UT

r )
1

]
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From Eq. (9.7), we get

U1 =




−0.0967 −0.8993
−0.3517 −0.3128
−0.4573 −0.0698
−0.5383 0.1166
−0.6067 0.2738

∣∣∣∣∣∣∣∣∣

0.0
0.0
0.0
0.0
0.0


 ∗

[ −2.0507 0 0
0 −0.8915 0
0 0 1

]

U1 =




0.1983 0.8017
0.7212 0.2788
0.9378 0.0622
1.1039 −0.1039
1.2441 −0.2441

∣∣∣∣∣∣∣∣∣

0.0
0.0
0.0
0.0
0.0


 =




0.1983 0.8017
0.7212 0.2788
0.9378 0.0622
1.1039 −0.1039
1.2441 −0.2441




Non-negative membership values: matrix U
We assign δ equal to either 1 or 1/min(U1) according to Eq. (9.10) depending on the minimum
element in U1. This value is found to be min(U1) = −0.2441, therefore δ = 1.0. Now Eq. (9.11)
forms the doubly stochastic matrix, �DU,

�DU = 1

(n + δ)




(1 + δ) 1 · · · 1
1 (1 + δ) · · · 1
.
.
.

.

.

.
. . .

.

.

.

1 1 · · · (1 + δ)


 = 1

(2 + 1)

[
1 + 1 1

1 1 + 1

]
=

[
0.6667 0.3333
0.3333 0.6667

]

From Eq. (9.12) we get

U2 = U1 ∗ �DU =




0.1983 0.8017
0.7212 0.2788
0.9378 0.0622
1.1039 −0.1039
1.2441 −0.2441


 ∗

[
0.6667 0.3333
0.3333 0.6667

]
=




0.3994 0.6006
0.5737 0.4263
0.6459 0.3541
0.7013 0.2987
0.7480 0.2520




Prototypical membership value: matrix U
The final step of conditioning matrix U uses Eq. (9.13) to form matrix �EU, the matrix used to
assign prototypical membership values to the fuzzy sets:

�EU =
[

U2(1, : )
U2(5, : )

]−1

=
[

0.3994 0.6006
0.7480 0.2520

]−1

=
[ −0.7229 1.7229

2.1457 −1.1457

]

From Eq. (9.14) we get

U3 = U2 ∗ �EU =




0.3994 0.6006
0.5737 0.4263
0.6459 0.3541
0.7013 0.2978
0.7480 0.2520


 ∗

[ −0.7229 1.7229
2.1457 −1.1457

]

=




1.0000 0.0000
0.5000 0.5000
0.2929 0.7071
0.1340 0.8660
0.0000 1.0000




The columns of U3 become the membership functions for the input x, as seen in Fig. 9.27.
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x0.0 1.25 2.50 3.75 5.0

1.0

x, distance

Pos1 Pos2

µ

FIGURE 9.27
Plotted columns of U3 representing two odd-shaped membership functions.

Overlapping membership functions: matrix V
Now matrix V is conditioned; two submatrices representing the retained and discarded columns
of the V partition are

Vr =




−0.3640 0.5152
−0.3773 0.4392
−0.4171 0.2113
−0.4680 −0.0805
−0.5763 −0.7004


 , Vd =




−0.0883 0.1984 −0.7449
0.1123 0.5241 0.6144

−0.5536 −0.6445 0.2439
0.7810 −0.4047 −0.0273

−0.2513 0.3267 −0.0860




The column sums of Vr and one additional unity value form the diagonal matrix �CV, Eq. (9.8):

�CV =
[ −2.2027 0 0

0 0.3848 0
0 0 1

]
=

[
sum(VT

r )
1

]

From Eq. (9.7) we get

V1 =




−0.3640 0.5152
−0.3773 0.4392
−0.4171 0.2113
−0.4680 −0.0805
−0.5763 −0.7004

∣∣∣∣∣∣∣∣∣

0.0
0.0
0.0
0.0
0.0


 ∗

[ −2.2027 0 0
0 0.3848 0
0 0 1

]

V1 =




0.8018 0.1982
0.8310 0.1690
0.9187 0.0813
1.0309 −0.0309
1.2694 −0.2694

∣∣∣∣∣∣∣∣∣

0.0
0.0
0.0
0.0
0.0


 =




0.8018 0.1982
0.8310 0.1690
0.9187 0.0813
1.0309 −0.0309
1.2694 −0.2694




Non-negative membership values: matrix V
We find the minimum element in V1 and substitute either 1 or 1/min(V1) for δ: min(V1) =
−0.2694, therefore δ = 1.0. Equation (9.11) forms the doubly stochastic matrix �DV,

�DV = 1

(n + δ)




(1 + δ) 1 · · · 1
1 (1 + δ) · · · 1
...

...
. . .

...
1 1 · · · (1 + δ)


 = 1

(2 + 1)

[
1 + 1 1

1 1 + 1

]

=
[

0.6667 0.3333
0.3333 0.6667

]
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From Eq. (9.12) we determine V2,

V2 = V1 ∗ �DV =




0.8018 0.1982
0.0.8310 0.1690
0.9187 0.0813
1.0309 −0.0309
1.2694 −0.2694


 ∗

[
0.6667 0.3333
0.3333 0.6667

]
=




0.6006 0.3994
0.6104 0.3896
0.6396 0.3604
0.6770 0.3230
0.7565 0.2435




Prototypical membership value: matrix V

Equation (9.13) is used for the final step of conditioning matrix V to form matrix �EV. Again,
this matrix is used to assign prototypical membership values to the fuzzy sets:

�EV =
[

V2(1, : )
V2(5, : )

]−1

=
[

0.6006 0.3994
0.7565 0.2435

]−1

=
[ −1.5618 2.5618

4.8522 −3.8522

]

From Eq. (9.14) we get V3,

V3 = V2 ∗ �EV =




0.6006 0.3994
0.6104 0.3896
0.6396 0.3604
0.6770 0.3230
0.7565 0.2435


 ∗

[ −1.5618 2.5618
4.8522 −3.8522

]

=




1.0000 0.0000
0.9375 0.0625
0.7500 0.2500
0.5100 0.4900
0.0000 1.0000




The columns of V3 become the membership functions for the input y, as seen in Fig. 9.28.

Reduced matrix of rule consequent values
The new reduced matrix of rule consequent values, Zr , is now developed using Eq. (9.15)
and the inverses of the matrices just produced. Hence, Zr becomes the FAM table for this
simulation; therefore, the inverses of the previous matrices yield the following set:

�C−1
U =

[−0.4876 0
0 −1.1217

]
�C−1

V =
[−0.4540 0

0 2.5988

]

y0.0 0.25 0.50 0.75 1.0

1.0

y, distance

Pos1 Pos2

µ

FIGURE 9.28
Plotted columns of V3 representing two odd-shaped membership functions.
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�D−1
U =

[
1.9997 −0.9997

−0.9997 1.9997

]
�D−1

V =
[

1.9997 −0.9997
−0.9997 1.9997

]

�E−1
U =

[
0.3994 0.6006
0.7480 0.2520

]
�E−1

V =
[

0.6006 0.7480
0.3994 0.2520

]

This set of matrices, multiplied with the matrix of retained singular values,

�r =
[

9.6575 0
0 0.7334

]

gives the following matrix product using Eq. (9.15):

Zr =
[

0.3994 0.6006
0.7480 0.2520

] [
1.9997 −0.9997

−0.9997 1.9997

] [−0.4876 0
0 −1.1217

] [
9.6575 0

0 0.7334

]

∗
[ −0.4540 0

0 2.5988

] [
1.9997 −0.9997

−0.9997 1.9997

] [
0.6006 0.7480
0.3994 0.2520

]
=

[
0.0 1.0
2.2 3.2

]

The FAM table results are shown in Fig. 9.29.
The surface of Fig. 9.30 represents the reduced rule-base simulation of Eq. (9.29).

Combs method for rapid inference

This system, although still additively separable, is different enough from the first example to
require a somewhat special approach to its simulation using the Combs method. Again, the

Posl
2x

Zr 2

y

0.0 1.0
Posl 2.2 3.2

FIGURE 9.29
FAM table due to the SVD method.

 

Four-rule fuzzy SVD method
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FIGURE 9.30
SVD simulation using four rules.
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same membership functions as in the 25-rule IRC approach are used. However, instead of
mapping the bilinear system as an outer sum, vectors corresponding to each nonlinear term
now map the system as an outer sum. Weinschenk et al. [2003] derive the equality between
IRC and URC for additively separable systems and state, ‘‘the consequent centers of mass of
the URC system are scaled versions of the IRC projection vector elements.’’ Hence, the output
vectors of Eq. (9.20) (seen in Fig. 9.24 as the first row and first column) are multiplied by 2
and subsequently become the output values to the Combs method.

Using the generalized convention as previously described results in showing the input
variables, x and y, each with five fuzzy sets as seen in Fig. 9.31. Also shown in this figure are
the rule consequent values in each cell, as determined by using a weighting value of 2.

Figure 9.31 gets transformed like Example 9.1 to the URM of Fig. 9.32 in accordance
with Eq. (9.21). This again shows how the computations of the system are implemented.

The results of this simulation are seen in Fig. 9.33 showing a reasonably good approxi-
mation to the solution surface of Eq. (9.29).

X(x), distance
If x is Pos1 then

0.0

Y(y), distance
If y is Pos1 then

0.0 

Accumulator   i,1 zi,1µΣ
2

i=1

If x is Pos2 then
2.2

If y is Pos2 then
0.12

  i,2 zi,2µΣ
2

i=1

If x is Pos3 then
3.2

If y is Pos3 then
0.5

  i,3 zi,3µΣ
2

i=1

If x is Pos4 then
3.8

If y is Pos4 then
1.12

  i,4 zi,4µΣ
2

i=1

If x is Pos5 then
4.5

If y is Pos5 then
2.0 

  i,5 zi,5µΣ
2

i=1

FIGURE 9.31
URM showing 10 rules, linguistic input labels, and output consequent values.

Input 1, X(x)

Input 2, Y(y)

Accumulator

   1,1 *0µ

   2,1 *0µ

  i,1 zi,1µΣ
2

i=1

   1,2 *2.2µ

   2,2 *0.12µ

  i,2 zi,2µΣ
2

i=1

   1,3 *3.2µ

   2,3 *0.5µ

  i,3 zi,3µΣ
2

i=1

   1,4 *3.8µ

   2,4 *1.12µ

  i,4 zi,4µΣ
2

i=1

   1,5 *4.5µ

   2,5 *2.0µ

  i,5 zi,5µΣ
2

i=1

FIGURE 9.32
URM showing 10 rules, membership values, and output consequent values.
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FIGURE 9.33
Combs method simulation using 10 rules.
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Measures

One norm 

Frobenius
norm

Infinity
norm

Absolute error
Relative error1
Relative error2
Absolute error
Relative error1
Relative error2
Absolute error

IRC
5.9669
0.1102
0.1105
2.1612
0.0533
0.0543
2.4691

SVD
4.6802
0.0864
0.0865
1.6277
0.0401
0.0408
2.0840

Combs
5.7050
0.1053
0.1044
2.0357
0.0502
0.0508
1.1910

Relative error1 0.0476 0.0402 0.0229
Relative error2 0.0485 0.0407 0.0234

FIGURE 9.34
Error comparison for all three fuzzy methods.

Error analysis of the methods

The error analysis here follows Eqs. (9.23)–(9.28), which give the relationships that define
the error measures in the simulation. Again, the three matrix norms that are used include the
one norm, the Frobenius norm, and the infinity norm. These norms are used on absolute and
relative errors by means of Eqs. (9.26)–(9.28).

The absolute error has the same units of Eq. (9.29). However, since no units have been
defined, consider the units to be displacement along the z axis. Relative error is a dimensionless
value. Figure 9.34 gives the comparison results of this simulation showing values much greater
than 0, unlike Example 9.1. The higher complexity in the analytical function is the reason for
this, i.e., the sum of two nonlinear terms. The same reduction percentages are achieved as
in Example 9.1: 60% for Combs and 84% for the SVD. This discussion concentrates on the
accuracy of each method. The absolute error is the accumulation of differences between the
simulation and the analytical solution for each point over the entire surface. Figure 9.34 shows
that the IRC yields the largest error value for all the norms. Furthermore, the Combs method
gives the second-largest value for the one norm and the Frobenius norm and the SVD is second
for the infinity norm. What does this mean? The one norm gives the largest absolute column
sum, and the infinity norm gives the largest absolute row sum. These measures give a sense of
error in either the y direction (column) or the x direction (row). Therefore, the SVD gives the
best approximation according to the one norm in the y direction, and the Combs method gives
the best approximation in the x direction. Now the Frobenius norm is somewhat different. This
norm takes all entries of the difference Â − A as a single vector and finds its length. Hence,
Fig. 9.34 reveals that the SVD gives the shortest length of errors, or the best approximation in
terms of the Frobenius norm. This same reasoning extends to relative errors, and we see the
same trends.

These results prove that not only can an IRC system be reduced, but also it can be
improved. An IRC system maps the input space to the output space. But, based on the many
influences that affect the system behavior, an IRC may not be as accurate as desired. Many
times ‘‘fine tuning’’ the system is necessary. Fine tuning refers to the use of a different number
of fuzzy sets, redefining membership functions ranges, prototypes, etc. The reduction methods
in this example have effectively used either a different number of fuzzy sets or a different
configuration to achieve improved accuracy. Although this may not be the case for every
simulation, it is important to note that these refinements are possible with these new tools. In
addition to the two new rule-reduction tools discussed in this chapter, there have been others
published in the literature [Jamshidi, 1994].

SUMMARY

Building a robust yet economical fuzzy system can be a challenge. This can, however, be
achieved by means of the two rule-base reduction methods presented in this chapter. Yam
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[1997] explains how to expand the SVD to systems with more than two input dimensions.
Similarly, Combs and Andrews [1998] describe systems with more than two input vari-
ables. Furthermore, these methods are founded on algebraic principles that allow for
automatic implementation, unlike previous methods. Jamshidi [1994] describes three rule-
reduction methods that rely heavily on developer acumen. First, the hierarchical method
prioritizes the rules into input–output levels. This removes some of the combinatorial
effect, but requires a good understanding about the system to be simulated. Second, the
sensory-fusion method combines input algebraically. This allows fewer fuzzy sets as the
number of inputs is combined. However, again a good understanding is necessary to
determine the appropriate input to combine. Third, a hybrid of the first two is made
as the hierarchical with sensory-fusion method. This method follows the same form as
the first two but is effective only if combined with the best features of each method.
Clearly, these methods, although sometimes effective, are not well-suited for automatic
programming.
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PROBLEMS

Singular Value Decomposition

9.1. This problem will demonstrate the progression of the singular value approximation using
the MATLAB command ‘‘svd’’ in finding a singular value decomposition. A singular value
decomposition diagonalizes and decomposes a matrix A into three matrices, one diagonal and
two orthogonal.
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(a) Given

A =




4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4




find its singular value decomposition using the MATLAB command ‘‘[U, S, V] =
svd(A).’’

(b) A matrix approximation is a summation of the products of all the singular values with their
corresponding column vectors from matrices U and V as

A = u1s1v
T
1 + · · · + unsnv

T
n

Perform a rank 1, 2, 3, and 4 approximation of the matrix in part (a).
9.2. Repeat Problem 9.1a and b on the following matrix:

A =




9 3 2 7
8 5 7 3
9 2 1 3
3 2 2 7




What are the two largest singular values?
9.3. Plot the set A and its convex hull

A =




1 2
1 3
4 3
4 5
7 2
5 2.5




9.4. Using the matrix

A =




0.3 0.2 0.4 0.1
−0.4 0.5 0.1 0.8
1.2 −0.4 −0.3 0.5
0.15 0.7 0.35 −0.2




show its corresponding doubly stochastic matrix.
9.5. This problem demonstrates the use of the ‘‘orth’’ command in MATLAB and how with an

orthogonal matrix one can prove the ‘‘sum–normal’’ condition.
(a) Using the ‘‘orth’’ command in MATLAB verify that the orthonormal basis to matrix A

is U.

A =

 1 2 3

4 5 6
7 8 0


 , U =


 −0.230357 . . . −0.396071 . . . −0.888855 . . .

−0.607283 . . . −0.655207 . . . 0.449343 . . .

−0.760356 . . . 0.643296 . . . −0.089595 . . .




(b) Prove the sum–normal condition using matrix U.
9.6. For a given type of building with natural frequency ω, a vulnerability surface on damage has

been developed based on analyst opinion and past measurements where damage ranges from 1
(slight) to 6 (collapse). The following table results:
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Maximum displacement, in.

1 2 3 4 5

Peak ground 0.1 1 3 2 2 1
acceleration, 0.2 2 3 2 2 1
in./s2 0.3 4 4 3 2 2

0.4 5 6 5 4 3
0.5 4 5 4 3 2

(a) Calculate U, S, and V using the MATLAB command, ‘‘[U S V] = svd(A).’’
(b) Condition U and V according to the three steps outlined in this chapter.

Note: Peak ground acceleration corresponds to U and maximum displacement corresponds
to V.
• Keep two singular values

convex hull, U =

 U2(1, : )

U2(3, : )
U2(4, : )




•
convex hull, V =


 V2(1, : )

V2(2, : )
V2(5, : )




(c) Form the matrix of rule consequent values, Zr .

Combs Method for Rapid Inference

9.7. Using a truth table prove the set-theoretic equivalence of the IRC with the URC.
9.8. Input measurements are taken for fuzzy sets A∼ , B∼, and C∼. They yield the following membership

values:
A(x)Low = 0.25 B(y)Low = 0.63 C(z)Low = 0.18

A(x)Medium = 0.4 B(y)Medium = 0.37 C(z)Medium = 0.04

A(x)High = 0.9 B(y)High = 0.1 C(z)High = 0.0

Output Low = 2

Output Medium = 5

Output High = 10
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Fill in the following union rule matrix and calculate the final output, ZURC.

Low Medium High

Input A
Input B
Input C
Accumulator array

9.9. Take the outer sum of the following vectors:

A =




1.2
7.6
9.4
3.3


 B =




5.5
3.9
2.0
6.8




9.10. Repeat Problem 9.8, except now A∼
, B∼

, and C∼
are mapped to the following output sets:

Output ALow = 2 Output BLow = 3 Output CLow = 1

Output AMedium = 5 Output BMedium = 7 Output CMedium = 2

Output AHigh = 10 Output BHigh = 8 Output CHigh = 3



CHAPTER

10
DECISION
MAKING WITH
FUZZY
INFORMATION

To be, or not to be: that is the question:
Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them.

William Shakespeare
Hamlet, Act III, Scene I, 1602

The passage above represents a classic decision situation for humans. It is expressed in
natural language – the form of information most used by humans and most ignored in
computer-assisted decision making. But, as suggested many other times in this text, this is
the nature of the problem engineers face every day: how do we embed natural fuzziness
into our otherwise crisp engineering paradigms? Shakespeare would undoubtedly rejoice
to learn that his question now has a whole range of possibilities available between the
extremes of existence that he originally suggested. Ultimately, the decisions may be binary,
as originally posed by Shakespeare in this passage from Hamlet, but there certainly should
be no restrictions on the usefulness of fuzzy information in the process of making a decision
or of coming to some consensus.

Decision making is a most important scientific, social, and economic endeavor. To be
able to make consistent and correct choices is the essence of any decision process imbued
with uncertainty. Most issues in life, as trivial as we might consider them, involve decision
processes of one form or another. From the moment we wake in the morning to the time we
place our bodies at rest at the day’s conclusion we make many, many decisions. What should

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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we wear for the day; should we take an umbrella; what should we eat for breakfast, for
lunch, for dinner; should we stop by the gas station on the way to work; what route should
we take to work; should we attend that seminar at work; should we write the memorandum
to our colleagues before we make the reservations for our next trip out of town; should we
go to the store on our way home; should we take the kids to that new museum before, or
after, dinner; should we watch the evening news before retiring; and so on and so forth?

We must keep in mind when dealing with decision making under uncertainty that
there is a distinct difference between a good decision and a good outcome! In any decision
process we weigh the information about an issue or outcome and choose among two
or more alternatives for subsequent action. The information affecting the issue is likely
incomplete or uncertain; hence, the outcomes are uncertain, irrespective of the decision
made or the alternative chosen. We can make a good decision, and the outcome can be
adverse. Alternatively, we can make a bad decision, and the outcome can be advantageous.
Such are the vagaries of uncertain events. But in the long run, if we consistently make good
decisions, advantageous situations will occur more frequently than bad ones.

To illustrate this notion, consider the choice of whether to take an umbrella on a
cloudy, dark morning. As a simple binary matter, the outcomes can be rain or no rain.
We have two alternatives: take an umbrella, or do not. The information we consider in
making this decision could be as unsophisticated as our own feelings about the weather on
similar days in the past or as sophisticated as a large-scale meteorological analysis from
the national weather service. Whatever the source of information, it will be associated with
some degree of uncertainty. Suppose we decide to take the umbrella after weighing all the
information, and it does not rain. Did we make a bad decision? Perhaps not. Eight times out
of 10 in circumstances just like this one, it probably rained. This particular occasion may
have been one of the two out of 10 situations when it did not.

Despite our formal training in this area and despite our common sense about how
clear this notion of uncertainty is, we see it violated every day in the business world. A
manager makes a good decision, but the outcome is bad and the manager gets fired. A
doctor uses the best established procedures in a medical operation and the patient dies; then
the doctor gets sued for malpractice. A boy refuses to accept an unsolicited ride home with
a distant neighbor on an inclement day, gets soaking wet on the walk home, ruins his shoes,
and is reprimanded by his parent for not accepting the ride. A teenager decides to drive on
the highway after consuming too many drinks and arrives home safely without incident. In
all of these situations the outcomes have nothing to do with the quality of the decisions or
with the process itself. The best we can do is to make consistently rational decisions every
time we are faced with a choice with the knowledge that in the long run the ‘‘goods’’ will
outweigh the ‘‘bads.’’

The problem in making decisions under uncertainty is that the bulk of the information
we have about the possible outcomes, about the value of new information, about the way
the conditions change with time (dynamic), about the utility of each outcome–action pair,
and about our preferences for each action is typically vague, ambiguous, and otherwise
fuzzy. In some situations the information may be robust enough so that we can characterize
it with probability theory.

In making informed and rational decisions we must remember that individuals are
essentially risk averse. When the consequences of an action might result in serious injury,
death, economic ruin, or some other dreaded event, humans do not make decisions consistent
with rational utility theory [Maes and Faber, 2004]. In fact, studies in cognitive psychology



310 DECISION MAKING WITH FUZZY INFORMATION

show that rationality is a rather weak hypothesis in decision making, easily refuted and
therefore not always useful as an axiomatic explanation of the theory of decision making.
Human risk preference in the face of high uncertainty is not easily modeled by its rational
methods. In a narrow context of decision making, rational behavior is defined in terms of
decision making which maximizes expected utility [von Neumann and Morgenstern, 1944].
Of course, this utility is a function of personal preferences of the decision maker. While
much of the literature addresses decision making in the face of economic and financial risks,
engineers are primarily concerned with two types of decisions [Maes and Faber, 2004]:
(1) operational decisions, where for certain available resources an optimal action is sought
to avoid a specific set of hazards; and (2) strategic decisions, which involve decisions
regarding one’s level of preparedness or anticipation of events in the future. Difficulties
in human preference reversal, in using incomplete information, in bias towards one’s own
experience, and in using epistemic uncertainty (e.g., ambiguity, vagueness, fuzziness) are
among the various issues cited by Maes and Faber [2004] as reasons why the independence
axiom of an expected utility analysis (used in rational decision making) is violated by human
behavior. While we do not address these matters in this text, it is nonetheless important to
keep them in mind when using any of the methods developed here.

This chapter presents a few paradigms for making decisions within a fuzzy environ-
ment. Issues such as personal preferences, multiple objectives, nontransitive reasoning, and
group consensus are presented. The chapter concludes with a rather lengthy development
of an area known loosely as fuzzy Bayesian decision making, so named because it involves
the introduction of fuzzy information, fuzzy outcomes, and fuzzy actions into the classical
probabilistic method of Bayesian decision making. In developing this we are able to
compare the value and differences of incorporating both fuzzy and random information into
the same representational framework. Acceptance of the fuzzy approach is therefore eased
by its natural accommodation within a classical, and historically popular, decision-making
approach. Moreover, a recent book chapter [Ross et al., 2003] shows how the likelihood
function in Bayes’s rule has similar properties to a fuzzy membership function. This is
not to suggest that Bayesian decision making is accepted universally; Maes and Faber
[2004] highlight some problems with Bayesian updating of probabilities and utilities that
are currently being debated in the literature.

FUZZY SYNTHETIC EVALUATION

The term synthetic is used here to connote the process of evaluation whereby several
individual elements and components of an evaluation are synthesized into an aggregate
form; the whole is a synthesis of the parts. The key here is that the various elements can be
numeric or nonnumeric, and the process of fuzzy synthesis is naturally accommodated using
synthetic evaluation. In reality, an evaluation of an object, especially an ill-defined one, is
often vague and ambiguous. The evaluation is usually described in natural language terms,
since a numerical evaluation is often too complex, too unacceptable, and too ephemeral
(transient). For example, when grading a written examination, the professor might evaluate
it from such perspectives as style, grammar, creativity, and so forth. The final grade on the
paper might be linguistic instead of numeric, e.g., excellent, very good, good, fair, poor, and
unsatisfactory. After grading many exams the professor might develop a relation by which
a membership is assigned to the relations between the different perspectives, such as style
and grammar, and the linguistic grades, such as fair and excellent. A fuzzy relation, R∼, such
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as the following one, might result that summarizes the professor’s relationship between
pairs of grading factors such as creativity and grade evaluations such as very good:

R∼ =




Excellent Very good Good Fair Poor

Creativity 0.2 0.4 0.3 0.1 0
Grammar 0 0.2 0.5 0.3 0
Style 0.1 0.6 0.3 0 0

...
...

...
...

...
...




The professor now wants to assign a grade to each paper. To formalize this approach,
let X be a universe of factors and Y be a universe of evaluations, so

X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}

Let R∼ = [rij ] be a fuzzy relation, such as the foregoing grading example, where i =
1, 2, . . . , n and j = 1, 2, . . . , m. Suppose we introduce a specific paper into the evaluation
process on which the professor has given a set of ‘‘scores’’ (wi) for each of the n grading
factors, and we ensure, for convention, that the sum of the scores is unity. Each of these
scores is actually a membership value for each of the factors, xi , and they can be arranged
in a fuzzy vector, w∼ . So we have

w∼ = {w1, w2, . . . , wn} where
∑

i

wi = 1 (10.1a)

The process of determining a grade for a specific paper is equivalent to the process of
determining a membership value for the paper in each of the evaluation categories, yi . This
process is implemented through the composition operation

e∼ = w∼◦R∼ (10.1b)

where e∼ is a fuzzy vector containing the membership values for the paper in each of the yi

evaluation categories.

Example 10.1. Suppose we want to measure the value of a microprocessor to a potential
client. In conducting this evaluation, the client suggests that certain criteria are important. They
can include performance (MIPS), cost ($), availability (AV), and software (SW). Performance
is measured by millions of instructions per second, or MIPS; a minimum requirement is 10
MIPS. Cost is the cost of the microprocessor, and a cost requirement of ‘‘not to exceed’’
$500 has been set. Availability relates to how much time after the placement of an order the
microprocessor vendor can deliver the part; a maximum of eight weeks has been set. Software
represents the availability of operating systems, languages, compilers, and tools to be used
with this microprocessor. Suppose further that the client is only able to specify a subjective
criterion of having ‘‘sufficient’’ software.

A particular microprocessor (CPU) has been introduced into the market. It is measured
against these criteria and given ratings categorized as excellent (e), superior (s), adequate (a),
and inferior (i). ‘‘Excellent’’ means that the microprocessor is the best available with respect to
the particular criterion. ‘‘Superior’’ means that microprocessor is among the best with respect to
this criterion. ‘‘Adequate’’ means that, although not superior, the microprocessor can meet the
minimum acceptable requirements for this criterion. ‘‘Inferior’’ means that the microprocessor
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cannot meet the requirements for the particular criterion. Suppose the microprocessor just
introduced has been assigned the following relation based on the consensus of the design team:

R =



e s a i

MIPS 0.1 0.3 0.4 0.2
$ 0 0.1 0.8 0.1
AV 0.1 0.6 0.2 0.1
SW 0.1 0.4 0.3 0.2




This relation could have been derived from data using similarity methods such as those
discussed in Chapter 3.

If the evaluation team applies a scoring factor of 0.4 for performance, 0.3 for cost,
0.2 for availability, and 0.1 for software, which together form the factor vector, w∼ , then the
composition, e∼ = w∼

◦R∼ = {0.1, 0.3, 0.4, 0.2}, results in an evaluation vector that has its highest
membership in the category ‘‘adequate.’’

It is important to point out in concluding this section that the relations expressed in
this section are not constrained in that their row sums should equal unity. The examples
given show the row sums equaling unity, a matter of convenience for illustration. However,
since the entries in the synthetic evaluation matrix relations are membership values showing
the degree of relation between the factors and the evaluations, these values can take on any
number between 0 and 1. Hence, row sums could be larger, or smaller, than unity.

FUZZY ORDERING

Decisions are sometimes made on the basis of rank, or ordinal ranking: which issue is best,
which is second best, and so forth. For issues or actions that are deterministic, such as
y1 = 5, y2 = 2, y1 ≥ y2, there is usually no ambiguity in the ranking; we might call this
crisp ordering. In situations where the issues or actions are associated with uncertainty,
either random or fuzzy, rank ordering may be ambiguous. This ambiguity, or uncertainty,
can be demonstrated for both random and fuzzy variables. First, let us assume that the
uncertainty in rank is random; we can use probability density functions (pdf) to illustrate the
random case. Suppose we have one random variable, x1, whose uncertainty is characterized
by a Gaussian pdf with a mean of µ1 and a standard deviation of σ1, and another random
variable, x2, also Gaussian with a mean of µ2 and standard deviation of σ2. Suppose further
that σ1 > σ2 and µ1 > µ2. If we plot the pdfs for these two random variables in Fig. 10.1,
we see that the question of which variable is greater is not clear.

xµ2 µ1

f (x2)
f (x1)

f (x )

µ µ0

FIGURE 10.1
Density functions for two Gaussian random variables.
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As an example of this uncertain ranking, suppose x1 is the height of Italians and x2

is the height of Swedes. Because this uncertainty is of the random kind, we cannot answer
the question ‘‘Are Swedes taller than Italians?’’ unless we are dealing with two specific
individuals, one each from Sweden and Italy, or we are simply assessing µ1, average-height
Swedes, and µ2, average-height Italians. But we can ask the question, ‘‘How frequently
are Swedes taller than Italians?’’ We can assess this frequency as the probability that one
random variable is greater than another, i.e., P (x1 ≥ x2), with

P (x1 ≥ x2) =
∫ ∞

−∞
Fx2(x1) dx1 (10.2a)

where F is a cumulative distribution function. Hence, with random variables we can
quantify the uncertainty in ordering with a convolution integral, Eq. (10.2a).

Second, let us assume that the uncertainty in rank arises because of ambiguity. For
example, suppose we are trying to rank people’s preferences in colors. In this case the
ranking is very subjective and not reducible to the elegant form available for some random
variables, such as that given in Eq. (10.2a). For fuzzy variables we are also able to quantify
the uncertainty in ordering, but in this case we must do so with the notion of membership.

A third type of ranking involves the notion of imprecision [Dubois and Prade, 1980].
To develop this, suppose we have two fuzzy numbers, I∼ and J∼. We can use tools provided in
Chapter 12 on the extension principle to calculate the truth value of the assertion that fuzzy
number I∼ is greater that fuzzy number J∼ (a fuzzy number was defined in Chapter 4):

T (I∼ ≥ J∼) = sup
x≥y

min(µI∼
(x), µJ∼

(y)) (10.2b)

Figure 10.2 shows the membership functions for two fuzzy numbers I∼and J∼. Equation (10.2b)
is an extension of the inequality x ≥ y according to the extension principle. It represents
the degree of possibility in the sense that if a specific pair (x, y) exists such that x ≥ y and
µI∼

(x) = µJ∼
(y), then T (I∼ ≥ J∼) = 1. Since the fuzzy numbers I∼ and J∼ are convex, it can be

seen from Fig. 10.2 that

T (I∼ ≥ J∼) = 1 if and only if I ≥ J (10.3a)

T (J∼ ≥ I∼) = height(I∼∩ J∼) = µI∼
(d) = µJ∼

(d) (10.3b)

where d is the location of the highest intersection point of the two fuzzy numbers. The
operation height (I∼∩ J∼) in Eq. (10.3b) is a good separation metric for two fuzzy numbers;

J d I0

µ

1.0
I~J~

x or y

FIGURE 10.2
Two fuzzy numbers as fuzzy sets on the real line.
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that is, the closer this metric is to unity, the more difficult it is to distinguish which of the
two fuzzy numbers is largest. On the other hand, as this metric approaches zero, the easier
is the distinction about rank order (which is largest). Unfortunately, the metric given in
Eq. (10.3a) is not too useful as a ranking metric, because T (I∼ ≥ J∼) = 1 when I is slightly
greater and when I is much greater than J. If we know that I∼ and J∼ are crisp numbers I and
J, the truth value becomes T (I ≥ J) = 1 for I ≥ J and T (I ≥ J) = 0 for I < J.

The definitions expressed in Eqs. (10.2b) and (10.3) for two fuzzy numbers can be
extended to the more general case of many fuzzy sets. Suppose we have k fuzzy sets
I∼1, I∼2, . . . , I∼k. Then the truth value of a specified ordinal ranking is given by

T (I∼ ≥ I∼1, I∼2, . . . , I∼k) = T (I∼ ≥ I∼1) and T (I∼ ≥ I∼2) and . . . and T (I∼ ≥ I∼k) (10.4)

Example 10.2. Suppose we have three fuzzy sets, as described using Zadeh’s notation:

I∼1 =
{

1

3
+ 0.8

7

}
and I∼2 =

{
0.7

4
+ 1.0

6

}
and I∼3 =

{
0.8

2
+ 1

4
+ 0.5

8

}

We can assess the truth value of the inequality, I∼1 ≥ I∼2, as follows:

T (I∼1 ≥ I∼2) = max
x1≥x2

{min(µI∼1(x1), µI∼2(x2))}
= max{min(µI∼1(7), µI∼2(4)), min(µI∼1(7), µI∼2(6))}
= max{min(0.8, 0.7), min(0.8, 1.0)}
= 0.8

Similarly,

T (I∼1 ≥ I∼3) = 0.8 T (I∼2 ≥ I∼1) = 1.0

T (I∼2 ≥ I∼3) = 1.0 T (I∼3 ≥ I∼1) = 1.0

T (I∼3 ≥ I∼2) = 0.7

Then

T (I∼1 ≥ I∼2, I∼3) = 0.8

T (I∼2 ≥ I∼1, I∼3) = 1.0

T (I∼3 ≥ I∼1, I∼2) = 0.7

The last three truth values in this example compared one fuzzy set to two others. This
calculation is different from pairwise comparisons. To do the former, one makes use of the
minimum function, as prescribed by Eq. (10.4). For example,

T (I∼1 ≥ I∼2, I∼3) = min{(I∼1 ≥ I∼2), (I∼1 ≥ I∼3)}
Equation (10.4) can be used similarly to obtain the other multiple comparisons. Based on the
foregoing ordering, the overall ordering for the three fuzzy sets would be I∼2 first, I∼1 second,
and I∼3 last.

Another procedure to compare two fuzzy numbers and find the larger or smaller of
them is given by Klir and Yuan [1995]. In this case, we make use of what is known as the
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extended MIN and MAX operations; these are operations on fuzzy numbers, whereas the
standard min and max are operations on real numbers. The reader is referred to the literature
for more amplification on this.

NONTRANSITIVE RANKING

When we compare objects that are fuzzy, ambiguous, or vague, we may well encounter
a situation where there is a contradiction in the classical notions of ordinal ranking and
transitivity in the ranking. For example, suppose we are ordering on the preference of colors.
When comparing red to blue, we prefer red; when comparing blue to yellow, we prefer
blue; but when comparing red and yellow we might prefer yellow. In this case transitivity
of sets representing preference in colors (red > blue and blue > yellow does not yield red
> yellow) is not maintained.

To accommodate this form of nontransitive ranking (which can be quite normal for
noncardinal-type concepts), we introduce a special notion of relativity [Shimura, 1973]. Let
x and y be variables defined on universe X. We define a pairwise function

fy(x) as the membership value of x with respect to y

and we define another pairwise function

fx(y) as the membership value of y with respect to x

Then the relativity function given by

f (x | y) = fy(x)

max[fy(x), fx(y)]
(10.5)

is a measurement of the membership value of choosing x over y. The relativity function
f (x | y) can be thought of as the membership of preferring variable x over variable y. Note
that the function in Eq. (10.5) uses arithmetic division.

To develop the general case of Eq. (10.5) for many variables, define variables
x1, x2, . . . , xi, xi+1, . . . , xn all defined on universe X, and let these variables be collected
in a set A, i.e., A = {x1, x2, . . . , xi−1, xi, xi+1, . . . , xn}. We then define a set identical to set
A except this new set will be missing one element, xi , and this set will be termed A′. The
relativity function then becomes

f (xi | A′) = f (xi | {x1, x2, . . . , xi−1, xi+1, . . . , xn})
= min{f (xi | x1), f (xi | x2), . . . , f (xi | xi−1), f (xi | xi+1), . . . , f (xi | xn)} (10.6)

which is the fuzzy measurement of choosing xi over all elements in the set A′. The
expression in Eq. (10.6) involves the logical intersection of several variables; hence the
minimum function is used. Since the relativity function of one variable with respect to itself
is identity, i.e.,

f (xi | xi) = 1 (10.7)

then
f (xi | A′) = f (xi | A) (10.8)
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We can now form a matrix of relativity values, f (xi | xj ), where i, j = 1, 2, . . . , n,
and where xi and xj are defined on a universe X. This matrix will be square and of order
n, and will be termed the C matrix (C for comparison). The C matrix can be used to rank
many different fuzzy sets.

To determine the overall ranking, we need to find the smallest value in each of the
rows of the C matrix; that is,

C′
i = min f (xi | X), i = 1, 2, . . . , n (10.9)

where C′
i is the membership ranking value for the ith variable. We use the minimum

function because this value will have the lowest weight for ranking purposes; further, the
maximum function often returns a value of 1 and there would be ambivalence in the ranking
process (i.e., ties will result).

Example 10.3. In manufacturing, we often try to compare the capabilities of various micropro-
cessors for their appropriateness to certain applications. For instance, suppose we are trying to
select from among four microprocessors the one that is best suited for image processing appli-
cations. Since many factors can affect this decision, including performance, cost, availability,
software, and others, coming up with a crisp mathematical model for all these attributes is
complicated. Another consideration is that it is much easier to compare these microprocessors
subjectively in pairs rather than all four at one time.

Suppose the design team is polled to determine which of the four microprocessors,
labeled x1, x2, x3, and x4, is the most preferred when considered as a group rather than when
considered as pairs. First, pairwise membership functions are determined. These represent the
subjective measurement of the appropriateness of each microprocessor when compared only
to one another. The following pairwise functions are determined:

fx1(x1) = 1 fx1(x2) = 0.5 fx1(x3) = 0.3 fx1(x4) = 0.2

fx2(x1) = 0.7 fx2(x2) = 1 fx2(x3) = 0.8 fx2(x4) = 0.9

fx3(x1) = 0.5 fx3(x2) = 0.3 fx3(x3) = 1 fx3(x4) = 0.7

fx4(x1) = 0.3 fx4(x2) = 0.1 fx4(x3) = 0.3 fx4(x4) = 1

For example, microprocessor x2 has membership 0.5 with respect to microprocessor x1. Note
that if these values were arranged into a matrix, it would not be symmetric. These membership
values do not express similarity or relation; they represent membership values of ordering when
considered in a particular order. If we now employ Eq. (10.5) to calculate all of the relativity
values, the matrix shown below expresses these calculations; this is the so-called comparison,
or C, matrix. For example,

f (x2 | x1) = fx1(x2)

max[fx1(x2), fx2(x1)]
= 0.5

max[0.5, 0.7]
= 0.71

C =



x1 x2 x3 x4

x1 1 1 1 1
x2 0.71 1 0.38 0.11
x3 0.6 1 1 0.43
x4 0.67 1 1 1




min = f (xi | X)

1
0.11
0.43
0.67

The extra column to the right of the foregoing C matrix is the minimum value for each of the
rows, i.e., for C′

i , i = 1, 2, 3, 4, in Eq. (10.9). For this example problem, the order from best to
worst is x1, x4, x3, and x2. This ranking is much more easily attained with this fuzzy approach
than it would have been with some other method where the attributes of each microprocessor
are assigned a value measurement and these values are somehow combined. This fuzzy method
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also contains the subjectiveness inherent in comparing one microprocessor to another. If all
four were considered at once, a person’s own bias might skew the value assessments to favor
a particular microprocessor. By using pairwise comparisons, each microprocessor is compared
individually against its peers, which should allow a more fair and less biased comparison.

PREFERENCE AND CONSENSUS

The goal of group decision making typically is to arrive at a consensus concerning a desired
action or alternative from among those considered in the decision process. In this context,
consensus is usually taken to mean a unanimous agreement by all those in the group
concerning their choice. Despite the simplicity in defining consensus, it is another matter
altogether to quantify this notion. Most traditional mathematical developments of consensus
have used individual preference ranking as their primary feature. In these developments,
the individual preferences of those in the decision group are collected to form a group
metric whose properties are used to produce a scalar measure of ‘‘degree of consensus.’’
However, the underlying axiomatic structure of many of these classical approaches is based
on classical set theory. The argument given in this text is that the crisp set approach is too
restrictive for the variables relevant to a group decision process. The information in the
previous section showed individual preference to be a fuzzy relation.

There can be numerous outcomes of decision groups in developing consensus about a
universe, X, of n possible alternatives, i.e., X = {x1, x2, . . . , xn}. To start the development,
we define a reciprocal relation as a fuzzy relation, R∼, of order n, whose individual elements
rij have the following properties [Bezdek et al., 1978]:

rii = 0 for 1 ≤ i ≤ n (10.10)

rij + rji = 1 for i �= j (10.11)

This reciprocal relation, R∼, Eqs. (10.10)–(10.11), can be interpreted as follows: rij is
the preference accorded to xi relative to xj . Thus, rij = 1 (hence, rji = 0) implies that
alternative i is definitely preferred to alternative j ; this is the crisp case in preference. At
the other extreme, we have maximal fuzziness, where rij = rji = 0.5, and there is equal
preference, pairwise. A definite choice of alternative i to all others is manifested in R∼ as the
ith row being all ones (except rii = 0), or the ith column being all zeros.

Two common measures of preference are defined here as average fuzziness in R∼,
Eq. (10.12), and average certainty in R∼, Eq. (10.13):

F(R∼) = tr(R∼
2)

n(n − 1)/2
(10.12)

C(R∼) = tr(R∼R∼
T)

n(n − 1)/2
(10.13)

In Eqs. (10.12)–(10.13), tr() and ()T denote the trace and transpose, respectively, and matrix
multiplication is the algebraic kind. Recall that the trace of a matrix is simply the algebraic
sum of the diagonal elements, i.e.,

tr(R∼) =
n∑

i=1

rii
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The measure, F(R∼), averages the joint preferences in R∼ over all distinct pairs in the
Cartesian space, X × X. Each term maximizes the measure when rij = rji = 0.5 and
minimizes the measure when rij = 1 and rji = 0; consequently, F(R∼) is proportional to the
fuzziness or uncertainty (also, confusion) about pairwise rankings exhibited by the fuzzy
preference relation, R∼. Conversely, the measure, C(R∼), averages the individual dominance
(assertiveness) of each distinct pair of rankings in the sense that each term maximizes the
measure when rij = 1 and rji = 0 and minimizes the measure when rij = rji = 0.5; hence,
C(R∼) is proportional to the overall certainty in R∼. The two measures are dependent; they are
both on the interval [0, 1]; and it can be shown [Bezdek et al., 1978] that

F(R∼) + C(R∼) = 1 (10.14)

It can further be shown that C is a minimum and F is a maximum at rij = rji = 0.5, and
that C is a maximum and F is a minimum at rij = 1, rji = 0. Also, at the state of maximum
fuzziness (rij = rji = 0.5), we get F(R∼) = C(R∼) = 1

2 ; and at the state of no uncertainty
(rij = 1, rji = 0) we get F(R∼) = 0 and C(R∼) = 1. Moreover, the ranges for these two
measures are 0 ≤ F(R∼) ≤ 1

2 and 1
2 ≤ C(R∼) ≤ 1.

Measures of preference can be useful in determining consensus. There are different
forms of consensus. We have discussed the antithesis of consensus: complete ambivalence,
or the maximally fuzzy case where all alternatives are rated equally; call this type of
consensus M1. For M1 we have a matrix R∼ where all nondiagonal elements are equal to 1

2 .
We have also discussed the converse of M1, which is the nonfuzzy (crisp) preference where
every pair of alternatives is definitely ranked; call this case M2. In M2 all nondiagonal
elements in R∼ are equal to 1 or 0; however, there may not be a clear consensus. Consider
following the reciprocity relation, M2;

M2 =




0 1 0 1
0 0 1 0
1 0 0 1
0 1 0 0




Here, the clear pairwise choices are these: alternative 1 over alternative 2, alternative 1
over alternative 4, alternative 2 over alternative 3, and alternative 3 over alternative 4.
However, we do not have consensus because alternative 3 is preferred over alternative 1 and
alternative 4 is preferred over alternative 2! So for relation M1 we cannot have consensus
and for relation M2 we may not have consensus.

Three types of consensus, however, arise from considerations of the matrix R∼. The
first type, known as Type I consensus, M∗

1, is a consensus in which there is one clear choice,
say alternative i (the ith column is all zeros), and the remaining (n − 1) alternatives all
have equal secondary preference (i.e., rkj = 1

2 , where k �= j ), as shown in the following
example, where alternative 2 has a clear consensus:

M∗
1 =




0 0 0.5 0.5
1 0 1 1

0.5 0 0 0.5
0.5 0 0.5 0




In the second type of consensus, called a Type II consensus, M∗
2, there is one clear

choice, say alternative i (the ith column is all zeros), but the remaining (n − 1) alternatives
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all have definite secondary preference (i.e., rkj = 1, where k �= i), as shown in this example:

M∗
2 =




0 0 1 0
1 0 1 1
0 0 0 1
1 0 0 0




where alternative 2 has a clear consensus, but where there is no clear ordering after the first
choice because alternative 1 is preferred to alternative 3, 3 to 4, but alternative 4 is preferred
to alternative 1. There can be clear ordering after the first choice in Type II consensus
matrices, but it is not a requirement.

Finally, the third type of consensus, called a Type fuzzy consensus, M∗
f , occurs where

there is a unanimous decision for the most preferred choice, say alternative i again, but
the remaining (n − 1) alternatives have infinitely many fuzzy secondary preferences. The
matrix shown here has a clear choice for alternative 2, but the other secondary preferences
are fuzzy to various degrees:

M∗
f =




0 0 0.5 0.6
1 0 1 1

0.5 0 0 0.3
0.4 0 0.7 0




Mathematically, relations M1 and M2 are logical opposites, as are consensus relations
M∗

1 and M∗
2 [Bezdek et al., 1978]. It is interesting to discuss the cardinality of these various

preference and consensus relations. In this case, the cardinality of a relation is the number
of possible combinations of that matrix type. It is obvious that there is only one possible
matrix for M1. The cardinality of all the preference or consensus relations discussed here is
given in Eq. (10.15), where the symbol | | denotes cardinality of the particular relation:

|M1| = 1

|M2| = 2n(n−1)/2

|M∗
1| = n (Type I)

|M∗
2| = (2(n2−3n+2)/2)(n) (Type II)

|M∗
f | = ∞ (Type fuzzy)

(10.15)

So, for the examples previously illustrated for n = 4 alternatives, there are 64 (26) possible
forms of the M2 preference matrix, there are only four Type I (M∗

1) consensus matrices, and
there are 32 (23 · 4) possible Type II (M∗

2) consensus matrices.
From the degree of preference measures given in Eqs. (10.12)–(10.13), we can

construct a distance to consensus metric, defined as

m(R∼) = 1 − (2C(R∼) − 1)1/2 (10.16)

where m(R∼) = 1 for an M1 preference relation
m(R∼) = 0 for an M2 preference relation
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1.000 0.395 0.293 0.000

M1 R M1 M2
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m(R)~

FIGURE 10.3
Illustration of distance to consensus [Bezdek et al., 1978].

m(R∼) = 1 − (2/n)1/2 for a Type I (M∗
1)consensus relation

m(R∼) = 0 for a Type II (M∗
2) consensus relation

We can think of this metric, m(R∼), as being a distance between the points M1 (1.0) and
M2 (0.0) in n-dimensional space. We see that m(M∗

1) = m(M∗
2) for the case where we

have only two (n = 2) alternatives. For the more general case, where n > 2, the distance
between Type I and Type II consensus increases with n as it becomes increasingly difficult
to develop a consensus choice and simultaneously rank the remaining pairs of alternatives.

Example 10.4. Suppose a reciprocal fuzzy relation, R∼, is developed by a small group of
people in their initial assessments for pairwise preferences for a decision process involving
four alternatives, n = 4, as shown here:

R∼ =



0 1 0.5 0.2
0 0 0.3 0.9

0.5 0.7 0 0.6
0.8 0.1 0.4 0




Notice that this matrix carries none of the properties of a consensus type; that is, the group does
not reach consensus on their first attempt at ranking the alternatives. However, the group can
assess their ‘‘degree of consensus’’ and they can measure how ‘‘far’’ they are from consensus
prior to subsequent discussions in the decision process. So, for example, alternative 1 is
definitely preferred to alternative 2, alternative 1 is rated equal to alternative 3, and so forth. For
this matrix, C(R∼) = 0.683 (Eq. (10.13)), m(R∼) = 0.395, and m(M∗

1) = 1 − (2/n)1/2 = 0.293
(Eq. (10.16)). For their first attempt at ranking the four alternatives the group have a degree
of consensus of 0.683 (recall a value of 0.5 is completely ambivalent (uncertain) and a
value of 1.0 is completely certain). Moreover, the group are 1 − 0.395 = 0.605, or 60.5%
of the way from complete ambivalence (M1) toward a Type II consensus, or they are
0.605/(1 − 0.293) = 85.5% of the way toward a Type I consensus. These ideas are shown
graphically in Fig. 10.3. The value of the distance to consensus, m(R∼), is its use in quantifying
the dynamic evolution of a group as the group refines their preferences and moves closer to a
Type I or Type II or Type fuzzy consensus. It should be noted that the vast majority of group
preference situations eventually develop into Type fuzzy consensus; Types I and II are typically
only useful as boundary conditions.

MULTIOBJECTIVE DECISION MAKING

Many simple decision processes are based on a single objective, such as minimizing cost,
maximizing profit, minimizing run time, and so forth. Often, however, decisions must be
made in an environment where more than one objective constrains the problem, and the
relative value of each of these objectives is different. For example, suppose we are designing
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a new computer, and we want simultaneously to minimize cost, maximize CPU, maximize
random access memory (RAM), and maximize reliability. Moreover, suppose cost is the
most important of our objectives and the other three (CPU, RAM, reliability) carry lesser
but equal weight when compared with cost. Two primary issues in multiobjective decision
making are to acquire meaningful information regarding the satisfaction of the objectives
by the various choices (alternatives) and to rank or weight the relative importance of each
of the objectives. The approach illustrated in this section defines a decision calculus that
requires only ordinal information on the ranking of preferences and importance weights
[Yager, 1981].

The typical multiobjective decision problem involves the selection of one alternative,
ai , from a universe of alternatives A given a collection, or set, say {O}, of criteria or
objectives that are important to the decision maker. We want to evaluate how well each
alternative, or choice, satisfies each objective, and we wish to combine the weighted
objectives into an overall decision function in some plausible way. This decision function
essentially represents a mapping of the alternatives in A to an ordinal set of ranks. This
process naturally requires subjective information from the decision authority concerning the
importance of each objective. Ordinal orderings of this importance are usually the easiest to
obtain. Numerical values, ratios, and intervals expressing the importance of each objective
are difficult to extract and, if attempted and then subsequently altered, can often lead to
results inconsistent with the intuition of the decision maker.

To develop this calculus we require some definitions. Define a universe of n

alternatives, A = {a1, a2, . . . , an}, and a set of r objectives, O = {O1, O2, . . . , Or}. Let Oi

indicate the ith objective. Then the degree of membership of alternative a in Oi , denoted
µOi

(a), is the degree to which alternative a satisfies the criteria specified for this objective.
We seek a decision function that simultaneously satisfies all of the decision objectives;
hence, the decision function, D, is given by the intersection of all the objective sets,

D = O1 ∩ O2 ∩ · · · ∩ Or (10.17)

Therefore, the grade of membership that the decision function, D, has for each alternative
a is given by

µD(a) = min[µO1(a), µO2(a), . . . , µOr
(a)] (10.18)

The optimum decision, a∗, will then be the alternative that satisfies

µD(a∗) = max
a∈A

(µD(a)) (10.19)

We now define a set of preferences, {P}, which we will constrain to being linear and
ordinal. Elements of this preference set can be linguistic values such as none, low, medium,
high, absolute, or perfect; or they could be values on the interval [0, 1]; or they could be
values on any other linearly ordered scale, e.g., [−1, 1], [1, 10], etc. These preferences will
be attached to each of the objectives to quantify the decision maker’s feelings about the
influence that each objective should have on the chosen alternative. Let the parameter, bi ,
be contained on the set of preferences, {P}, where i = 1, 2, . . . , r . Hence, we have for each
objective a measure of how important it is to the decision maker for a given decision.

The decision function, D, now takes on a more general form when each objective is
associated with a weight expressing its importance to the decision maker. This function
is represented as the intersection of r-tuples, denoted as a decision measure, M(Oi , bi),
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involving objectives and preferences,

D = M(O1, b1) ∩ M(O2, b2) ∩ · · · ∩ M(Or , br ) (10.20)

A key question is what operation should relate each objective, Oi , and its importance,
bi , that preserves the linear ordering required of the preference set, and at the same time
relates the two quantities in a logical way where negation is also accommodated. It turns
out that the classical implication operator satisfies all of these requirements. Hence, the
decision measure for a particular alternative, a, can be replaced with a classical implication
of the form

M(Oi (a), bi) = bi −→ Oi (a) = bi ∨ Oi (a) (10.21)

Justification of the implication as an appropriate measure can be developed using
an intuitive argument [Yager, 1981]. The statement ‘‘bi implies Oi’’ indicates a unique
relationship between a preference and its associated objective. Whereas various objectives
can have the same preference weighting in a cardinal sense, they will be unique in an ordinal
sense even though the equality situation bi = bj for i �= j can exist for some objectives.
Ordering will be preserved because bi ≥ bj will contain the equality case as a subset.
Therefore, a reasonable decision model will be the joint intersection of r decision measures,

D =
r⋂

i=1

(bi ∪ Oi ) (10.22)

and the optimum solution, a∗, is the alternative that maximizes D. If we define

Ci = bi ∪ Oi hence µCi
(a) = max[µ

bi
(a), µOi

(a)] (10.23)

then the optimum solution, expressed in membership form, is given by

µD(a∗) = max
a∈A

[min{µC1(a), µC2(a), . . . , µCr
(a)}] (10.24)

This model is intuitive in the following manner. As the ith objective becomes more
important in the final decision, bi increases, causing bi to decrease, which in turn causes
Ci (a) to decrease, thereby increasing the likelihood that Ci (a) = Oi (a), where now Oi (a)

will be the value of the decision function, D, representing alternative a (see Eq. (10.22)).
As we repeat this process for other alternatives, a, Eq. (10.24) reveals that the largest value
Oi (a) for other alternatives will eventually result in the choice of the optimum solution, a∗.
This is exactly how we would want the process to work.

Yager [1981] gives a good explanation of the value of this approach. For a particular
objective, the negation of its importance (preference) acts as a barrier such that all ratings of
alternatives below that barrier become equal to the value of that barrier. Here, we disregard
all distinctions less than the barrier while keeping distinctions above this barrier. This
process is similar to the grading practice of academics who lump all students whose class
averages fall below 60% into the F category while keeping distinctions of A, B, C, and
D for students above this percentile. However, in the decision model developed here this
barrier varies, depending upon the preference (importance) of the objective to the decision
maker. The more important is the objective, the lower is the barrier, and thus the more
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levels of distinction there are. As an objective becomes less important the distinction barrier
increases, which lessens the penalty to the objective. In the limit, if the objective becomes
totally unimportant, then the barrier is raised to its highest level and all alternatives are
given the same weight and no distinction is made. Conversely, if the objective becomes the
most important, all distinctions remain. In sum, the more important an objective is in the
decision process, the more significant its effect on the decision function, D.

A special procedure [Yager, 1981] should be followed in the event of a numerical
tie between two or more alternatives. If two alternatives, x and y, are tied, their respective
decision values are equal, i.e., D(x) = D(y) = maxa∈A[D(a)], where a = x = y. Since
D(a) = mini[Ci (a)] there exists some alternative k such that Ck(x) = D(x) and some
alternative g such that Cg(y) = D(y). Let

D̂(x) = min
i �=k

[Ci (x)] and D̂(y) = min
i �=g

[Ci (y)] (10.25)

Then, we compare D̂(x) and D̂(y) and if, for example, D̂(x) > D̂(y) we select x as our
optimum alternative. However, if a tie still persists, i.e., if D̂(x) = D̂(y), then there exist
some other alternatives j and h such that D̂(x) = Cj (x) = D̂(y) = Ch(y). Then we formulate

ˆ̂D(x) = min
i �=k,j

[Ci (x)] and ˆ̂D(y) = min
i �=g,h

[Ci (y)] (10.26)

and compare ˆ̂D(x) and ˆ̂D(y). The tie-breaking procedure continues in this manner until an
unambiguous optimum alternative emerges or all of the alternatives have been exhausted.
In the latter case where a tie still results some other tie-breaking procedure, such as a
refinement in the preference scales, can be used.

Example 10.5. A geotechnical engineer on a construction project must prevent a large mass
of soil from sliding into a building site during construction and must retain this mass of soil
indefinitely after construction to maintain stability of the area around a new facility to be
constructed on the site [Adams, 1994]. The engineer therefore must decide which type of
retaining wall design to select for the project. Among the many alternative designs available,
the engineer reduces the list of candidate retaining wall designs to three: (1) a mechanically
stabilized embankment (MSE) wall, (2) a mass concrete spread wall (Conc), and (3) a gabion
(Gab) wall. The owner of the facility (the decision maker) has defined four objectives that
impact the decision: (1) the cost of the wall (Cost), (2) the maintainability (Main) of the wall,
(3) whether the design is a standard one (SD), and (4) the environmental (Env) impact of the
wall. Moreover, the owner also decides to rank the preferences for these objectives on the unit
interval. Hence, the engineer sets up the problem as follows:

A = {MSE, Conc, Gab} = {a1, a2, a3}
O = {Cost, Main, SD, Env} = {O1, O2, O3, O4}
P = {b1, b2, b3, b4} −→ [0, 1]

From previous experience with various wall designs, the engineer first rates the retaining walls
with respect to the objectives, given here. These ratings are fuzzy sets expressed in Zadeh’s
notation.

O∼1 =
{

0.4

MSE
+ 1

Conc
+ 0.1

Gab

}
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O∼2 =
{

0.7

MSE
+ 0.8

Conc
+ 0.4

Gab

}

O∼3 =
{

0.2

MSE
+ 0.4

Conc
+ 1

Gab

}

O∼4 =
{

1

MSE
+ 0.5

Conc
+ 0.5

Gab

}

These membership functions for each of the alternatives are shown graphically in Fig. 10.4.
The engineer wishes to investigate two decision scenarios. Each scenario propagates a

different set of preferences from the owner, who wishes to determine the sensitivity of the
optimum solutions to the preference ratings. In the first scenario, the owner lists the preferences
for each of the four objectives, as shown in Fig. 10.5. From these preference values, the
following calculations result:

b1 = 0.8 b2 = 0.9 b3 = 0.7 b4 = 0.5

b1 = 0.2 b2 = 0.1 b3 = 0.3 b4 = 0.5

D(a1) = D(MSE) = (b1 ∪ O1) ∩ (b2 ∪ O2) ∩ (b3 ∪ O3) ∩ (b4 ∪ O4)

= (0.2 ∨ 0.4) ∧ (0.1 ∨ 0.7) ∧ (0.3 ∨ 0.2) ∧ (0.5 ∨ 1)

= 0.4 ∧ 0.7 ∧ 0.3 ∧ 1 = 0.3

D(a2) = D(Conc) = (0.2 ∨ 1) ∧ (0.1 ∨ 0.8) ∧ (0.3 ∨ 0.4) ∧ (0.5 ∨ 0.5)

= 1 ∧ 0.8 ∧ 0.4 ∧ 0.5 = 0.4

MSE Conc Gab

0.5

1

O2

O4
O1

O3

µOi
(a)µ

~
~ ~

~

0

~

FIGURE 10.4
Membership for each alternative with respect to the objectives.
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FIGURE 10.5
Preferences in the first scenario.
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D(a3) = D(Gab) = (0.2 ∨ 0.1) ∧ (0.1 ∨ 0.4) ∧ (0.3 ∨ 1) ∧ (0.5 ∨ 0.5)

= 0.2 ∧ 0.4 ∧ 1 ∧ 0.5 = 0.2

D∗ = max{D(a1), D(a2), D(a3)} = max{0.3, 0.4, 0.2} = 0.4

Thus, the engineer chose the second alternative, a2, a concrete (Conc) wall as the retaining
design under preference scenario 1.

Now, in the second scenario the engineer was given a different set of preferences by
the owner, as shown in Fig. 10.6. From the preference values in Fig. 10.6, the following
calculations result:

b1 = 0.5 b2 = 0.7 b3 = 0.8 b4 = 0.7

b1 = 0.5 b2 = 0.3 b3 = 0.2 b4 = 0.3

D(a1) = D(MSE) = (b1 ∪ O1) ∩ (b2 ∪ O2) ∩ (b3 ∪ O3) ∩ (b4 ∪ O4)

= (0.5 ∨ 0.4) ∧ (0.3 ∨ 0.7) ∧ (0.2 ∨ 0.2) ∧ (0.3 ∨ 1)

= 0.5 ∧ 0.7 ∧ 0.2 ∧ 1 = 0.2

D(a2) = D(Conc) = (0.5 ∨ 1) ∧ (0.3 ∨ 0.8) ∧ (0.2 ∨ 0.4) ∧ (0.3 ∨ 0.5)

= 1 ∧ 0.8 ∧ 0.4 ∧ 0.5 = 0.4

D(a3) = D(Gab) = (0.5 ∨ 0.1) ∧ (0.3 ∨ 0.4) ∧ (0.2 ∨ 1) ∧ (0.3 ∨ 0.5)

= 0.5 ∧ 0.4 ∧ 1 ∧ 0.5 = 0.4

Therefore, D∗ = max{D(a1), D(a2), D(a3)} = max{0.2, 0.4, 0.4} = 0.4. But there is a tie
between alternative a2 and a3. To resolve this tie, the engineer implements Eq. (10.25). The
engineer looks closely at D(a2) and D(a3) and notes that the decision value of 0.4 for D(a2)
came from the third term (i.e., C3(a2); hence k = 3 in Eq. (10.25)), and that the decision value
of 0.4 for D(a3) came from the second term (i.e., C2(a3); hence g = 2 in Eq. (10.25)). Then
the calculations proceed again between the tied choices a2 and a3:

D̂(a2) = D̂(Conc) = (0.5 ∨ 1) ∧ (0.3 ∨ 0.8) ∧ (0.3 ∨ 0.5)

= 1 ∧ 0.8 ∧ 0.5 = 0.5

ˆ̂D(a3) = D̂(Gab) = (0.5 ∨ 0.1) ∧ (0.2 ∨ 1) ∧ (0.3 ∨ 0.5)

= 0.5 ∧ 1 ∧ 0.5 = 0.5

Then D∗ = max{D̂(a2), D̂(a3)} = max{0.5, 0.5} = 0.5, and there is still a tie between alterna-
tive a2 and a3. To resolve this second tie, the engineer implements Eq. (10.26). The engineer

1.0

0.5

O0 O1 O2 O3 O4

0.5

0.7
0.8

0.7

b(O)

FIGURE 10.6
Preferences in the second scenario.
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looks closely at D̂(a2) and D̂(a3) and notes that the decision value of 0.5 for D̂(a2) came from
the third term (i.e., C3(a2); hence j = 3 in Eq. (10.26)), and that the decision value of 0.5 for
D̂(a3) came from the first term and the third term (i.e., C1(a3) = C3(a3); hence h = 1 and
h = 3 in Eq. (10.26)). Then the calculations proceed again between the tied choices a2 and a3:

ˆ̂D(a2) = ˆ̂D(Conc) = (0.5 ∨ 1) ∧ (0.3 ∨ 0.8) = 0.8

ˆ̂D(a3) = ˆ̂D(Gab) = (0.2 ∨ 1) = 1

From these results, D∗ = max{D̂(a2), D̂(a3)} = 1; hence the tie is finally broken and the
engineer chooses retaining wall a3, a gabion wall, for the design under preference scenario 2.

FUZZY BAYESIAN DECISION METHOD

Classical statistical decision making involves the notion that the uncertainty in the future
can be characterized probabilistically, as discussed in the introduction to this chapter.
When we want to make a decision among various alternatives, our choice is predicated on
information about the future, which is normally discretized into various ‘‘states of nature.’’
If we knew with certainty the future states of nature, we would not need an analytic method
to assess the likelihood of a given outcome. Unfortunately we do not know what the
future will entail so we have devised methods to make the best choices given an uncertain
environment. Classical Bayesian decision methods presume that future states of nature can
be characterized as probability events. For example, consider the condition of ‘‘cloudiness’’
in tomorrow’s weather by discretizing the state space into three levels and assessing each
level probabilistically: the chance of a very cloudy day is 0.5, a partly cloudy day is 0.2, and
a sunny (no clouds) day is 0.3. By convention the probabilities sum to unity. The problem
with the Bayesian scheme here is that the events are vague and ambiguous. How many
clouds does it take to transition between very cloudy and cloudy? If there is one small cloud
in the sky, does this mean it is not sunny? This is the classic sorites paradox discussed in
Chapter 5.

The following material first presents Bayesian decision making and then starts to
consider ambiguity in the value of new information, in the states of nature, and in the
alternatives in the decision process [see Terano et al., 1992]. Examples will illustrate these
points.

First we shall consider the formation of probabilistic decision analysis. Let S =
{s1, s2, . . . , sn} be a set of possible states of nature; and the probabilities that these states
will occur are listed in a vector,

P = {p(s1), p(s2), . . . , p(sn)} where
n∑

i=1

p(si) = 1 (10.27)

The probabilities expressed in Eq. (10.27) are called ‘‘prior probabilities’’ in Bayesian
jargon because they express prior knowledge about the true states of nature. Assume that
the decision maker can choose among m alternatives, A = {a1, a2, . . . , am}, and for a given
alternative aj we assign a utility value, uji , if the future state of nature turns out to be
state si . These utility values should be determined by the decision maker since they express
value, or cost, for each alternative-state pair, i.e., for each aj –si combination. The utility
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TABLE 10.1
Utility matrix

States si

Action aj

s1 s2 . . . sn

a1 u11 u12 . . . u1n

...
...

...
...

am um1 um2 . . . umn

values are usually arranged in a matrix of the form shown in Table 10.1. The expected
utility associated with the j th alternative would be

E(uj ) =
n∑

i=1

ujip(si) (10.28)

The most common decision criterion is the maximum expected utility among all the
alternatives, i.e.,

E(u∗) = max
j

E(uj ) (10.29)

which leads to the selection of alternative ak if u∗ = E(uk).

Example 10.6. Suppose you are a geological engineer who has been asked by the chief
executive officer (CEO) of a large oil firm to help make a decision about whether to drill for
natural gas in a particular geographic region of northwestern New Mexico. You determine for
your first attempt at the decision process that there are only two states of nature regarding the
existence of natural gas in the region:

s1 = there is natural gas

s2 = there is no natural gas

and you are able to find from previous drilling information that the prior probabilities for each
of these states is

p(s1) = 0.5

p(s2) = 0.5

Note these probabilities sum to unity. You suggest that there are two alternatives in this
decision:

a1 = drill for gas

a2 = a1 = do not drill for gas

The decision maker (the CEO) helps you assemble a utility matrix to get the process started. The
CEO tells you that the best situation for the firm is to decide to drill for gas, and subsequently
find that gas, indeed, was in the geologic formation. The CEO assesses this value (u11) as
+5 in nondimensional units; in this case the CEO would have gambled (drilling costs big
money) and won. Moreover, the CEO feels that the worst possible situation would be to drill
for gas, and subsequently find that there was no gas in the area. Since this would cost time
and money, the CEO determines that the value for this would be u12 = −10 units; the CEO
would have gambled and lost – big. The other two utilities are assessed by the decision maker



328 DECISION MAKING WITH FUZZY INFORMATION

Decision

.5

.5

.5

.5

u21= –2

u22 = 4

u11= 5

u12 = –10

Utility

a2

a1

s1

s2

s1

s2

FIGURE 10.7
Decision tree for the two-alternative, two-state problem of Example 10.6.

in nondimensional units as u21 = −2 and u22 = 4. Hence, the utility matrix for this situation
is given by

U =
[

5 −10
−2 4

]

Figure 10.7 shows the decision tree for this problem, of which the two initial branches
correspond to the two possible alternatives, and the second layer of branches corresponds to the
two possible states of nature. Superposed on the tree branches are the prior probabilities. The
expected utility, in nondimensional units, for each alternative a1 and a2 is, from Eq. (10.28),

E(u1) = (0.5)(5) + (0.5)(−10) = −2.5

E(u2) = (0.5)(−2) + (0.5)(4) = 1.0

and we see that the maximum utility, using Eq. (10.29), is 1.0, which comes from alternative
a2; hence, on the basis of prior information only (prior probabilities) the CEO decides not to
drill for natural gas (alternative a2).

In many decision situations an intermediate issue arises: Should you get more
information about the true states of nature prior to deciding? Suppose some new information
regarding the true states of nature S is available from r experiments or other observations
and is collected in a data vector, X = {x1, x2, . . . , xr}. This information can be used in the
Bayesian approach to update the prior probabilities, p(si), in the following manner. First, the
new information is expressed in the form of conditional probabilities, where the probability
of each piece of data, xk , where k = 1, 2, . . . , r , is assessed according to whether the true
state of nature, si , is known (not uncertain); these probabilities are presumptions of the future
because they are equivalent to the following statement: Given that we know that the true
state of nature is si , the probability that the piece of new information xk confirms that the
true state is si is p(xk | si). In the literature these conditional probabilities, denoted p(xk | si),
are also called likelihood values. The likelihood values are then used as weights on the
previous information, the prior probabilities p(si), to find updated probabilities, known as
posterior probabilities, denoted p(si | xk). The posterior probabilities are equivalent to this
statement: Given that the piece of new information xk is true, the probability that the true



FUZZY BAYESIAN DECISION METHOD 329

state of nature is si is p(si | xk). These updated probabilities are determined by Bayes’s rule,

p(si | xk) = p(xk | si)

p(xk)
p(si) (10.30)

where the term in the denominator of Eq. (10.30), p(xk), is the marginal probability of the
data xk and is determined using the total probability theorem

p(xk) =
n∑

i=1

p(xk | si) · p(si) (10.31)

Now the expected utility for the j th alternative, given the data xk , is determined from the
posterior probabilities (instead of the priors),

E(uj | xk) =
n∑

i=1

ujip(si | xk) (10.32)

and the maximum expected utility, given the new data xk , is now given by

E(u∗ | xk) = max
j

E(uj | xk) (10.33)

To determine the unconditional maximum expected utility we need to weight each of the r

conditional expected utilities given by Eq. (10.33) by the respective marginal probabilities
for each datum xk , i.e., by p(xk), given in Eq. (10.34) as

E(u∗
x) =

r∑
k=1

E(u∗ | xk) · p(xk) (10.34)

We can now introduce a new notion in the decision-making process, called the value of
information, V (x). In the case we have just introduced where there is some uncertainty about
the new information, X = {x1, x2, . . . , xr}, we call the information imperfect information.
The value of this imperfect information, V (x), can be assessed by taking the difference
between the maximum expected utility without any new information, Eq. (10.29), and the
maximum expected utility with the new information, Eq. (10.34), i.e.,

V (x) = E(u∗
x) − E(u∗) (10.35)

We now introduce yet another notion in this process, called perfect information.
This exercise is an attempt to develop a boundary condition for our problem, one that is
altruistic in nature, i.e., can never be achieved in reality but nonetheless is quite useful
in a mathematical sense to give us some scale on which to assess the value of imperfect
information. If information is considered to be perfect (i.e., can predict the future states
of nature precisely), we can say that the conditional probabilities are free of dissonance.
That is, each new piece of information, or data, predicts one and only one state of nature;
hence there is no ambivalence about what state is predicted by the data. However, if there
is more than one piece of information the probabilities for a particular state of nature have
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to be shared by all the data. Mathematically, perfect information is represented by posterior
probabilities of 0 or 1, i.e.,

p(si | xk) =
{

1
0

(10.36)

We call this perfect information xp. For perfect information, the maximum expected utility
becomes (see Example 10.7)

E(u∗
xp

) =
r∑

k=1

E(u∗
xp

| xk)p(xk) (10.37)

and the value of perfect information becomes

V (xp) = E(u∗
xp

) − E(u∗) (10.38)

Example 10.7. We continue with our gas exploration problem, Example 10.6. We had two
states of nature – gas, s1, and no gas, s2 – and two alternatives – drill, a1, and no drill, a2. The
prior probabilities were uniform,

p(s1) = 0.5

p(s2) = 0.5

Now, let us suppose the CEO of the natural gas company wants to reconsider the utility values.
The CEO provides the utility matrix of Table 10.2 in the same form as Table 10.1. Further, the
CEO has asked you to collect new information by taking eight geological boring samples from
the region being considered for drilling. You have a natural gas expert examine the results of
these eight tests, and get the expert’s opinions about the conditional probabilities in the form of
a matrix, given in Table 10.3. Moreover, you ask the natural gas expert for an assessment about
how the conditional probabilities might change if they were perfect tests capable of providing
perfect information. The expert gives you the matrix shown in Table 10.4.

TABLE 10.2
Utility matrix for nat-
ural gas example

uji s1 s2

a1 4 −2
a2 −1 2

TABLE 10.3
Conditional probabilities for imperfect information

x1 x2 x3 x4 x5 x6 x7 x8

p(xk | s1) 0 0.05 0.1 0.1 0.2 0.4 0.1 0.05
∑

row = 1
p(xk | s2) 0.05 0.1 0.4 0.2 0.1 0.1 0.05 0

∑
row = 1
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TABLE 10.4
Conditional probabilities for perfect information

x1 x2 x3 x4 x5 x6 x7 x8

p(xk | s1) 0 0 0 0 0.2 0.5 0.2 0.1
∑

row = 1
p(xk | s2) 0.1 0.2 0.5 0.2 0 0 0 0

∑
row = 1

Decision
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FIGURE 10.8
Decision tree showing utility values.

As the engineer assisting the CEO, you now conduct a decision analysis. Since the CEO
changed the utility values, you have to recalculate the expected utility of making the decision
on the basis of just the prior probabilities, before any new information is acquired. The decision
tree for this situation is shown in Figure 10.8.

The expected utilities and maximum expected utility, based just on prior probabilities, are

E(a1) = (4)(0.5) + (−2)(0.5) = 1.0

E(a2) = (−1)(0.5) + (2)(0.5) = 0.5

E(u∗) = 1 hence, you choose alternative a1, drill for natural gas.

You are now ready to assess the changes in this decision process by considering
additional information, both imperfect and perfect. Table 10.5 summarizes your calculations
for the new prior probabilities, p(s1 | xk) and p(s2 | xk), the marginal probabilities for the new
information, p(xk), the expected conditional utilities, E(u∗ | xk), and the expected alternatives,
aj | xk .

Typical calculations for the values in Table 10.5 are provided here. For the marginal
probabilities for the new imperfect information, use Eq (10.31), the conditional probabilities
from Table 10.3, and the prior probabilities:

p(x1) = (0)(0.5) + (0.05)(0.5) = 0.025

p(x4) = (0.1)(0.5) + (0.2)(0.5) = 0.15

The posterior probabilities are calculated with the use of Eq. (10.30), using the conditional
probabilities from Table 10.3, the prior probabilities, and the marginal probabilities, p(xk),
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TABLE 10.5
Posterior probabilities based on imperfect information

x1 x2 x3 x4 x5 x6 x7 x8

p(s1 | xk) 0
1

3

1

5

1

3

2

3

4

5

2

3
1

p(s2 | xk) 1
2

3

4

5

2

3

1

3

1

5

1

3
0

p(xk) 0.025 0.075 0.25 0.15 0.15 0.25 0.075 0.025

E(u∗ | xk) 2 1
7

5
1 2

14

5
2 4

aj | xk a2 a2 a2 a2 a1 a1 a1 a1

just determined and summarized in Table 10.5 (third row); for example,

p(s1 | x2) = 0.05(0.5)

0.075
= 1

3
p(s2 | x2) = 0.1(0.5)

0.075
= 2

3
. . .

p(s1 | x6) = 0.4(0.5)

0.25
= 4

5
p(s2 | x6) = 0.1(0.5)

0.25
= 1

5
. . .

The conditional expected utilities, E(u∗ | xk), are calculated using first Eq. (10.32), then
Eq. (10.33); for example,

E(u1 | x3) = ( 1
5 )(4) + ( 4

5 )(−2) = − 4
5 E(u2 | x3) = ( 1

5 )(−1) + ( 4
5 )(2) = 7

5

Hence E(u∗ | x3) = max(− 4
5 , 7

5 ) = 7
5 (choose alternative a2):

E(u1 | x8) = (1)(4) + (0)(−2) = 4 E(u2 | x8) = (1)(−1) + (0)(2) = −1

Hence E(u∗ | x8) = max(4, −1) = 4 (choose alternative a1).
Now use Eq. (10.34) to calculate the overall unconditional expected utility for imperfect

information, which is actually the sum of pairwise products of the values in the third and fourth
rows of Table 10.5, e.g.,

E(u∗
x) = (0.025)(2) + (0.075)(1) + · · · + (0.025)(4) = 1.875

and the value of the new imperfect information, using Eq. (10.35), is

V (x) = E(u∗
x) − E(u∗) = 1.875 − 1 = 0.875

To decide what alternative to choose, notice in Table 10.5 that the total utility favoring
a1 is 10.8 (2 + 14

5 + 2 + 4) and the total utility favoring a2 is 5.4 (2 + 1 + 7
5 + 1). Hence, the

CEO chooses alternative a1, to drill for gas. In effect, the new information has not changed the
CEO’s mind about drilling.

You begin the process of assessing the changes due to the consideration of the
hypothetical perfect information. Table 10.6 summarizes your calculations for the new prior
probabilities, p(s1 | xk) and p(s2 | xk), the marginal probabilities for the perfect information,
p(xk), the expected conditional utilities, E(u∗

xp
| xk), and the expected alternatives, aj | xk .
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TABLE 10.6
Posterior probabilities based on perfect information

x1 x2 x3 x4 x5 x6 x7 x8

p(s1 | xk) 0 0 0 0 1 1 1 1
p(s2 | xk) 1 1 1 1 0 0 0 0
p(xk) 0.05 0.1 0.25 0.1 0.1 0.25 0.1 0.05
E(u∗ | xk) 2 2 2 2 4 4 4 4
aj | xk a2 a2 a2 a2 a1 a1 a1 a1

These are calculated in the same way as those in Table 10.5, except you make use of the perfect
conditional probabilities of Table 10.4.

Equation (10.37) is used to calculate the overall unconditional expected utility for perfect
information, which is actually the sum of pairwise products of the values in the third and fourth
rows of Table 10.6, e.g.,

E(u∗
xp

) = (0.05)(2) + (0.1)(2) + · · · + (0.05)(4) = 3.0

and the value of the new perfect information, using Eq. (10.38), is

V (xp) = E(u∗
xp

) − E(u∗) = 3 − 1 = 2.0

Alternative a1 is still the choice here. We note that the hypothetical information has a value of
2 and the imperfect information has a value of less than half of this, 0.875. This difference can
be used to assess the value of the imperfect information compared to both no information (1)
and perfect information (3).

We now discuss the fact that the new information might be inherently fuzzy [Okuda
et al., 1974, 1978]. Suppose the new information, X = {x1, x2, . . . , xr}, is a universe of
discourse in the units appropriate for the new information. Then we can define fuzzy events,
M∼ , on this information, such as ‘‘good’’ information, ‘‘moderate’’ information, and ‘‘poor’’
information. The fuzzy event will have membership function µM∼

(xk), k = 1, 2, . . . , r . We
can now define the idea of a ‘‘probability of a fuzzy event,’’ i.e., the probability of M∼ , as

P (M∼ ) =
r∑

k=1

µM∼
(xk)p(xk) (10.39)

We note in Eq. (10.39) that if the fuzzy event is, in fact, crisp, i.e., M∼ = M, then the
probability reduces to

P (M) =
∑
xk∈M

p(xk) µM =
{

1, xk ∈ M
0, otherwise

(10.40)

where Eq. (10.40) describes the probability of a crisp event simply as the sum of the
marginal probabilities of those data points, xk , that are defined to be in the event, M. Based
on this, the posterior probability of si , given fuzzy information M∼ , is

P (si | M∼ ) =

r∑
k=1

p(xk | si)µM∼
(xk)p(si)

P (M∼ )
= P (M∼ | si)p(si)

P (M∼ )
(10.41)
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where

p(M∼ | si) =
r∑

k=1

p(xk | si)µM∼
(xk) (10.42)

We now define the collection of all the fuzzy events describing fuzzy information as
an orthogonal fuzzy information system, � = {M∼ 1, M∼ 2, . . . , M∼ g} where by orthogonal we
mean that the sum of the membership values for each fuzzy event, M∼ i , for every data point
in the information universe, xk , equals unity [Tanaka et al., 1976]. That is,

g∑
t=1

µM∼ t
(xk) = 1 for all xk ∈ X (10.43)

If the fuzzy events on the new information universe are orthogonal, we can
extend the Bayesian approach to consider fuzzy information. The fuzzy equivalents of
Eqs. (10.32), (10.33), and (10.34) become, for a fuzzy event M∼ t ,

E(uj | M∼ t ) =
n∑

i=1

uji · p(si | M∼ t ) (10.44)

E(u∗ | M∼ t ) = max
j

E(uj | M∼ t ) (10.45)

E(u∗
�) =

g∑
t=1

E(u∗ | M∼ t ) · p(M∼ t ) (10.46)

Now the value of fuzzy information can be determined in an analogous manner as

V (�) = E(u∗
�) − E(u∗) (10.47)

Example 10.8 [Continuation of Example 10.7]. Suppose the eight data samples are from
overlapping, ill-defined parcels within the drilling property. We define an orthogonal fuzzy
information system, �,

� = {M∼ 1, M∼ 2, M∼ 3} = {fuzzy parcel 1, fuzzy parcel 2, fuzzy parcel 3}

with membership functions in Table 10.7. The fourth row of Table 10.7 repeats the marginal
probabilities for each data, xk , from Table 10.5. As can be seen in Table 10.7 the sum of
the membership values in each column (the first three rows) equals unity, as required for
orthogonal fuzzy sets.

As before, we use Eq. (10.39) to determine the marginal probabilities for each fuzzy
event,

p(M∼ 1) = 0.225 p(M∼ 2) = 0.55 p(M∼ 3) = 0.225

and Eq. (10.42) to determine the fuzzy conditional probabilities,

p(M∼ 1 | s1) = 0.1 p(M∼ 2 | s1) = 0.55 p(M∼ 3 | s1) = 0.35

p(M∼ 1 | s2) = 0.35 p(M∼ 2 | s2) = 0.55 p(M∼ 3 | s2) = 0.1
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TABLE 10.7
Orthogonal membership functions for orthogonal fuzzy events

x1 x2 x3 x4 x5 x6 x7 x8

µM∼ 1(xk) 1 1 0.5 0 0 0 0 0

µM∼ 2(xk) 0 0 0.5 1 1 0.5 0 0

µM∼ 3(xk) 0 0 0 0 0 0.5 1 1

p(xk) 0.025 0.075 0.25 0.15 0.15 0.25 0.075 0.025

and Eq. (10.41) to determine the fuzzy posterior probabilities,

p(s1 | M∼ 1) = 0.222 p(s1 | M∼ 2) = 0.5 p(s1 | M∼ 3) = 0.778

p(s2 | M∼ 1) = 0.778 p(s2 | M∼ 2) = 0.5 p(s2 | M∼ 3) = 0.222

Now the conditional fuzzy expected utilities can be determined using Eq. (10.44),

M∼ 1 : E(u1 | M∼ 1) = (4)(0.222) + (−2)(0.778) = −0.668

E(u2 | M∼ 1) = (−1)(0.222) + (2)(0.778) = 1.334

M∼ 2 : E(u1 | M∼ 2) = (4)(0.5) + (−2)(0.5) = 1.0

E(u2 | M∼ 2) = (−1)(0.5) + (2)(0.5) = 0.5

M∼ 3 : E(u1 | M∼ 3) = (4)(0.778) + (−2)(0.222) = 2.668

E(u2 | M∼ 3) = (−1)(0.778) + (2)(0.222) = −0.334

and the maximum expected utility from Eq. (10.46), using each of the foregoing three maximum
conditional probabilities,

E(u∗
�) = (0.225)(1.334) + (0.55)(1) + (0.225)(2.668) = 1.45

and the value of the fuzzy information from Eq. (10.47),

V (�) = 1.45 − 1 = 0.45

Here we see that the value of the fuzzy information is less than the value of the perfect
information (2.0), and less than the value of the imperfect information (0.875). However, it
may turn out that fuzzy information is far less costly (remember, precision costs) than either
the imperfect or perfect (hypothetical) information. Although not developed in this text, this
analysis could be extended to consider cost of information.

DECISION MAKING UNDER FUZZY STATES AND FUZZY
ACTIONS

The Bayesian method can be further extended to include the possibility that the states of
nature are fuzzy and the decision makers’ alternatives are also fuzzy [Tanaka et al., 1976].
For example, suppose your company wants to expand and you are considering three fuzzy
alternatives in terms of the size of a new facility:

A∼1 = small-scale project

A∼2 = middle-scale project

A∼3 = large-scale project
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Just as all fuzzy sets are defined on some universe of discourse, continuous or discrete,
the fuzzy alternatives (actions) would also be defined on a universe of discourse, say values
of square footage of floor space on a continuous scale of areas in some appropriate units of
area. Moreover, suppose further that the economic climate in the future is very fuzzy and
you pose the following three possible fuzzy states of nature (F∼s , s = 1, 2, 3):

F∼1 = low rate of economic growth

F∼2 = medium rate of economic growth

F∼3 = high rate of economic growth

all of which are defined on a universe of numerical rates of economic growth, say
S, where S = {s1, s2, . . . , sn} is a discrete universe of economic growth rates (e.g.,
−4%, −3%, . . . , 0%, 1%, 2%, . . .). The fuzzy states F∼s will be required to be orthogo-
nal fuzzy sets, in order for us to continue to use the Bayesian framework. This orthogonal
condition on the fuzzy states will be the same constraint as illustrated in Eq. (10.43), i.e.,

3∑
s=1

µF∼s
(si) = 1 i = 1, 2, . . . , n (10.48)

Further, as we need utility values to express the relationship between crisp alternative-state
pairs, we still need a utility matrix to express the value of all the fuzzy alternative-state
pairings. Such a matrix will have the form shown in Table 10.8.

Proceeding as before, but now with fuzzy states of nature, the expected utility of
fuzzy alternative A∼ j is

E(uj ) =
3∑

s=1

ujsp(F∼s) (10.49)

where

p(F∼s) =
n∑

i=1

µF∼s
(si)p(si) (10.50)

and the maximum utility is
E(u∗) = max

j
E(uj ) (10.51)

TABLE 10.8
Utility values for fuzzy states
and fuzzy alternatives

F∼1 F∼2 F∼3

A∼1 u11 u12 u13

A∼2 u21 u22 u23

A∼3 u31 u32 u33
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We can have crisp or fuzzy information on a universe of information X = {x1, x2, . . . , xr},
e.g., rate of increase of gross national product. Our fuzzy information will again reside on a
collection of orthogonal fuzzy sets on X, � = {M∼ 1, M∼ 2, . . . , M∼ g}, that are defined on X. We
can now derive the posterior probabilities of fuzzy states F∼s , given probabilistic information
(Eq. (10.52a)), xr , and fuzzy information M∼ t (Eq. (10.52b)) as follows:

p(F∼s | xk) =

n∑
i=1

µF∼s
(si)p(xk | si)p(si)

p(xk)
(10.52a)

p(F∼s | M∼ t ) =

n∑
i=1

r∑
k=1

µF∼s
(si)µM∼ t

(xk)p(xk | si)p(si)

r∑
k=1

µM∼ t
(xk)p(xk)

(10.52b)

Similarly, the expected utility given the probabilistic (Eq. (10.53a)) and fuzzy (Eq. (10.53b))
information is then

E(uj |xk) =
3∑

s=1

ujsp(F∼s |xk) (10.53a)

E(uj |M∼ t ) =
3∑

s=1

ujsp(F∼s |M∼ t ) (10.53b)

where the maximum conditional expected utility for probabilistic (Eq. (10.54a)) and fuzzy
(Eq. (10.54b)) information is

E(u∗
xk

) = max
j

E(uj |xk) (10.54a)

E(u∗
M∼ t

) = max
j

E(uj |M∼ t ) (10.54b)

Finally, the unconditional expected utilities for fuzzy states and probabilistic information,
(Eq. (10.55a)), or fuzzy information, (Eq. (10.55b)), will be

E(u∗
x) =

r∑
k=1

E(u∗
xk

)p(xk) (10.55a)

E(u∗
�) =

g∑
t=1

E(u∗
M∼ t

)p(M∼ t ) (10.55b)

The expected utility given in Eqs. (10.55) now enables us to compute the value of the
fuzzy information, within the context of fuzzy states of nature, for probabilistic information
(Eq. (10.35)) and fuzzy information (Eq. (10.56)):

V (�) = E(u∗
�) − E(u∗) (10.56)
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If the new fuzzy information is hypothetically perfect (since this would represent the
ability to predict a fuzzy state F∼s without dissonance, it is admittedly an untenable boundary
condition on the analysis), denoted �p, then we can compute the maximum expected utility
of fuzzy perfect information using Eq. (10.57). The expected utility of ith alternative A∼ i for
fuzzy perfect information on state F∼s becomes (from Table 10.8)

u(A∼ i |F∼s) = u(A∼ i , F∼s) (10.57)

Therefore, the optimum fuzzy action, A∼
∗
F∼s

, is defined by

u(A∼
∗
F∼s

|F∼s) = max
i

u(A∼ i , F∼s) (10.58)

Hence, the total expected utility for fuzzy perfect information is

E(u∗
�p

) =
3∑

j=1

u(A∼
∗
F∼s

|F∼s)p(F∼s) (10.59)

where p(F∼s) are the prior probabilities of the fuzzy states of nature given by Eq. (10.50).
The result of Eq. (10.55b) for the fuzzy perfect case would be denoted E(u∗

�p
), and the

value of the fuzzy perfect information would be

V (�p) = E(u∗
�p

) − E(u∗) (10.60)

Tanaka et al. [1976] have proved that the various values of information conform to
the following inequality expression:

V (�p) ≥ V (xp) ≥ V (x) ≥ V (�) ≥ 0 (10.61)

The inequalities in Eq. (10.61) are consistent with our intuition. The ordering, V (x) ≥ V (�),
is due to the fact that information � is characterized by fuzziness and randomness. The
ordering, V (xp) ≥ V (x), is true because xp is better information than x; it is perfect.
The ordering, V (�p) ≥ V (xp), is created by the fact that the uncertainty expressed by the
probability P (F∼i ) still remains, even if we know the true state, si ; hence, our interest is not
in the crisp states of nature, S, but rather in the fuzzy states, F∼, which are defined on S.

To illustrate the development of Eqs. (10.48)–(10.61) in expanding a decision problem
to consider fuzzy information, fuzzy states, and fuzzy actions in the Bayesian decision
framework, the following example in computer engineering is provided.

Example 10.9. One of the decisions your project team faces with each new computer product
is what type of printed circuit board (PCB) will be required for the unit. Depending on the
density of tracks (metal interconnect traces on the PCB that act like wire to connect components
together), which is related to the density of the components, we may use a single-layer PCB,
a double-layer PCB, a four-layer PCB, or a six-layer PCB. A PCB layer is a two-dimensional
plane of interconnecting tracks. The number of layers on a PCB is the number of parallel
interconnection layers in the PCB. The greater the density of the interconnections in the design,
the greater the number of layers required to fit the design onto a PCB of given size. One
measure of board track density is the number of nodes required in the design. A node is created
at a location in the circuit where two or more lines (wires, tracks) meet. The decision process
will comprise the following steps.
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1. Define the fuzzy states of nature. The density of the PCB is defined as three fuzzy sets on
the singleton states S = (s1, s2, s3, s4, s5) = (si), i = 1, 2, . . . , 5, where i defines the states
in terms of a percentage of our most dense (in terms of components and interconnections)
PCB. So, your team defines s1 = 20%, s2 = 40%, s3 = 60%, s4 = 80%, and s5 = 100%
of the density of the densest PCB; these are singletons on the universe of relative densities.
Further, you define the following three fuzzy states, which are defined on the universe of
relative density states S:

F∼1 = low-density PCB

F∼2 = medium-density PCB

F∼3 = high-density PCB

2. Define fuzzy alternatives. Your decision alternative will represent the type of the PCB we
decide to use, as follows (these actions are admittedly not very fuzzy, but in general they
can be):

A∼1 = use a 2-layer PCB for the new design

A∼2 = use a 4-layer PCB for the new design

A∼3 = use a 6-layer PCB for the new design

3. Define new data samples (information). The universe X = (x1, x2, . . . , x5) represents the
‘‘measured number of nodes in the PCB schematic;’’ that is, the additional information
is the measured number of nodes of the schematic that can be calculated by a schematic
capture system. You propose the following discrete values for number of nodes:

x1 = 100 nodes

x2 = 200 nodes

x3 = 300 nodes

x4 = 400 nodes

x5 = 500 nodes

4. Define orthogonal fuzzy information system. You determine that the ambiguity in defin-
ing the density of nodes can be characterized by three linguistic information sets as
(M∼ 1, M∼ 2, M∼ 3), where

M∼ 1 = low number of nodes on PCB [generally < 300 nodes]

M∼ 2 = average (medium) number of nodes on PCB [about 300 nodes]

M∼ 3 = high number of nodes on PCB [generally > 300 nodes]

5. Define the prior probabilities. The prior probabilities of the singleton densities (states)
are as follows:

p(s1) = 0.2

p(s2) = 0.3
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p(s3) = 0.3

p(s4) = 0.1

p(s5) = 0.1

The preceding numbers indicate that moderately dense boards are the most probable,
followed by low-density boards, and high- to very high density boards are the least
probable.

6. Identify the utility values. You propose the nondimensional utility values shown in
Table 10.9 to represent the fuzzy alternative-fuzzy state relationships. The highest utility
in Table 10.9 is achieved by the selection of a six-layer PCB for a high-density PCB,
since the board layout is achievable. The same high-utility level of 10 is also achieved by
selecting the two-layer PCB in conjunction with the low-density PCB, since a two-layer
PCB is cheaper than a four- or six-layer PCB. The lowest utility is achieved by the selection
of a two-layer PCB for a high-density PCB; since the layout cannot be done, it will not fit.
The second to lowest utility is achieved when a six-layer PCB is chosen, but the design is
of low density, so you are wasting money.

7. Define membership values for each orthogonal fuzzy state. The fuzzy sets in Table 10.10
satisfy the orthogonality condition, for the sum of each column equals 1,

∑
column =∑

s µF∼s
(si) = 1.

8. Define membership values for each orthogonal fuzzy set on the fuzzy information system. In
Table 10.11,

∑
column = ∑

t µM∼ t
(xi) = 1; hence the fuzzy sets are orthogonal.

9. Define the conditional probabilities (likelihood values) for the uncertain information. Table
10.12 shows the conditional probabilities for uncertain (probabilistic) information; note
the sum of elements in each row equals unity.

10. Define the conditional probabilities (likelihood values) for the probabilistic perfect
information. Table 10.13 shows the conditional probabilities for probabilistic perfect
information; note that the sum of elements in each row equals unity and that each column
only has one entry (i.e., no dissonance).

TABLE 10.9
Utilities for fuzzy states and
alternatives

F∼1 F∼2 F∼3

A∼1 10 3 0
A∼2 4 9 6
A∼3 1 7 10

TABLE 10.10
Orthogonal fuzzy sets for fuzzy states

s1 s2 s3 s4 s5

F∼1 1 0.5 0 0 0
F∼2 0 0.5 1 0.5 0
F∼3 0 0 0 0.5 1
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TABLE 10.11
Orthogonal fuzzy sets for fuzzy information

x1 x2 x3 x4 x5

M∼ 1 1 0.4 0 0 0
M∼ 2 0 0.6 1 0.6 0
M∼ 3 0 0 0 0.4 1

TABLE 10.12
Conditional probabilities p(xk|si) for uncertain information

x1 x2 x3 x4 x5

p(xk | s1) 0.44 0.35 0.17 0.04 0
p(xk | s2) 0.26 0.32 0.26 0.13 0.03
p(xk | s3) 0.12 0.23 0.30 0.23 0.12
p(xk | s4) 0.03 0.13 0.26 0.32 0.26
p(xk | s5) 0 0.04 0.17 0.35 0.44

TABLE 10.13
Conditional probabilities p(xk | si) for fuzzy perfect
information

x1 x2 x3 x4 x5

p(xk | s1) 1 0 0 0 0
p(xk | s2) 0 1 0 0 0
p(xk | s3) 0 0 1 0 0
p(xk | s4) 0 0 0 1 0
p(xk | s5) 0 0 0 0 1

You are now ready to compute the values of information for this decision process
involving fuzzy states, fuzzy alternatives, and fuzzy information.

Case 1. Crisp states and actions

(i) Utility and optimum decision given no information. Before initiating the no-information
case, we must define the nondimensional utility values for this nonfuzzy state situation.
Note that the utility values given in Table 10.14 compare the fuzzy alternatives to the
singleton states (si), as opposed to the fuzzy states for which the utility is defined in
Table 10.9. The expected values for this case are determined by using Eq. (10.28), e.g.,

E(u1) = (10)(0.2) + (8)(0.3) + · · · + (2)(0.1)

= 6.4

Similarly, E(u2) = 6.3, and E(u3) = 4.4. Hence, the optimum decision, given no infor-
mation and with crisp (singleton) states, is alternative 1, A∼1, i.e., E(u1) = 6.4.
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TABLE 10.14
Utility values for crisp states

s1 s2 s3 s4 s5

A∼1 10 8 6 2 0
A∼2 4 6 9 6 4
A∼3 1 2 6 8 10

TABLE 10.15
Computed values for uncertain case (nonfuzzy states)

x1 x2 x3 x4 x5

p(xk) 0.205 0.252 0.245 0.183 0.115
p(s1 | xk) 0.429 0.278 0.139 0.044 0.0
p(s2 | xk) 0.380 0.381 0.318 0.213 0.078
p(s3 | xk) 0.176 0.274 0.367 0.377 0.313
p(s4 | xk) 0.015 0.052 0.106 0.175 0.226
p(s5 | xk) 0.0 0.016 0.069 0.191 0.383
E(u∗ | xk) 8.42 7.47 6.68 6.66 7.67
aj | ak 1 1 2 2 3

(ii) Utility and optimal decision given uncertain and perfect information.
(a) Probabilistic (uncertain) information. Table 10.15 summarizes the values of the

marginal probability p(xk), the posterior probabilities, and the maximum expected
values for the uncertain case. The values in Table 10.15 have been calculated as in the
preceding computation. For example, the marginal probabilities are calculated using
Eq. (10.31):

p(x1) = (0.44)(0.2) + (0.26)(0.3) + (0.12)(0.3) + (0.03)(0.1) + (0)(0.1)

= 0.205

p(x3) = (0.17)(0.2) + (0.26)(0.3) + (0.3)(0.3) + (0.26)(0.1) + (0.17)(0.1)

= 0.245

The posterior probabilities are calculated using Eq. (10.30), the conditional probabili-
ties, and the prior probabilities; for example,

p(s1|x3) = (0.17)(0.2)

(0.245)
= 0.139

p(s3|x2) = (0.23)(0.3)

(0.245)
= 0.274

p(s5|x4) = (0.35)(0.1)

(0.183)
= 0.191



DECISION MAKING UNDER FUZZY STATES AND FUZZY ACTIONS 343

The conditional expected utilities are calculated using Eqs. (10.32)–(10.33); for
example, for datum x1,

E(u1|x1) = (0.429)(10) + (0.380)(8) + (0.176)(6) + (0.015)(2) + (0)(0)

= 8.42

E(u2|x1) = (0.429)(4) + (0.380)(6) + (0.176)(9) + (0.015)(6) + (0)(4)

= 5.67

E(u3|x1) = (0.429)(1) + (0.380)(2) + (0.176)(6) + (0.015)(8) + (0)(10)

= 2.36

Therefore, the optimum decision for datum x1, given uncertain information with crisp
states, is

E(u∗|x1) = max(8.42, 5.67, 2.36) = 8.42 (choose action A∼1)

Now, using Eq. (10.34) to calculate the overall (for all data xi) unconditional expected
utility for the uncertain information, we get

E(u∗
x) = (8.42)(0.205) + (7.47)(0.252) + (6.68)(0.245) + · · · + (7.67)(0.115)

= 7.37

The value of the uncertain information, using Eq. (10.35), is

V (x) = 7.37 − 6.4 = 0.97

(b) Probabilistic perfect information. Using the same utility values as before, and con-
ditional probabilities as defined in Table 10.12, the marginal probabilities, posterior
probabilities, and the expected values are shown in Table 10.16. The unconditional
expected utility for probabilistic perfect information is given as

E(u∗
xp

) = (10)(0.2) + (8)(0.3) + · · · + (10)(0.1)

= 8.9

and the value of the probabilistic perfect information from Eq. (10.35) is

V (xp) = 8.9 − 6.4 = 2.5

Case 2. Fuzzy states and actions

(i) Utility and optimum decision given no information. The utility values for this case
are shown in Table 10.9. We calculate the prior probabilities for the fuzzy states using
Eq. (10.50). For example,

p(F∼1) = (1)(0.2) + (0.5)(0.3) + (0)(0.3) + (0)(0.1) + (0)(0.1)

= 0.35
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TABLE 10.16
Computed quantities for perfect information and crisp states

x1 x2 x3 x4 x5

p(xk) 0.20 0.30 0.30 0.10 0.10
p(s1 | xk) 1.0 0.0 0.0 0.0 0.0
p(s2 | xk) 0.0 1.0 0.0 0.0 0.0
p(s3 | xk) 0.0 0.0 1.0 0.0 0.0
p(s4 | xk) 0.0 0.0 0.0 1.0 0.0
p(s5 | xk) 0.0 0.0 0.0 0.0 1.0
E(u∗ | xk) 10.0 8.0 9.0 8.0 10.0
aj | ak 1 1 2 3 3

Similarly, p(F∼2) = 0.5, and p(F∼3) = 0.15. Therefore, the expected utility is given by
Eq. (10.49) as

E(uj ) =

 5

6.8
5.35




The optimum expected utility of the fuzzy alternatives (actions) for the case of no
information using Eq. (10.51) is

E(u∗) = 6.8

so alternative A∼2 is the optimum choice.
(ii) Utility and optimum decision given uncertain and perfect information.

(a) Probabilistic (uncertain) information. Table 10.17 lists the posterior probabilities as
determined by Eq. (10.52a). For example,

p(F∼1|x1) = (1)(0.44)(0.2) + (0.5)(0.26)(0.3)

0.205
= 0.620

The other values are calculated in a similar manner and are shown in Table 10.17.
The expected utility values for each of the xk are now calculated using Eq. (10.53a),
and these values are given in Table 10.18. The optimum expected utilities for each

TABLE 10.17
Posterior probabilities for probabilistic
information with fuzzy states

F∼1 F∼2 F∼3

x1 0.620 0.373 0.007
x2 0.468 0.49 0.042
x3 0.298 0.58 0.122
x4 0.15 0.571 0.279
x5 0.039 0.465 0.496
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TABLE 10.18
Expected utilities for fuzzy alternatives
with probabilistic information

A∼1 A∼2 A∼3

x1 7.315 5.880 3.305
x2 6.153 6.534 4.315
x3 4.718 7.143 5.58
x4 3.216 7.413 6.934
x5 1.787 7.317 8.252

alternative are found by using Eq. (10.54a),

E(u∗
xk

) = max
j

E(uj |xk) = {7.315, 6.534, 7.143, 7.413, 8.252}

where the optimum choice associated with this value is obviously alternative A∼3.
Finally, the expected utility, given by Eq. (10.55), is calculated to be

E(u∗
�) =

r∑
k=1

E(u∗
xk

)p(xk)

= (7.315)(0.205) + (6.534)(0.252) + (7.143)(0.245)

+ (7.413)(0.183) + (8.252)(0.115) = 7.202

The value of the probabilistic uncertain information for fuzzy states is

V (x) = 7.202 − 6.8 = 0.402

(b) Probabilistic perfect information. Table 10.19 lists the posterior probabilities as
determined by Eq. (10.52a). For example,

p(F∼1|x1) = [(1)(1)(0.2) + (0.5)(0)(0.3)]/(0.2) = 1.0

The other values are calculated in a similar manner and are shown in Table 10.19.

TABLE 10.19
Posterior probabilities for proba-
bilistic perfect information with
fuzzy states

F∼1 F∼2 F∼3

x1 1.0 0.0 0.0
x2 0.5 0.5 0.0
x3 0.0 1.0 0.0
x4 0.0 0.5 0.5
x5 0.0 0.0 1.0
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The expected utility values for each of the xk are now calculated using Eq. (10.53a),
and these values are given in Table 10.20. The optimum expected utilities for each
alternative are found by using Eq. (10.54a),

E(u∗
xk

) = max
j

E(uj |xk) = {10.0, 6.5, 9.0, 8.5, 10.0}

where it is not clear which alternative is the optimum choice (i.e., there is a tie between
alternatives 1 and 3). Finally, the expected utility, given by Eq. (10.37), is calculated
to be

E(u∗
xp

) =
r∑

k=1

E(u∗
xp

| xk)p(xk)

= (10.0)(0.2) + (6.5)(0.3) + (9.0)(0.3) + (8.5)(0.1) + (10.0)(0.1)

= 8.5

The value of the probabilistic perfect information for fuzzy states is

V (xp) = 8.5 − 6.8 = 1.7

(c) Fuzzy information. For the hypothetical fuzzy information, Table 10.21 summarizes
the results of the calculations using Eq. (10.52b). An example calculation is shown
here:

p(F∼1|M∼ 1) = [(1)(1)(0.44)(0.2) + (1)(0.4)(0.35)(0.2) + (0.5)(1)(0.26)(0.3)

+ (0.5)(0.4)(0.32)(0.3)] ÷ [(1)(0.205) + (0.4)(0.252)] = 0.57

Similarly, Table 10.22 summarizes the calculations of the expected utilities using
Eq. (10.53b).
Now, using Eq. (10.54b), we find the optimum expected utility for each of the fuzzy
states is

E(u∗
M∼ t

) = max
j

E(uj |M∼ t ) = {6.932, 7.019, 7.740}

TABLE 10.20
Expected utilities for fuzzy alter-
natives with probabilistic perfect
information

A∼1 A∼2 A∼3

x1 10.0 4.0 1.0
x2 6.5 6.5 4.0
x3 3.0 9.0 7.0
x4 1.5 7.5 8.5
x5 0.0 6.0 10.0



DECISION MAKING UNDER FUZZY STATES AND FUZZY ACTIONS 347

TABLE 10.21
Posterior probabilities for fuzzy infor-
mation with fuzzy states

M∼ 1 M∼ 2 M∼ 3

F∼1 0.570 0.317 0.082
F∼2 0.412 0.551 0.506
F∼3 0.019 0.132 0.411

TABLE 10.22
Posterior probabilities for fuzzy alter-
natives with fuzzy information

M∼ 1 M∼ 2 M∼ 3

A∼1 6.932 4.821 2.343
A∼2 6.096 7.019 7.354
A∼3 3.638 5.496 7.740

where the optimum choice is again A∼3. The marginal probabilities of the fuzzy
information sets are calculated using Eq. (10.39); for example, using the marginal
probabilities from Table 10.15 and the fuzzy information from Table 10.11, we find

p(M∼ 1) = (1.0)(0.205) + (0.4)(0.252) = 0.306

and, along with the other two marginal probabilities, we get

p(M∼ t ) =

 0.306

0.506
0.188




The unconditional expected utility using Eq. (10.55b) is

E(u∗
�) =

g∑
t=1

E(u∗
M∼ t

)p(M∼ t
) = 7.128

and the value of the perfect information for fuzzy states is V (�) = 7.128 − 6.8 =
0.328.

TABLE 10.23
Expected utilities for fuzzy alterna-
tives with fuzzy perfect information

F∼1 F∼2 F∼3

A∼1 10.0 3.0 0.0
A∼2 4.0 9.0 6.0
A∼3 1.0 7.0 10.0
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(d) Fuzzy perfect information. Table 10.23 summarizes the calculations of the expected
utilities using Eq. (10.57). Note in Table 10.23 that the expected utilities are the
same as the utilities in Table 10.9; this identity arises because the information is
presumed perfect, and the conditional probability matrix, p(F∼s |M∼ t ), in Eq. (10.53b) is
the identity matrix.
Now, using Eq. (10.58), we find the optimum expected utility for each of the fuzzy
states is

u(A∗
F∼s

|F∼s) = max
i

u(A∼ i , F∼s ) = {10.0, 9.0, 10.0}

Finally, using the previously determined prior probabilities of the fuzzy states, p(F∼s)

(see section (i)), we see the unconditional expected utility using Eq. (10.59) is

E(u∗
�p

) =
3∑

j=1

u(A∗
F∼s

|F∼s )p(F∼s ) = 10(0.35) + 9(0.5) + 10(0.15) = 9.5

where the value of the fuzzy perfect information for fuzzy states is

V (�p) = 9.5 − 6.8 = 2.7

Example summary
A typical decision problem is to decide on a basic policy in a fuzzy environment. This basic
policy can be thought of as a fuzzy action. The attributes of such a problem are that there are
many states, feasible policy alternatives, and available information. Usually, the utilities for all
the states and all the alternatives cannot be formulated because of insufficient data, because of
the high cost of obtaining this information, and because of time constraints. On the other hand,
a decision maker in top management is generally not concerned with the detail of each element
in the decision problem. Mostly, top managers want to decide roughly what alternatives to
select as indicators of policy directions. Hence, an approach that can be based on fuzzy states
and fuzzy alternatives and that can accommodate fuzzy information is a very powerful tool for
making preliminary policy decisions.

The expected utilities and the value of information for the five cases, i.e., for no informa-
tion, probabilistic (uncertain) information, probabilistic perfect information, fuzzy probabilistic
(uncertain) information, and fuzzy perfect information, are summarized in Table 10.24. We
can see from this table that the ordering of values of information is in accordance with
that described in Eq. (10.61), i.e., V (�p) ≥ V (xp) ≥ V (x) ≥ V (�) ≥ 0. The probabilistic
perfect information (V (xp) = 1.70) has a value much higher than the probabilistic information
(V (x) = 0.40). The decision maker needs to ascertain the cost of the hypothetical perfect
information when compared with the cost of the uncertain information, the latter being more
realistic. On the other hand, there is little difference between the value of fuzzy probabilistic
information (V (�) = 0.33) and that of probabilistic information (V (x) = 0.40). This result
suggests that the fuzzy probabilistic information is sufficiently valuable compared with the
probabilistic information for this problem, because fuzzy information generally costs far less
than probabilistic (uncertain) information. Finally, the fact that the fuzzy perfect information
(V (�p) = 2.70) holds more value than the probabilistic perfect information (V (xp) = 1.70)
confirms that our interest is more in the fuzzy states than the crisp states. When utility values,
prior probabilities, conditional probabilities, and orthogonal membership values change for any
of these scenarios, the elements in Table 10.24 will change and the conclusions derived from
them will portray a different situation. The power of this approach is its ability to measure on
an ordinal basis the value of the approximate information used in a decision-making problem.
When the value of approximate (fuzzy) information approaches that of either probabilistic
or perfect information, there is the potential for significant cost savings without reducing the
quality of the decision itself.
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TABLE 10.24
Summary of expected utility and value of information for fuzzy states and actions for the
example

Information Expected utility Value of information

No information 6.8 –
Probabilistic information, V (x) 7.20 0.40
Perfect information, V (xp) 8.5 1.7
Fuzzy probabilistic information, V (�) 7.13 0.33
Fuzzy perfect information, V (�p) 9.5 2.7

SUMMARY

The literature is rich with references in the area of fuzzy decision making. This chapter
has only presented a few rudimentary ideas in the hope of interesting the readers to
continue their learning in this important area. One of the decision metrics in this
chapter represents a philosophical approach where an existing crisp theory – Bayesian
decision making – is reinterpreted to accept both fuzzy and random uncertainty. It is
important to note that there have been significant challenges to the maximum expected
utility theory on which Bayesian decision making is founded. Three violations of the
independence axiom of this theory (the Allias paradox, the Bergen paradox, and sen-
sitivity to tail affects) and one difficulty in representing epistemic uncertainty as a
probabilistic belief (the Ellsburg paradox) have been reported in the literature [Maes
and Faber, 2004]. One key problem in Bayesian decision making is that the updating
(updating the priors to become posteriors) is not always applied correctly. Psycho-
metric studies have shown [Tversky and Kahneman, 1974] that too little weight is
given to prior information and too much importance is given to new data (likelihood
function). Recent information tends to take precedence over long-accumulated prior
knowledge.

Theoretical developments are expanding the field of fuzzy decision making; for
example multiobjective situations represent an interesting class of problems that plague
optimization in decision making [Sakawa, 1993] as do multiattribute decision problems
[Baas and Kwakernaak, 1977]. This philosophical approach has been extended further
where fuzzy utilities have been addressed with fuzzy states [Jain, 1976], and where fuzzy
utilities are determined in the presence of probabilistic states [Jain, 1978; Watson et al.,
1979]. Häage [1978] extended the Bayesian scheme to include possibility distributions
(see Chapter 15 for definition of possibility) for the consequences of the decision actions.
The other metrics in this chapter extend some specific problems to deal with issues like
fuzzy preference relations, fuzzy objective functions, fuzzy ordering, fuzzy consensus, etc.
In all of these, there is a compelling need to incorporate fuzziness in human decision
making, as originally proposed by Bellman and Zadeh [1970]. In most decision situations
the goals, constraints, and consequences of the proposed alternatives are not known with
precision. Much of this imprecision is not measurable, and not random. The imprecision
can be due to vague, ambiguous, or fuzzy information. Methods to address this form of
imprecision are necessary to deal with many of the uncertainties we deal with in humanistic
systems.
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PROBLEMS

Ordering and Synthetic Evaluation

10.1. For Example 10.2 change the first fuzzy set I∼1 to
{

1
3 + 0.7

5 + 0.4
9

}
and recalculate the same

quantities as those in Example 10.2.
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10.2. Company Z makes chemical additives that are ultimately used for engine oil lubricants.
Components such as surfactants, detergents, rust inhibitors, etc., go into the finished engine
oil before it is sold to the public. Suppose that company Z makes a product D739.2 that
is a detergent additive. You are asked to determine if a particular batch of D739.2 is good
enough to be sold to an oil company, which will then make the final product. The detergent is
evaluated on the following parameters: actual color of the material, consistency, base number
(BN, measure of detergent capacity), and flash point (FP, ignition temperature of the material).
After making several hundred batches of the detergent additive D739.2, the following relation
matrix is obtained:

R∼ =




excellent
very
good fair

color 0.3 0.4 0.3
consistency 0.1 0.5 0.4
BN 0.5 0.4 0.1
FP 0.4 0.3 0.3




The weight factor for the detergent is a∼ = {0.1, 0.25, 0.4, 0.25}. Evaluate the quality of the
detergent.

10.3. In making a decision to purchase an aircraft, airline management will consider the qualities of
the plane’s performance with respect to the competition. The Boeing 737 is the best-selling
plane in aviation history and continues to outsell its more modern competitor, the A320,
manufactured by the Airbus consortium. The four factors to be considered are these: range,
payload, operating costs, and reliability. The criteria will be a comparison of the 737 with
respect to the A320: superior (sup.), equivalent (eq.), and deficient (def.).

R∼ =




sup. eq. def.

range 0 0.7 0.3
payload 0.1 0.8 0.1
cost 0.1 0.5 0.4
reliability 0.7 0.2 0.1




Given a typical airline’s weighting factor of the four factors as a∼ = {0.15, 0.15, 0.3, 0.4},
evaluate the performance of the 737 with respect to the A320.

10.4. A power supply needs to be chosen to go along with an embedded system. Four categories
of evaluation criteria are important. The first is the physical size of the power supply. The
second is the efficiency of the power supply. The third is the ‘‘ripple’’ voltage of the output of
the power supply. This is a measure of how clean the power provided is. The fourth criterion
is the peak current provided by the power supply. The following matrix defines the type of
power supply required for the embedded system application:

R∼ =




VG G F B VB

physical size 0.2 0.7 0.1 0 0
efficiency 0.1 0.2 0.4 0.2 0.1
ripple voltage 0.3 0.4 0.2 0.1 0
peak current 0 0.2 0.4 0.3 0.1




From this matrix, one can see that for the embedded system in mind, the power supply’s
physical size is very important as well as its ripple voltage. Of lesser importance is its
efficiency, and lesser yet, is its peak current. So a small power supply with clean output
voltage is needed. It needs to be somewhat efficient and is not required to provide very much
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‘‘inrush current’’ or peak current. Evaluate a power supply with the following characteristics:

Power

supply∼
=




0.5
0.1
0.2
0.2




physical size
efficiency
ripple voltage
peak current

Nontransitive Ranking
10.5. An aircraft control system is a totally nonlinear system when the final approach and landing

of an aircraft are considered. It involves maneuvering flight in an appropriate course to the
airport and then along the optimum glide path trajectory to the runway. We know that this
path is usually provided by an instrument landing system, which transmits two radio signals
to the aircraft as a navigational aid. These orthogonal radio beams are known as the localizer
and the glide slope and are transmitted from the ends of the runway in order to provide the
approaching aircraft with the correct trajectory for landing. The pilot executing such a landing
must monitor cockpit instruments that display the position of the aircraft relative to the desired
flight path and make appropriate corrections to the controls. Presume that four positions are
available to the pilot and that four corrections P1, P2, P3, and P4 from the actual position P

are required to put the aircraft on the correct course. The pairwise comparisons for the four
positions are as follows:

fP1(P1) = 1 fP1(P2) = 0.5 fP1 (P3) = 0.6 fP1(P4) = 0.8

fP2(P1) = 0.3 fP2(P2) = 1 fP2 (P3) = 0.4 fP2(P4) = 0.3

fP3(P1) = 0.6 fP3(P2) = 0.4 fP3 (P3) = 1 fP3(P4) = 0.6

fP4(P1) = 0 fP4(P2) = 0.3 fP4 (P3) = 0.6 fP4(P4) = 1

Now, from these values, compute the comparison matrix, and determine the overall ranking.
10.6. When designing a radar system for imaging purposes, we frequently need to set priorities in

accomplishing certain features. Some features that need to be traded off against each other
are these:
1. The ability to penetrate foliage and even the ground to some depth.
2. The resolution of the resulting radar image.
3. The size of the antenna required for the radar system.
4. The amount of power required to operate at a given frequency.
It is useful to determine the order of importance of these features in selecting an operating
frequency for the radar. Let x1 represent penetration; x2, resolution; x3, antenna size; and x4,
power. A crisp ordering will have trouble resolving the importance of penetration compared
to resolution, resolution compared to antenna size, and antenna size compared to penetration.
These are entities that can only be compared in a very subjective manner, ideal for fuzzy
techniques and difficult for crisp techniques.

Let fxi
(xj ) be the relative importance of feature xj with respect to xi . The comparisons

fxi
(xj ) are subjectively assigned as follows:

xj

x1 x2 x3 x4

x1 1 0.6 0.5 0.9
x2 0.5 1 0.7 0.8

xi

x3 0.9 0.8 1 0.5
x4 0.3 0.2 0.3 1
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Develop a comparison matrix and determine the overall ranking of the importance of each
feature.

10.7. In tracking soil particles, a tracked particle can be occluded by other objects. To find out
which one is the tracked particle, one can choose or pick a particle that is a certain distance
from the tracked particle. Suppose there are four particles in the region of interest where the
tracked particle is. Furthermore, let x1, x2, x3, and x4 resemble the tracked particle with fuzzy
measurement 0.3, 0.4, 0.6, 0.7, respectively, when they alone are considered. Note fxj

(xi)

means how close xi is to the tracked particle with respect to xj .

fx1(x1) = 1 fx1(x2) = 0.6 fx1(x3) = 0.4 fx1(x4) = 0.3

fx2(x1) = 0.7 fx2(x2) = 1 fx2(x3) = 0.1 fx2(x4) = 0.4

fx3(x1) = 0.2 fx3(x2) = 0.4 fx3(x3) = 1 fx3(x4) = 0.3

fx4(x1) = 0.5 fx4(x2) = 0.3 fx4(x3) = 0.4 fx4(x4) = 1

Develop a comparison matrix, and determine which particle is closest to the tracked particle.
10.8. Suppose a wine manufacturer was interested in introducing a new wine to the market. A

very good but somewhat expensive Chenin Blanc was already available to consumers and
was very profitable to the company. To enter the lower-priced market of wine consumers,
the wine manufacturer decided to make a less expensive wine that tasted similar to the very
profitable Chenin Blanc already sold. After much market research and production knowledge,
the manufacturer settled on four possible wines to introduce into the market. The fuzzy criteria
of evaluation is taste, and we would like to know which wine tastes the most like the expensive
Chenin Blanc. Define the following subjective estimations: universe X = {x1, x2, x3, x4}. A
panel of wine tasters tasted each of the wines x1, x2, x3, and x4 and made the following
estimations:

fx1(x1) = 1 fx1(x2) = 0.4 fx1(x3) = 0.8 fx1(x4) = 0.5

fx2(x1) = 0.2 fx2(x2) = 1 fx2(x3) = 0.7 fx2(x4) = 0.4

fx3(x1) = 0.3 fx3(x2) = 0.2 fx3(x3) = 1 fx3(x4) = 0.5

fx4(x1) = 0.7 fx4(x2) = 0.5 fx4(x3) = 0.8 fx4(x4) = 1

Develop a comparison matrix, and determine which of the four wines tastes most like the
expensive Chenin Blanc.

Fuzzy Preference and Consensus

10.9. The Environmental Protection Agency (EPA) is faced with the challenge of cleaning up
contaminated groundwaters at many sites around the country. In order to ensure an efficient
cleanup process, it is crucial to select a firm that offers the best remediation technology at
a reasonable cost. The EPA is deciding among four environmental firms. The professional
engineers at the EPA compared the four firms and created a consensus matrix, shown here:

R∼ =




0 0.5 0.7 0.4
0.5 0 0.9 0.2
0.3 0.1 0 0.3
0.6 0.8 0.7 0




Compute the distance to Type fuzzy consensus.
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10.10. A manufacturing company is planning to purchase a lathe and is assessing the proposals
from four lathe manufacturers. The company has developed a reciprocal relation for the four
manufacturers based on the speed of delivery of the lathes and the cost. The relation is

R∼ =




0 0.1 0.7 0.2
0.9 0 0.6 1
0.3 0.4 0 0.5
0.8 0 0.5 0




Calculate the degree of preference measures, and the distance to Type I, Type II, and Type
fuzzy consensus. Explain the differences between the distances to the three consensuses.

10.11. Four methods for determining control are being considered for a navigation project. These
methods include: Global Positioning System (GPS), Inertial Navigational System (INS),
Surveying (S), and Astronomical Observation (ASTR). For the development of a network of
control points, which will improve the accuracies of various applications that can use these
points as a control point for their own networks, experts were asked to determine a reciprocal
relation for these four methods. Generally, GPS is preferred to INS because of its superior
long-term stability of measurements and it is not necessary to travel from one network point
to another. GPS is somewhat less preferred than S because it cannot match the accuracy of
S, which is important for a control network. GPS is much preferred over ASTR because it
requires much less time and the skill requirement for ASTR is significant. INS is generally
about the same as S; INS is preferred over ASTR for the same reasons as GPS. While S is
somewhat less preferred than ASTR because both are slow and labor intensive, ASTR can
generally offer better results and the equipment is not as expensive.

Using the following reciprocal relation determine the average fuzziness, average
certainty, and the distance to consensus for Type I, II, and fuzzy consensus.

R∼ =




GPS INS S AST

GPS 0 0.6 0.4 0.8
INS 0.4 0 0.5 0.7

S 0.6 0.5 0 0.4
AST 0.2 0.3 0.6 0




10.12. A chemical plant reactor has yields lower than expected because the reactor is getting old.
There are four feasible alternatives to solve the problem:

A1 = Buy a new reactor and replace the old one.

A2 = Buy a used reactor and replace the old one.

A3 = Add a new smaller unit at the end of the reactor to complete the reaction

to the expected yields.

A4 = Do major repair to the old reactor.

Each alternative has its own advantages and disadvantages according to cost, maintainability,
and physical space available in the plant. The engineers involved in selecting one of the
options have created a relation to show their consensus:

R∼ =




A1 A2 A3 A4

A1 0 0.8 0.5 0.3
A2 0.2 0 0.7 0.4
A3 0.5 0.3 0 0.1
A4 0.7 0.6 0.9 0
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Find the average fuzziness, average certainty, distance to consensus, and distances to consensus
for a Type I, Type II, and Type fuzzy.

10.13. An automotive manufacturing company is buying vision sensors for its assembly verification
to its client. The engineering team in the company has done some pairwise comparisons
among four types of sensors (S); the results of these comparisons are given by the consensus
relation matrix below:

R∼ =




S1 S2 S3 S4

S1 0 0.6 0.4 0.8
S2 0.4 0 0.5 0.7
S3 0.6 0.5 0 0.4
S4 0.2 0.3 0.6 0




Calculate the degree of preference measures, and the distance to Type I, Type II, and Type
fuzzy consensus.

Multiobjective Decision Making
10.14. A carcinogen, trichloroethylene (TCE), has been detected in soil and groundwater at levels

higher than the EPA maximum contaminant levels (MCLs). There is an immediate need to
remediate soil and groundwater. Three remediation alternatives – (1) pump and treat with air
stripping (PTA), (2) pump and treat with photooxidation (PTP), and (3) bioremediation of
soil with pump and treat and air stripping (BPTA) – are investigated.

The objectives are these: cost (O1), effectiveness (O2, capacity to reduce the contam-
inant concentration), duration (O3), and speed of implementation (O4). The ranking of the
alternatives on each objective are given as follows:

O∼1 =
{

0.7

PTA
+ 0.9

PTP
+ 0.3

BPTA

}

O∼2 =
{

0.4

PTA
+ 0.6

PTP
+ 0.8

BPTA

}

O∼3 =
{

0.7

PTA
+ 0.3

PTP
+ 0.6

BPTA

}

O∼4 =
{

0.8

PTA
+ 0.5

PTP
+ 0.5

BPTA

}

The preferences for each objective are P = {0.6, 0.8, 0.7, 0.5}. Determine the optimum choice
of a remediation alternative.

10.15. Evaluate three different approaches to controlling conditions of an aluminum smelting cell
(with respect to voltage across the cell and alumina concentration in the bath). The control
approaches are

a1 = AGT: aggressive control tuning (very reactive)

a2 = MOD: moderate control tuning (mildly reactive)

a3 = MAN: essentially manual operation (very little computer control)

There are several objectives to consider:

O∼1 : minimum power consumption (power/lb of aluminum produced)

O∼2 : overall operating stability

O∼3 : minimum environmental impact
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The control approaches are rated as follows:

O∼1 =
{

0.7

AGT
+ 0.6

MOD
+ 0.3

MAN

}

O∼2 =
{

0.45

AGT
+ 0.8

MOD
+ 0.6

MAN

}

O∼3 =
{

0.5

AGT
+ 0.62

MOD
+ 0.4

MAN

}

The preferences are given by b1 = 0.8, b2 = 0.5, and b3 = 0.6. What is the best choice of
control?

10.16. In the tertiary treatment process for wastewater, the disinfection process is an important
procedure that focuses on the destruction of disease-causing organisms. There are a lot of
disinfection technologies available; of these three popular methods for disinfecting are to
use: chlorine (Cl), ozone (Oz), or UV radiation (UV). A new wastewater treatment plant
is to be built and the designers are having difficulty selecting a disinfecting method and
thus elect to use a multiobjective decision approach. It is concluded that the selection of a
disinfection method should be based on: efficiency and performance (EP), availability of large
quantities of the disinfectants and reasonable prices (Av), maintenance and operation (MO),
and environmental impact (Ev). The sets of alternatives (A), objectives (O), and preferences
(P) are shown below. Using the ratings given for each objective and the preference specified
by the facility owner, make a decision on which disinfection technology to use.

A = {Cl, Oz, UV} = {a1, a2, a3}
O = {EP, Av, MO, Ev} = {O∼1, O∼2, O∼3, O∼4}
P = {b1, b2, b3, b4} = {0.8, 0.9, 0.6, 0.5}

Objectives:

O∼1 =
{

0.8

a1
,

0.9

a2
,

0.7

a3

}
, O∼2 =

{
0.9

a1
,

0.4

a2
,

0.5

a3

}
, O∼3 =

{
0.8

a1
,

0.7

a2
,

0.7

a3

}
,

O∼4 =
{

0.5

a1
,

0.8

a2
,

0.9

a3

}

10.17. For environmental modeling, remote sensing data play an important role in the data acquisition.
Researchers must decide which type of sensor data best meet their preferences. Among the
many alternative sensors available, the list of candidates has been reduced to three: LANTSAT
7 (LS7), GOES (GS), and TERRA (TA). The researchers have defined four objectives that
impact their decision: (1) cost of the data (COST), (2) time to deliver data (TIME), (3)
resolution of the data collected (RES), and (4) time for the sensor to return to the same spot
cycle (CT). There was some disagreement as to how to define the importance of each objective
in the preference set so the researchers decided to define two sets of preferences, P1 and P2.

Alternatives: A = {LS7, GS, TA}
Objectives: O = {COST, TIME, RES, CT}

Preferences : P1 = {b1, b2, b3, b4} = {0.8, 0.4, 0.8, 0.7}
P2 = {b1, b2, b3, b4} = {0.4, 0.6, 0.4, 0.5}
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The degree of membership of each alternative in the objectives is as follows:

O∼1 =
{

0.2

LS7
,

0.8

GS
,

0.4

TA

}
, O∼2 =

{
0.6

LS7
,

1

GS
,

0.2

TA

}
, O∼3 =

{
1

LS7
,

0.4

GS
,

0.8

TA

}
,

O∼4 =
{

0.8

LS7
,

0.7

GS
,

0.2

TA

}

Find the decision for each preference.
10.18. In the city of Calgary, Alberta, subdivisions constructed before 1970 were not required to

retain overland storm-water flow on a site during major storm events to the level that has been
accepted under current design criteria. In order to properly mitigate flooding and property
damage in older subdivisions prone to flooding they are being upgraded based on technical
feasibility and public acceptance of the works. Presently a subdivision is being considered
for an upgrade of its storm-water sewer. It has been determined that there are two different
methods to achieve the mitigation, either larger storm sewers have to be installed through the
affected neighborhoods (pipe network) or storm-water retention facilities (pond) have to be
built close enough to the neighborhood to reduce the flood threat. The mitigation alternatives
(A) and the considered impacts or objectives (O) are described below.

Alternatives: A = {pipe, pond}
Objectives: Additional land required (O1), Cost (O2), Flood damage (O3), Public acceptance
(O4), and Environmental constraints (O5):

O = {O∼1, O∼2, O∼3, O∼4, O∼5}
Based on previous experience with other subdivisions the city design engineer has determined
the following ratings for this subdivision:

O∼1 =
{

0.8

pipe
,

0.6

pond

}
, O∼2 =

{
0.8

pipe
,

0.4

pond

}
, O∼3 =

{
0.6

pipe
,

0.8

pond

}
,

O∼4 =
{

0.4

pipe
,

0.9

pond

}
, O∼5 =

{
0.8

pipe
,

0.5

pond

}

The city council has given the administration the following preference values for each
objective. Using the above objectives and preferences determine which system to use for this
subdivision:

P = {b1, b2, b3, b4, b5} = {0.6, 0.4, 0.6, 0.7, 0.6}

Bayesian Decision Making

10.19. A company produces printed circuit boards as a subcomponent for a system that is integrated
(with other subcomponents) by another company. The system integration company cannot
give precise information on how many PC boards it needs other than ‘‘approximately
10,000.’’ It may require more or less than this number. The PC board manufacturer has three
courses of action from which to choose: (1) build somewhat less than 10,000 PC boards, A∼1;
(2) build approximately 10,000 PC boards, A∼2; and (3) build somewhat more than 10,000 PC
boards, A∼3.
The systems integration company will need the PC boards to meet the demand for its final
product. The following are the three fuzzy states of nature:
1. Low demand, D∼1
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2. Medium demand, D∼2

3. High demand, D∼3

The utility function is given in this table:

D∼1 D∼2 D∼3

A∼1 3 2 −1
A∼2 −1 4 2
A∼3 −5 2 5

There are six discrete states of nature, s1 –s6, on which the fuzzy states are defined. The
membership functions for the fuzzy states and the prior probabilities p(si) of the discrete
states are shown in the following table:

s1 s2 s3 s4 s5 s6

µD∼1 1.0 0.7 0.1 0.0 0.0 0.0

µD∼2 0.0 0.3 0.9 0.9 0.3 0.0

µD∼3 0.0 0 0.0 0.1 0.7 1.0

p(si) 0.2 0.1 0.4 0.1 0.1 0.1

The demand for the system integrator’s product is related to the growth of refineries, as the
final product is used in refineries. The new samples of refinery growth information are x; and
M∼ i are the fuzzy sets on this information, defined as
1. Low growth, M∼ 1

2. Medium growth, M∼ 2

3. High growth, M∼ 3

x1 x2 x3 x4 x5 x6

µM∼ 1 1.0 0.7 0.2 0.0 0.0 0.0

µM∼ 2 0.0 0.3 0.8 0.8 0.3 0.0

µM∼ 3 0.0 0.0 0.0 0.2 0.7 1.0

The likelihood values for the probabilistic uncertain information for the data samples are
shown here:

x1 x2 x3 x4 x5 x6

s1 0.1 0.1 0.5 0.1 0.1 0.1
s2 0.0 0.0 0.1 0.4 0.4 0.1
s3 0.1 0.2 0.4 0.2 0.1 0.0
s4 0.5 0.1 0.0 0.0 0.2 0.2
s5 0.0 0.0 0.0 0.1 0.3 0.6
s6 0.1 0.7 0.2 0.0 0.0 0.0

The likelihood values for the probabilistic perfect information for the data samples are shown
next:
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x1 x2 x3 x4 x5 x6

s1 0.0 0.0 1.0 0.0 0.0 0.0
s2 0.0 0.0 0.0 1.0 0.0 0.0
s3 0.0 0.0 0.0 0.0 1.0 0.0
s4 1.0 0.0 0.0 0.0 0.0 0.0
s5 0.0 0.0 0.0 0.0 0.0 1.0
s6 0.0 1.0 0.0 0.0 0.0 0.0

For the information just presented, compare the following for perfect and imperfect informa-
tion:
(a) Posterior probabilities of fuzzy state 2 (D∼2) given the fuzzy information 3 (M∼ 3).
(b) Conditional expected utility for action 1 (A∼1) and fuzzy information 2 (M∼ 2).

10.20. In a particular region a water authority must decide whether to build dikes to prevent flooding
in case of excess rainfall. Three fuzzy courses of action may be considered:
1. Build a permanent dike (A∼1).
2. Build a temporary dike (A∼2).
3. Do not build a dike (A∼3).
The sets A∼1, A∼2, and A∼3 are fuzzy sets depending on the type and size of the dike to be built.
The utility from each of these investments depends on the rainfall in the region. The crisp
states of nature, S = {s1, s2, s3, s4, s5}, are the amount of total rainfall in millimeters in the
region. The utility for each of the alternatives has been developed for three levels of rainfall,
(1) low (F∼1), (2) medium (F∼2), and (3) heavy (F∼3), which are defined by fuzzy sets on S. The
utility matrix may be given as follows:

uij F∼1 F∼2 F∼3

A∼1 −2 4 10
A∼2 1 8 −10
A∼3 10 −5 −20

The membership functions of F∼1, F∼2, F∼3, and the prior probabilities are given here:

s1 s2 s3 s4 s5

µF∼1(si) 1 0.4 0.05 0 0

µF∼2(si) 0 0.6 0.85 0.15 0

µF∼3(si) 0 0 0.1 0.85 1

p(si) 0.1 0.2 0.2 0.35 0.15

Let X = {x1, x2, x3, x4} be the set of amount of rainfall in the next year. This represents the
new information. The conditional probabilities p(xj |si) for probabilistic uncertain information
are as given below:

x1 x2 x3 x4

s1 0.7 0.2 0.1 0.0
s2 0.1 0.7 0.2 0.0
s3 0.1 0.2 0.7 0.0
s4 0.0 0.1 0.2 0.7
s5 0.0 0.0 0.3 0.7
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Consider a fuzzy information system,

M∼ = {M∼ 1, M∼ 2, M∼ 3}

where M∼ 1 = rainfall is less than approximately 35 mm
M∼ 2 = rainfall is equal to approximately 35 mm
M∼ 3 = rainfall is greater than approximately 35 mm

The membership functions for the new fuzzy information that satisfy the orthogonality
condition are given here:

x1 x2 x3 x4

µM∼ 1(xi) 1.0 0.3 0.1 0.0

µM∼ 2(xi) 0.0 0.7 0.8 0.1

µM∼ 3(xi) 0.0 0.0 0.1 0.9

Determine the following:
(a) Posterior probabilities for fuzzy state F∼2 and fuzzy information M∼ 1, and for fuzzy state F∼3

and fuzzy information M∼ 3.
(b) Conditional expected utility of building a permanent dike (A∼1) when fuzzy information

M∼ 3 is given.
10.21. Your design team needs to determine what level of technology to incorporate in a new product.

As is usually the case, current technology is least expensive whereas the most advanced or
leading-edge technology is the most expensive. A given technology usually comes down in
price with time. The decision cycle of your project is several years. The team must decide
what level of technology to incorporate in the product based on the future expected cost. If the
technology is still expensive by the time the product goes to the market, the product will not
sell. If you do not incorporate the latest affordable technology, your product may not be so
advanced as that of the competition and therefore sales may be poor. Consider the following:

Actual discrete states of nature:
s1: Cost is low
s2: Cost is moderate
s3: Cost is high

Fuzzy actions:
A∼1: Use current/well-established technology
A∼2: Use newer/leading-edge/advanced technology

Fuzzy states on fuzzy information system, µ:
M∼ 1: Cost is approximately the cost of implementing with current technology
M∼ 2: Cost is approximately 2 times the cost of the current technology
M∼ 3: Cost is approximately 10 times the cost of current technology

Let X = {x1, x2, x3, x4, x5} be the set of rates of increase in usage of advanced technology in
the next term. Then we have the following:

Fuzzy states of nature:
F∼1: Low cost
F∼2: Medium cost
F∼3: High cost



PROBLEMS 361

Prior probabilities:

p(si) =

 0.25

0.5
0.25


 s1

s2

s3

Utility matrix:

u =
[ s1 s2 s3

−8 −5 0
10 −5 −10

]
A∼1

A∼2

Membership values for each orthogonal fuzzy state on the actual state system:

µF∼
=




s1 s2 s3

0.8 0.1 0
0.2 0.8 0.2
0 0.1 0.8


 F∼1

F∼2

F∼3

Membership values for each orthogonal fuzzy set on the fuzzy information system:

µM =



x1 x2 x3 x4 x5

1 0.5 0 0 0
0 0.5 1 0.5 0
0 0 0 0.5 1


 M∼ 1

M∼ 2

M∼ 3

Utility matrix for fuzzy information:

u =
[ F∼1 F∼2 F∼3

−5 0 5
10 2 −10

]
A∼1

A∼2

Likelihood values for probabilistic (uncertain) information for the data samples:

p(xi |sk) =



x1 x2 x3 x4 x5

0.1 0.25 0.15 0.35 0.15
0.3 0.05 0.1 0.1 0.45
0.2 0.4 0.35 0 0.05


 s1

s2

s3

Likelihood values for probabilistic perfect information for the data samples:

p(xi |sk) =



x1 x2 x3 x4 x5

0 0 0 1 0
0.4 0 0 0 0.6
0 0.55 0.45 0 0


 s1

s2

s3

(a) Determine the value of information for the fuzzy states and fuzzy actions for uncertain
probabilistic information.

(b) Determine the value of information for the fuzzy states and fuzzy actions for perfect
probabilistic information.



CHAPTER

11
FUZZY
CLASSIFICATION
AND PATTERN
RECOGNITION

PART I CLASSIFICATION

From causes which appear similar, we expect similar effects. This is the sum total of all our
experimental conclusions.

David Hume
Scottish philosopher, Enquiry Concerning Human Understanding 1748

There is structure in nature. Much of this structure is known to us and is quite beautiful.
Consider the natural sphericity of rain drops and bubbles; why do balloons take this shape?
How about the elegant beauty of crystals, rhombic solids with rectangular, pentagonal, or
hexagonal cross sections? Why do these naturally beautiful, geometric shapes exist? What
causes the natural repetition of the mounds of sand dunes? Some phenomena we cannot
see directly: for example, the elliptical shape of the magnetic field around the earth; or we
can see only when certain atmospheric conditions exist, such as the beautiful and circular
appearance of a rainbow or the repetitive patterns of the aurora borealis in the night sky near
the North Pole. Some patterns, such as the helical appearance of DNA or the cylindrical
shape of some bacteria, have only appeared to us since the advent of extremely powerful
electron microscopes. Consider the geometry and colorful patterns of a butterfly’s wings;
why do these patterns exist in our physical world? The answers to some of these questions
are still unknown; many others have been discovered through increased understanding of
physics, chemistry, and biology.

Just as there is structure in nature, we believe there is an underlying structure in
most of the phenomena we wish to understand. Examples abound in image recognition,

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)



CLASSIFICATION BY EQUIVALENCE RELATIONS 363

molecular biology applications such as protein folding and 3D molecular structure, oil
exploration, cancer detection, and many others. For fields dealing with diagnosis we often
seek to find structure in the data obtained from observation. Our observations can be visual,
audio, or any of a variety of sensor-based electronic or optical signals. Finding the structure
in data is the essence of classification. As the quotation at the beginning of this chapter
suggests, our experimental observations lead us to develop relationships between the inputs
and outputs of an experiment. As we are able to conduct more experiments we see the
relationships forming some recognizable, or classifiable, structure. By finding structure,
we are classifying the data according to similar patterns, attributes, features, and other
characteristics. The general area is known as classification.

In classification, also termed clustering, the most important issue is deciding what
criteria to classify against. For example, suppose we want to classify people. In describing
people we will look at their height, weight, gender, religion, education, appearance, and
so on. Many of these features are numerical quantities such as height and weight; other
features are simply linguistic descriptors and these can be quite non-numeric. We can easily
classify people according to gender, or one feature. For this classification the criterion
is simple: female or male. We might want to classify people into three size categories:
small, medium, and large. For this classification we might only need two of the features
describing people: height and weight. Here, the classification criterion might be some
algebraic combination of height and weight. Suppose we want to classify people according
to whether we would want them as neighbors. Here the number of features to be used in the
classification is not at all clear, and we might also have trouble developing a criterion for
this classification. Nevertheless, a criterion for classification must be prepared before we
can segregate the data into definable classes. As is often the case in classification studies,
the number and kind of features and the type of classification criteria are choices that
are continually changed as the data are manipulated; and this iteration continues until we
think we have a grouping of the data that seems plausible from a structural and physical
perspective.

This chapter summarizes only two popular methods of classification. The first is
classification using equivalent relations [Zadeh, 1971; Bezdek and Harris, 1978]. This
approach makes use of certain special properties of equivalent relations and the concept of
defuzzification known as lambda-cuts on the relations. The second method of classification
is a very popular method known as fuzzy c-means, so named because of its close
analog in the crisp world, hard c-means [Bezdek, 1981]. This method uses concepts in
n-dimensional Euclidean space to determine the geometric closeness of data points by
assigning them to various clusters or classes and then determining the distance between the
clusters.

CLASSIFICATION BY EQUIVALENCE RELATIONS

Crisp Relations

Define a set, [xi] = {xj | (xi, xj ) ∈ R}, as the equivalent class of xi on a universe of data
points, X. This class is contained in a special relation, R, known as an equivalence relation
(see Chapter 3). This class is a set of all elements related to xi that have the following
properties [Bezdek, 1974]:



364 FUZZY CLASSIFICATION AND PATTERN RECOGNITION

1. xi ∈ [xi] therefore (xi, xi) ∈ R
2. [xi] �= [xj ] ⇒ [xi] ∩ [xj ] = ∅
3.
⋃

x∈X[x] = X

The first property is that of reflexivity (see Chapter 3), the second property indicates that
equivalent classes do not overlap, and the third property simply expresses that the union of
all equivalent classes exhausts the universe. Hence, the equivalence relation R can divide
the universe X into mutually exclusive equivalent classes, i.e.,

X | R = {[x] | x ∈ X} (11.1)

where X|R is called the quotient set. The quotient set of X relative to R, denoted X|R, is the
set whose elements are the equivalence classes of X under the equivalence relation R. The
cardinality of X|R (i.e., the number of distinct equivalence classes of X under R) is called
the rank of the matrix R.

Example 11.1 [Ross, 1995]. Define a universe of integers X = {1, 2, 3, . . . , 10} and define
R as the crisp relation for ‘‘the identical remainder after dividing each element of the universe
by 3.’’ We have

R =




1 2 3 4 5 6 7 8 9 10
1 1 0 0 1 0 0 1 0 0 1
2 0 1 0 0 1 0 0 1 0 0
3 0 0 1 0 0 1 0 0 1 0
4 1 0 0 1 0 0 1 0 0 1
5 0 1 0 0 1 0 0 1 0 0
6 0 0 1 0 0 1 0 0 1 0
7 1 0 0 1 0 0 1 0 0 1
8 0 1 0 0 1 0 0 1 0 0
9 0 0 1 0 0 1 0 0 1 0

10 1 0 0 1 0 0 1 0 0 1




We note that this relation is reflexive, it is symmetric, and, as can be determined by inspection
(see Chapter 3), it is also transitive; hence the matrix is an equivalence relation. We can group
the elements of the universe into classes as follows:

[1] = [4] = [7] = [10] = {1, 4, 7, 10} with remainder = 1

[2] = [5] = [8] = {2, 5, 8} with remainder = 2

[3] = [6] = [9] = {3, 6, 9} with remainder = 0

Then we can show that the classes do not overlap, i.e., they are mutually exclusive:

[1] ∩ [2] = ∅ and [2] ∩ [3] = ∅
and that the union of all the classes exhausts (comprises) the universe.

⋃
[x] = X

The quotient set is then determined to have three classes,

X | R = {(1, 4, 7, 10), (2, 5, 8), (3, 6, 9)}



CLASSIFICATION BY EQUIVALENCE RELATIONS 365

Not all relations are equivalent, but if a relation is at least a tolerance relation (i.e.,
it exhibits properties of reflexivity and symmetry) then it can be converted to an equivalent
relation through max–min compositions with itself.

Example 11.2. Suppose you have a collection (universe) of five data points,

X = {x1, x2, x3, x4, x5}
and these data points show similarity to one another according to the following tolerance
relation, which is reflexive and symmetric:

R1 =




1 1 0 0 0
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1




We see that this tolerance relation is not transitive from the expression

(x1, x2) ∈ R1, (x2, x5) ∈ R1 but (x1, x5) ∈ R1

As indicated in Chapter 3, any tolerance relation can be reformed into an equivalence relation
through at most n − 1 compositions with itself. In this case one composition of R1 with itself
results in an equivalence relation,

R1◦R1 =




1 1 0 0 1
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
1 1 0 0 1


 = R

As one can see in the relation, R, there are three classes. The first, second and fifth columns
are identical and the fourth and fifth columns are each unique. The data points can then be
classified into three groups or classes, as delineated below:

[x1] = [x2] = [x5] = {x1, x2, x5} [x3] = {x3} [x4] = {x4}

Fuzzy Relations

As already illustrated, crisp equivalent relations can be used to divide the universe X into
mutually exclusive classes. In the case of fuzzy relations, for all fuzzy equivalent relations,
their λ-cuts are equivalent ordinary relations. Hence, to classify data points in the universe
using fuzzy relations, we need to find the associated fuzzy equivalent relation.

Example 11.3. Example 3.11 had a tolerance relation, say R∼ t , describing five data points, that
was formed into a fuzzy equivalence relation, R∼, by composition; this process is repeated here
for this classification example.

R∼ t =




1 0.8 0 0.1 0.2
0.8 1 0.4 0 0.9
0 0.4 1 0 0

0.1 0 0 1 0.5
0.2 0.9 0 0.5 1


 −→ R∼ =




1 0.8 0.4 0.5 0.8
0.8 1 0.4 0.5 0.9
0.4 0.4 1 0.4 0.4
0.5 0.5 0.4 1 0.5
0.8 0.9 0.4 0.5 1
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TABLE 11.1
Classification of five data points according
to λ-cut level

λ-cut level Classification

1.0 [x1][x2][x3][x4][x5]
0.9 [x1]{x2.x5}[x3][x4]
0.8 {x1.x2.x5}[x3][x4]
0.5 {x1.x2.x4.x5}[x3]
0.4 {x1.x2.x3.x4.x5}

x2

x5

x1

x4

x3

λ = 0.9 0.8 0.5 0.4λ
FIGURE 11.1
Classification diagram for Example 11.3.

By taking λ-cuts of fuzzy equivalent relation R at values of λ = 1, 0.9, 0.8, 0.5, and 0.4, we
get the following:

R1 =




1 0
1

1
1

0 1


 R0.9 =




1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1


 R0.8 =




1 1 0 0 1
1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
1 1 0 0 1




R0.5 =




1 1 0 1 1
1 1 0 1 1
0 0 1 0 0
1 1 0 1 1
1 1 0 1 1


 R0.4 =




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




where we can see that the clustering of the five data points according to the λ-cut level is as
shown in Table 11.1.

We can express the classification scenario described in Table 11.1 with a systematic
classification diagram, as shown in Fig. 11.1. In the figure you can see that the higher the value
of λ, the finer is the classification. That is, as λ gets larger the tendency of classification tends
to approach the trivial case where each data point is assigned to its own class.

Another example in fuzzy classification considers grouping photographs of family
members together according to visual similarity in attempting to determine genetics of the
family tree when considering only facial image.

Example 11.4 [Tamura et al., 1971]. Three families exist that have a total of 16 people, all
of whom are related by blood. Each person has their photo taken, and the 16 photos are mixed.
A person not familiar with the members of the three families is asked to view the photographs
to grade their resemblance to one another. In conducting this study the person assigns the
similarity relation matrix, rij as shown in Table 11.2. The matrix developed by the person is a
tolerance fuzzy relation, but it does not have properties of equivalence, i.e.,
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TABLE 11.2
Similarity relation matrix. rij

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1.0
2 0.0 1.0
3 0.0 0.0 1.0
4 0.0 0.0 0.4 1.0
5 0.0 0.8 0.0 0.0 1.0
6 0.5 0.0 0.2 0.2 0.0 1.0
7 0.0 0.8 0.0 0.0 0.4 0.0 1.0
8 0.4 0.2 0.2 0.5 0.0 0.8 0.0 1.0
9 0.0 0.4 0.0 0.8 0.4 0.2 0.4 0.0 1.0
10 0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.2 1.0
11 0.0 0.5 0.2 0.2 0.0 0.0 0.8 0.0 0.4 0.2 1.0
12 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 0.4 0.8 0.0 1.0
13 0.8 0.0 0.2 0.4 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0 1.0
14 0.0 0.8 0.0 0.2 0.4 0.0 0.8 0.0 0.2 0.2 0.6 0.0 0.0 1.0
15 0.0 0.0 0.4 0.8 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.2 0.0 1.0
16 0.6 0.0 0.0 0.2 0.2 0.8 0.0 0.4 0.0 0.0 0.0 0.0 0.4 0.2 0.4 1.0

rij = 1 for i = j

rij = rji

rij ≥ λ1 and rjk ≥ λ2 but rik < min(λ1, λ2), i.e., transitivity does not hold

For example,

r16 = 0.5, r68 = 0.8, but r18 = 0.4 < 0.5

By composition the equivalence relation shown in Table 11.3 is obtained.
When we take a λ-cut of this fuzzy equivalent relation at λ = 0.6, we get the defuzzified

relation shown in Table 11.4.
Four distinct classes are identified:

{1, 6, 8, 13, 16}, {2, 5, 7, 11, 14}, {3}, {4, 9, 10, 12, 15}
From this clustering it seems that only photograph number 3 cannot be identified with any of
the three families. Perhaps a lower value of λ might assign photograph 3 to one of the other
three classes. The other three clusters are all correct in that the members identified in each class
are, in fact, the members of the correct families as described in Tamura et al. [1971].

Classification using equivalence relations can also be employed to segregate data
that are originally developed as a similarity relation using some of the similarity methods
developed at the end of Chapter 3. The following problem is an example of this, involving
earthquake damage assessment. It was first introduced in Chapter 3 as Example 3.12.

Example 11.5. Five regions have suffered damage from a recent earthquake (see Example
3.12). The buildings in each region are characterized according to three damage levels: no
damage, medium damage, and serious damage. The percentage of buildings for a given region
in each of the damage levels is given in Table 11.5.
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TABLE 11.3
Equivalence relation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1.0
2 0.4 1.0
3 0.4 0.4 1.0
4 0.5 0.4 0.4 1.0
5 0.4 0.8 0.4 0.4 1.0
6 0.6 0.4 0.4 0.5 0.4 1.0
7 0.4 0.8 0.4 0.4 0.8 0.4 1.0
8 0.6 0.4 0.4 0.5 0.4 0.8 0.4 1.0
9 0.5 0.4 0.4 0.8 0.4 0.5 0.4 0.5 1.0
10 0.5 0.4 0.4 0.8 0.4 0.5 0.4 0.5 0.8 1.0
11 0.4 0.8 0.4 0.4 0.8 0.4 0.8 0.4 0.4 0.4 1.0
12 0.5 0.4 0.4 0.8 0.4 0.5 0.4 0.5 0.8 0.8 0.4 1.0
13 0.8 0.4 0.4 0.5 0.4 0.6 0.4 0.6 0.5 0.5 0.4 0.5 1.0
14 0.4 0.8 0.4 0.4 0.8 0.4 0.8 0.4 0.4 0.4 0.8 0.4 0.4 1.0
15 0.5 0.4 0.4 0.8 0.4 0.5 0.4 0.5 0.8 0.8 0.4 0.8 0.5 0.4 1.0
16 0.6 0.4 0.4 0.5 0.4 0.8 0.4 0.8 0.5 0.5 0.4 0.5 0.6 0.4 0.5 1.0

TABLE 11.4
Defuzzified relation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1
2 0 1
3 0 0 1
4 0 0 0 1
5 0 1 0 0 1
6 1 0 0 0 0 1
7 0 1 0 0 1 0 1
8 1 0 0 0 0 1 0 1
9 0 0 0 1 0 0 0 0 1
10 0 0 0 1 0 0 0 0 1 1
11 0 1 0 0 1 0 1 0 0 0 1
12 0 0 0 1 0 0 0 0 1 1 0 1
13 1 0 0 0 0 1 0 1 0 0 0 0 1
14 0 1 0 0 1 0 1 0 0 0 1 0 0 1
15 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1
16 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1

TABLE 11.5
Proportion of buildings damaged. in three levels by region

Regions

x1 x2 x3 x4 x5

xi1 –Ratio with no damage 0.3 0.2 0.1 0.7 0.4
xi2 –Ratio with medium damage 0.6 0.4 0.6 0.2 0.6
xi3 –Ratio with serious damage 0.1 0.4 0.3 0.1 0



CLUSTER ANALYSIS 369

TABLE 11.6
Classification of earthquake damage
by region for λ = 0.934

Regions Mercalli
intensity

{x4} VII
{x1, x5} VIII
{x2, x3} IX

Using the cosine amplitude approach, described in Chapter 3, we obtain the following
tolerance relation, R∼1:

R∼1 =




1
0.836 1 sym
0.914 0.934 1
0.682 0.6 0.441 1
0.982 0.74 0.818 0.774 1




Three max–min compositions produce a fuzzy equivalence relation,

R∼ = R∼
3
1 =




1
0.914 1 sym
0.914 0.934 1
0.774 0.774 0.774 1
0.982 0.914 0.914 0.774 1




Now, if we take λ-cuts at two different values of λ, say λ = 0.914 and λ = 0.934, the
following defuzzified crisp equivalence relations and their associated classes are derived:

λ = 0.914 : Rλ =




1 1 1 0 1
1 1 1 0 1
1 1 1 0 1
0 0 0 1 0
1 1 1 1 1




{x1, x2, x3, x5}, {x4}

λ = 0.934 : Rλ =




1 0 0 0 1
0 1 1 0 0
0 1 1 0 0
0 0 0 1 0
1 0 0 0 1




{x1, x5}, {x2, x3}, {x4}
Hence, if we wanted to classify the earthquake damage for purposes of insurance payout

into, say, two intensities on the modified Mercalli scale (the Mercalli scale is a measure of an
earthquake’s strength in terms of average damage the earthquake causes in structures in a given
region), then regions 1, 2, 3, and 5 belong to a larger Mercalli intensity and region 4 belongs
to a smaller Mercalli intensity (see λ = 0.914). But if we wanted to have a finer division for,
say, three Mercalli scales, we could assign the regions shown in Table 11.6.

CLUSTER ANALYSIS

Clustering refers to identifying the number of subclasses of c clusters in a data universe
X comprised of n data samples, and partitioning X into c clusters (2 ≤ c < n). Note that
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c = 1 denotes rejection of the hypothesis that there are clusters in the data, whereas c = n

constitutes the trivial case where each sample is in a ‘‘cluster’’ by itself. There are two
kinds of c-partitions of data: hard (or crisp) and soft (or fuzzy). For numerical data one
assumes that the members of each cluster bear more mathematical similarity to each other
than to members of other clusters. Two important issues to consider in this regard are how
to measure the similarity between pairs of observations and how to evaluate the partitions
once they are formed.

One of the simplest similarity measures is distance between pairs of feature vectors in
the feature space. If one can determine a suitable distance measure and compute the distance
between all pairs of observations, then one may expect that the distance between points in the
same cluster will be considerably less than the distance between points in different clusters.
Several circumstances, however, mitigate the general utility of this approach, such as the
combination of values of incompatible features, as would be the case, for example, when
different features have significantly different scales. The clustering method described in
this chapter defines ‘‘optimum’’ partitions through a global criterion function that measures
the extent to which candidate partitions optimize a weighted sum of squared errors between
data points and cluster centers in feature space. Many other clustering algorithms have been
proposed for distinguishing substructure in high-dimensional data [Bezdek et al., 1986]. It
is emphasized here that the method of clustering must be closely matched with the particular
data under study for successful interpretation of substructure in the data.

CLUSTER VALIDITY

In many cases, the number c of clusters in the data is known. In other cases, however, it may
be reasonable to expect cluster substructure at more than one value of c. In this situation it
is necessary to identify the value of c that gives the most plausible number of clusters in
the data for the analysis at hand. This problem is known as cluster validity [see Duda and
Hart, 1973; or Bezdek, 1981]. If the data used are labeled, there is a unique and absolute
measure of cluster validity: the c that is given. For unlabeled data, no absolute measure of
clustering validity exists. Although the importance of these differences is not known, it is
clear that the features nominated should be sensitive to the phenomena of interest and not
to other variations that might not matter to the applications at hand.

c-MEANS CLUSTERING

Bezdek [1981] developed an extremely powerful classification method to accommodate
fuzzy data. It is an extension of a method known as c-means, or hard c-means, when
employed in a crisp classification sense. To introduce this method, we define a sample set
of n data samples that we wish to classify:

X = {x1, x2, x3, . . . , xn} (11.2)

Each data sample, xi , is defined by m features, i.e.,

xi = {xi1, xi2, xi3, . . . xim} (11.3)

where each xi in the universe X is an m-dimensional vector of m elements or m features.
Since the m features all can have different units, in general, we have to normalize each of
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FIGURE 11.2
Cluster idea with hard c-means.

the features to a unified scale before classification. In a geometric sense, each xi is a point
in m-dimensional feature space, and the universe of the data sample, X, is a point set with
n elements in the sample space.

Bezdek [1981] suggested using an objective function approach for clustering the data
into hyperspherical clusters. This idea for hard clustering is shown in three-dimensional
feature space in Fig. 11.2. In this figure, each cluster of data is shown as a hyperspherical
shape with a hypothetical geometric cluster center. The objective function is developed so
as to do two things simultaneously: first, minimize the Euclidean distance between each
data point in a cluster and its cluster center (a calculated point), and second, maximize the
Euclidean distance between cluster centers.

HARD c-MEANS (HCM)

HCM is used to classify data in a crisp sense. By this we mean that each data point will
be assigned to one, and only one, data cluster. In this sense these clusters are also called
partitions – that is, partitions of the data. Define a family of sets {Ai , i = 1, 2, . . . , c} as a
hard c-partition of X, where the following set-theoretic forms apply to these partitions:

c⋃
i=1

Ai = X (11.4)

Ai ∩ Aj = ∅ all i �= j (11.5)

∅ ⊂ Ai ⊂ X all i (11.6)

again, where X = {x1, x2, x3, . . . , xn} is a finite set space comprised of the universe of data
samples, and c is the number of classes, or partitions, or clusters, into which we want to
classify the data. We note the obvious,

2 ≤ c < n (11.7)

where c = n classes just places each data sample into its own class, and c = 1 places all
data samples into the same class; neither case requires any effort in classification, and both
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are intrinsically uninteresting. Equation (11.4) expresses the fact that the set of all classes
exhausts the universe of data samples. Equation (11.5) indicates that none of the classes
overlap in the sense that a data sample can belong to more than one class. Equation (11.6)
simply expresses that a class cannot be empty and it cannot contain all the data samples.

Suppose we have the case where c = 2. Equations (11.4) and (11.5) are then mani-
fested in the following set expressions:

A2 = A1 A1 ∪ A1 = X and A1 ∩ A1 = ∅

These set expressions are equivalent to the excluded middle axioms (Eqs. (2.12)).
The function-theoretic expressions associated with Eqs. (11.4), (11.5), and (11.6) are

these

c∨
i=1

χAi
(xk) = 1 for all k (11.8)

χAi
(xk) ∧ χAj

(xk) = 0 for all k (11.9)

0 <

n∑
k=1

χAi
(xk) < n for all i (11.10)

where the characteristic function χAi
(xk) is defined once again as

χAi
(xk) =

{
1, xk ∈ Ai

0, xk /∈ Ai
(11.11)

Equations (11.8) and (11.9) explain that any sample xk can only and definitely belong to
one of the c classes. Equation (11.10) implies that no class is empty and no class is the
whole set X (i.e., the universe).

For simplicity in notation, our membership assignment of the j th data point in the
ith cluster, or class, is defined to be χij ≡ χAi

(xj ). Now define a matrix U comprised
of elements χij (i = 1, 2, . . . , c; j = 1, 2, . . . , n); hence, U is a matrix with c rows and n

columns. Then we define a hard c-partition space for X as the following matrix set:

Mc =
{

U | χij ∈ {0, 1},
c∑

i=1

χik = 1, 0 <

n∑
k=1

χik < n

}
(11.12)

Any matrix U ∈ Mc is a hard c-partition. The cardinality of any hard c-partition, Mc, is

ηMc
=
(

1

c!

)[ c∑
i=1

(
c

i

)
(−1)c−i · in

]
(11.13)

where the expression

(
c

i

)
is the binomial coefficient of c things taken i at a time.

Example 11.6. Suppose we have five data points in a universe, X = {x1, x2, x3, x4, x5}. Also,
suppose we want to cluster these five points into two classes. For this case we have n = 5 and
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c = 2. The cardinality, using Eq. (11.13), of this hard c-partition is given by

ηMc
= 1

2 [2(−1) + 25] = 15

Some of the 15 possible hard 2-partitions are listed here:

[
1 1 1 1 0
0 0 0 0 1

] [
1 1 1 0 0
0 0 0 1 1

] [
1 1 0 0 0
0 0 1 1 1

] [
1 0 0 0 0
0 1 1 1 1

]
[

1 0 1 0 0
0 1 0 1 1

] [
1 0 0 1 0
0 1 1 0 1

] [
1 0 0 0 1
0 1 1 1 0

]

and so on.

Notice that these two matrices,

[
1 1 1 1 0
0 0 0 0 1

]
and

[
0 0 0 0 1
1 1 1 1 0

]

are not different-clustering 2-partitions. In fact, they are the same 2-partitions irrespective
of an arbitrary row-swap. If we label the first row of the first U matrix class c1 and we label
the second row class c2, we would get the same classification for the second U matrix by
simply relabeling each row: the first row is c2 and the second row is c1. The cardinality
measure given in Eq. (11.13) gives the number of unique c-partitions for n data points.

An interesting question now arises: Of all the possible c-partitions for n data samples,
how can we select the most reasonable c-partition for the partition space Mc? For instance,
in the example just provided, which of the 15 possible hard 2-partitions for five data points
and two classes is the best? The answer to this question is provided by the objective function
(or classification criteria) to be used to classify or cluster the data. The one proposed for the
hard c-means algorithm is known as a within-class sum of squared errors approach using a
Euclidean norm to characterize distance. This algorithm is denoted J(U, v), where U is the
partition matrix, and the parameter, v, is a vector of cluster centers. This objective function
is given by

J(U, v) =
n∑

k=1

c∑
i=1

χik(dik)
2 (11.14)

where dik is a Euclidean distance measure (in m-dimensional feature space, Rm) between
the kth data sample xk and ith cluster center vi , given by

dik = d(xk − vi ) = ||xk − vi || =

 m∑

j=1

(xkj − vij )
2




1/2

(11.15)

Since each data sample requires m coordinates to describe its location in Rm-space,
each cluster center also requires m coordinates to describe its location in this same space.
Therefore, the ith cluster center is a vector of length m,

vi = {vi1, vi2, . . . , vim}
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where the j th coordinate is calculated by

vij =

n∑
k=1

χik · xkj

n∑
k=1

χik

(11.16)

We seek the optimum partition, U∗, to be the partition that produces the minimum
value for the function, J. That is,

J(U∗, v∗) = min
U∈Mc

J(U, v) (11.17)

Finding the optimum partition matrix, U∗, is exceedingly difficult for practical
problems because Mc → ∞ for even modest-sized problems. For example, for the case
where n = 25 and c = 10, the cardinality approaches an extremely large number, i.e.,
Mc → 1018! Obviously, a search for optimality by exhaustion is not computationally feasible
for problems of reasonable interest. Fortunately, very useful and effective alternative search
algorithms have been devised [Bezdek, 1981].

One such search algorithm is known as iterative optimization. Basically, this method
is like many other iterative methods in that we start with an initial guess at the U matrix.
From this assumed matrix, input values for the number of classes, and iteration tolerance
(the accuracy we demand in the solution), we calculate the centers of the clusters (classes).
From these cluster, or class, centers we recalculate the membership values that each data
point has in the cluster. We compare these values with the assumed values and continue
this process until the changes from cycle to cycle are within our prescribed tolerance level.

The step-by-step procedures in this iterative optimization method are provided here
[Bezdek, 1981]:

1. Fix c (2 ≤ c < n) and initialize the U matrix:

U(0) ∈ Mc

Then do r = 0, 1, 2, . . ..
2. Calculate the c center vectors:

{v(r)
i with U(r)}

3. Update U(r); calculate the updated characteristic functions (for all i, k):

χ
(r+1)
ik =

{
1, d

(r)
ik = min{d(r)

jk } for all j ∈ c

0, otherwise
(11.18)

4. If
||U(r+1) − U(r)|| ≤ ε (tolerance level) (11.19)

stop; otherwise set r = r + 1 and return to step 2.

In step 4, the notation || || is any matrix norm such as the Euclidean norm.
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X FIGURE 11.3
Butterfly classification problem [Bezdek, 1981].

Example 11.7 [Bezdek, 1981]. A good illustration of the iterative optimization method is
provided with the ‘‘butterfly problem’’ shown in Fig. 11.3. In this problem we have 15 data
points and one of them is on a vertical line of symmetry (the point in the middle of the data
cluster). Suppose we want to cluster our data into two classes. We can see that the points to
the left of the line of symmetry should be in one class and the points to the right of the line of
symmetry should be in the other class. The problem lies in assigning the point on the line of
symmetry to a class. To which class should this point belong? Whichever class the algorithm
assigns this point to, there will be a good argument that it should be a member of the other
class. Alternatively, the argument may revolve around the fact that the choice of two classes is
a poor one for this problem. Three classes might be the best choice, but the physics underlying
the data might be binary and two classes may be the only option.

In conducting the iterative optimization approach we have to assume an initial U matrix.
This matrix will have two rows (two classes, c = 2) and 15 columns (15 data points, n = 15).
It is important to understand that the classes may be unlabeled in this process. That is, we can
look at the structure of the data without the need for the assignment of labels to the classes.
This is often the case when one is first looking at a group of data. After several iterations with
the data, and as we become more and more knowledgeable about the data, we can then assign
labels to the classes. We start the solution with the assumption that the point in the middle
(i.e., the eighth column) is assigned to the class represented by the bottom row of the initial U
matrix, U(0):

U(0) =
[

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

]

After four iterations [Bezdek, 1981] this method converges to within a tolerance level of
ε = 0.01, as

U(4) =
[

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

]

We note that the point on the line of symmetry (i.e., the eighth column) is still assigned to the
class represented by the second row of the U matrix. The elements in the U matrix indicate
membership of that data point in the first or second class. For example, the point on the line of
symmetry has full membership in the second class and no membership in the first class; yet it
is plain to see from Fig. 11.3 that physically it should probably share membership with each
class. This is not possible with crisp classification; membership is binary – a point is either a
member of a class or not.

The following example illustrates again the crisp classification method. The process
will be instructive because of its similarity to the subsequent algorithm to be developed for
the fuzzy classification method.

Example 11.8. In a chemical engineering process involving an automobile’s catalytic con-
verter (which converts carbon monoxide to carbon dioxide) we have a relationship between
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FIGURE 11.4
Four data points in two-dimensional feature space.

the conversion efficiency of the catalytic converter and the inverse of the temperature of the
catalyst. Two classes of data are known from the reaction efficiency. Points of high conversion
efficiency and high temperature are indicators of a nonpolluting system (class c1), and points of
low conversion efficiency and low temperature are indicative of a polluting system (class c2).
Suppose you measure the conversion efficiency and temperature (T ) of four different catalytic
converters and attempt to characterize them as polluting or nonpolluting. The four data points
(n = 4) are shown in Fig. 11.4, where the y axis is conversion efficiency and the x axis is the
inverse of the temperature (in a conversion process like this the exact solution takes the form of
ln(1/T )). The data are described by two features (m = 2), and have the following coordinates
in 2D space:

x1 = {1, 3}
x2 = {1.5, 3.2}
x3 = {1.3, 2.8}
x4 = {3, 1}

We desire to classify these data points into two classes (c = 2). It is sometimes useful to
calculate the cardinality of the possible number of crisp partitions for this system, i.e., to find
ηMc

using Eq. (11.13); thus,

ηMc
=
(

1

c!

)[∑(
c
i

)
(−1)c−i in

]
= 1

2!

[(
2
1

)
(−1)1(1)4 +

(
2
2

)
(−1)0(2)4

]

= 1

2
[−2 + 16] = 7

which says that there are seven unique ways (irrespective of row-swaps) to classify the four
points into two clusters. Let us begin the iterative optimization algorithm with an initial guess
of the crisp partition, U, by assuming x1 to be in class 1 and x2, x3, x4 to be in class 2, as shown
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in Fig. 11.4, i.e.,

U(0) =
[

1 0 0 0
0 1 1 1

]

Now, from the initial U(0) (which is one of the seven possible crisp partitions) we seek the
optimum partition U∗, i.e.,

U(0) −→ U(1) −→ U(2) −→ · · · −→ U∗

Of course, optimality is defined in terms of the desired tolerance or convergence level, ε.
In general, for class 1 we calculate the coordinates of the cluster center,

v1j = χ11x1j + χ12x2j + χ13x3j + χ14x4j

χ11 + χ12 + χ13 + χ14

= (1)x1j + (0)x2j + (0)x3j + (0)x4j

1 + 0 + 0 + 0

and
vi = {vi1, vi2, . . . , vim}

In this case m = 2, which means we deal with two coordinates for each data point. Therefore,

vi = {vi1, vi2}

where for c = 1 (which is class 1), v1 = {v11, v12}
for c = 2 (which is class 2), v2 = {v21, v22}

Therefore, using the expression for vij for c = 1, and j = 1 and 2, respectively,

v11 = 1(1)

1
= 1 −→ x coordinate

v12 = 1(3)

1
= 3 −→ y coordinate


⇒ v1 = {1, 3}

which just happens to be the coordinates of point x1, since this is the only point in the class for
the assumed initial partition, U(0). For c = 2 or class 2, we get cluster center coordinates

v2j = (0)x1j + (1)x2j + (1)x3j + (1)x4j

0 + 1 + 1 + 1
= x2j + x3j + x4j

3

Hence, for c = 2 and j = 1 and 2, respectively,

v21 = 1(1.5) + 1(1.3) + 1(3)

3
= 1.93 −→ x coordinate

v22 = 1(3.2) + 1(2.8) + 1(1)

3
= 2.33 −→ y coordinate


⇒ v2 = {1.93, 2.33}

Now, we compute the values for dik , or the distances from the sample xk (a data set) to
the center, vi , of the ith class. Using Eq. (11.15),

dik =

 m∑

j=1

(xkj − vij )
2




1/2
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we get, for example, for c = 1 : d1k = [(xk1 − v11)
2 + (xk2 − v12)

2]1/2. Therefore, for each
data set k = 1 to 4, we compute the values of dik as follows: for cluster 1,

d11 =
√

(1 − 1)2 + (3 − 3)2 = 0.0

d12 =
√

(1.5 − 1)2 + (3.2 − 3)2 = 0.54

d13 =
√

(1.3 − 1)2 + (2.8 − 3)2 = 0.36

d14 =
√

(3 − 1)2 + (1 − 3)2 = 2.83

and for cluster 2,

d21 =
√

(1 − 1.93)2 + (3 − 2.33)2 = 1.14

d22 =
√

(1.5 − 1.93)2 + (3.2 − 2.33)2 = 0.97

d23 =
√

(1.3 − 1.93)2 + (2.8 − 2.33)2 = 0.78

d24 =
√

(3 − 1.93)2 + (1 − 2.33)2 = 1.70

Now, we update the partition to U(1) for each data point (for (c − 1) clusters) using Eq. (11.18).
Hence, for class 1 we compare dik against the minimum of {dik, d2k}:

For k = 1,

d11 = 0.0, min(d11, d21) = min(0, 1.14) = 0.0; thus χ11 = 1

For k = 2,

d12 = 0.54, min(d12, d22) = min(0.54, 0.97) = 0.54; thus χ12 = 1

For k = 3,

d13 = 0.36, min(d13, d23) = min(0.36, 0.78) = 0.36; thus χ13 = 1

For k = 4,

d14 = 2.83, min(d14, d24) = min(2.83, 1.70) = 1.70; thus χ14 = 0

Therefore, the updated partition is

U(1) =
[

1 1 1 0
0 0 0 1

]

Since the partitions U(0) and U(1) are different, we repeat the same procedure based on the new
setup of two classes. For c = 1, the center coordinates are

v1j or vj = x1j + x2j + x3j

1 + 1 + 1 + 0
, since χ14 = 0

v11 = x11 + x21 + x31

3
= 1 + 1.5 + 1.3

3
= 1.26

v12 = x12 + x22 + x32

3
= 3 + 3.2 + 2.8

3
= 3.0


 v1 = {1.26, 3.0}
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and for c = 2, the center coordinates are

v2j or vj = x4j

0 + 0 + 0 + 1
, since χ21 = χ22 = χ23 = 0

v21 = 3
1 = 3

v22 = 1
1 = 1

}
v2 = {3, 1}

Now, we calculate distance measures again:

d11 = √(1 − 1.26)2 + (3 − 3)2 = 0.26 d21 = √(1 − 3)2 + (3 − 1)2 = 2.83

d12 = √(1.5 − 1.26)2 + (3.2 − 3)2 = 0.31 d22 = √(1.5 − 3)2 + (3.2 − 1)2 = 2.66

d13 = √(1.3 − 1.26)2 + (2.8 − 3)2 = 0.20 d23 = √(1.3 − 3)2 + (2.8 − 1)2 = 2.47

d14 = √(3 − 1.26)2 + (1 − 3)2 = 2.65 d24 = √(3 − 3)2 + (1 − 1)2 = 0.0

and again update the partition U(1) to U(2):

For k = 1,

d11 = 0.26, min(d11, d21) = min(0.26, 2.83) = 0.26; thus χ11 = 1

For k = 2,

d12 = 0.31, min(d12, d22) = min(0.31, 2.66) = 0.31; thus χ12 = 1

For k = 3,

d13 = 0.20, min(d13, d23) = min(0.20, 2.47) = 0.20; thus χ13 = 1

For k = 4,

d14 = 2.65, min(d14, d24) = min(2.65, 0.0) = 0.0; thus χ14 = 0

Because the partitions U(1) and U(2) are identical, we could say the iterative process has
converged; therefore, the optimum hard partition (crisp) is

U(∗) =
[

1 1 1 0
0 0 0 1

]

This optimum partition tells us that for this catalytic converter example, the data points x1, x2,
and x3 are more similar in the 2D feature space, and different from data point x4. We could say
that points x1, x2, and x3 are more indicative of a nonpolluting converter than is data point x4.

FUZZY c-MEANS (FCM)

Let us consider whether the butterfly example in Fig. 11.3 could be improved with the
use of fuzzy set methods. To develop these methods in classification, we define a family
of fuzzy sets {A∼ i , i = 1, 2, . . . , c} as a fuzzy c-partition on a universe of data points, X.
Because fuzzy sets allow for degrees of membership we can extend the crisp classification
idea into a fuzzy classification notion. Then we can assign membership to the various data
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points in each fuzzy set (fuzzy class, fuzzy cluster). Hence, a single point can have partial
membership in more than one class. It will be useful to describe the membership value that
the kth data point has in the ith class with the following notation:

µik = µA∼ i
(xk) ∈ [0, 1]

with the restriction (as with crisp classification) that the sum of all membership values for
a single data point in all of the classes has to be unity:

c∑
i=1

µik = 1 for all k = 1, 2, . . . , n (11.20)

As before in crisp classification, there can be no empty classes and there can be no class that
contains all the data points. This qualification is manifested in the following expression:

0 <

n∑
k=1

µik < n (11.21)

Because each data point can have partial membership in more than one class, the restriction
of Eq. (11.9) is not present in the fuzzy classification case, i.e.,

µik ∧ µjk �= 0 (11.22)

The provisions of Eqs. (11.8) and (11.10) still hold for the fuzzy case, however,

c∨
i=1

µAi
(xk) = 1 for all k (11.23)

0 <

n∑
k=1

µAi
(xk) < n for all i (11.24)

Before, in the case of c = 2, the classification problem reduced to that of the excluded
middle axioms for crisp classification. Since we now allow partial membership, the case of
c = 2 does not follow the restrictions of the excluded middle axioms, i.e., for two classes
A∼ i and A∼ j ,

A∼ i ∩ Aj �= ∅ (11.25)

∅ ⊂ A∼ i ⊂ X (11.26)

We can now define a family of fuzzy partition matrices, Mfc, for the classification involving
c classes and n data points,

Mfc =
{

U∼ | µik ∈ [0, 1];
c∑

i=1

µik = 1; 0 <

n∑
k=1

µik < n

}
(11.27)

where i = 1, 2, . . . , c and k = 1, 2, . . . , n.
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Any U∼ ∈ Mfc is a fuzzy c-partition, and it follows from the overlapping character
of the classes and the infinite number of membership values possible for describing class
membership that the cardinality of Mfc is also infinity, i.e., ηMfc = ∞.

Example 11.9 [Similar to Bezdek, 1981]. Suppose you are a fruit geneticist interested in
genetic relationships among fruits. In particular, you know that a tangelo is a cross between a
grapefruit and a tangerine. You describe the fruit with such features as color, weight, sphericity,
sugar content, skin texture, and so on. Hence, your feature space could be highly dimensional.
Suppose you have three fruits (three data points):

X = {x1 = grapefruit, x2 = tangelo, x3 = tangerine}
These data points are described by m features, as discussed. You want to class the three fruits
into two classes to determine the genetic assignment for the three fruits. In the crisp case, the
classification matrix can take one of three forms, i.e., the cardinality for this case where n = 3
and c = 2 is ηMc

= 3 (see Eq. (11.13)). Suppose you arrange your U∼ matrix as follows:

U∼ =
[ x1 x2 x3

c1 1 0 0
c2 0 1 1

]

The three possible partitions of the matrix are[
1 0 0
0 1 1

] [
1 1 0
0 0 1

] [
1 0 1
0 1 0

]

Notice in the first partition that we are left with the uncomfortable segregation of the
grapefruit in one class and the tangelo and the tangerine in the other; the tangelo shares nothing
in common with the grapefruit! In the second partition, the grapefruit and the tangelo are in
a class, suggesting that they share nothing in common with the tangerine! Finally, the third
partition is the most genetically discomforting of all, because here the tangelo is in a class by
itself, sharing nothing in common with its progenitors! One of these three partitions will be the
final partition when any algorithm is used. The question is, which one is best? Intuitively the
answer is none, but in crisp classification we have to use one of these.

In the fuzzy case this segregation and genetic absurdity are not a problem. We can have
the most intuitive situation where the tangelo shares membership with both classes with the
parents. For example, the following partition might be a typical outcome for the fruit genetics
problem:

U∼ =
[ x1 x2 x3

1 0.91 0.58 0.13
2 0.09 0.42 0.87

]

In this case, Eq. (11.24) shows that the sum of each row is a number between 0 and n, or

0 <
∑

k

µ1k = 1.62 < 3

0 <
∑

k

µ2k = 1.38 < 3

and for Eq. (11.22) there is overlap among the classes for each data point,

µ11 ∧ µ21 = min(0.91, 0.09) = 0.09 �= 0

µ12 ∧ µ22 = min(0.58, 0.42) = 0.42 �= 0

µ13 ∧ µ23 = min(0.13, 0.87) = 0.13 �= 0
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Fuzzy c-Means Algorithm

To describe a method to determine the fuzzy c-partition matrix U∼ for grouping a collection
of n data sets into c classes, we define an objective function Jm for a fuzzy c-partition,

Jm(U∼, v) =
n∑

k=1

c∑
i=1

(µik)
m′

(dik)
2 (11.28)

where

dik = d(xk − vi ) =

 m∑

j=1

(xkj − vij )
2




1/2

(11.29)

and where µik is the membership of the kth data point in the ith class.
As with crisp classification, the function Jm can have a large number of values, the

smallest one associated with the best clustering. Because of the large number of possible
values, now infinite because of the infinite cardinality of fuzzy sets, we seek to find
the best possible, or optimum, solution without resorting to an exhaustive, or expensive,
search. The distance measure, dik in Eq. (11.29), is again a Euclidean distance between
the ith cluster center and the kth data set (data point in m-space). A new parameter is
introduced in Eq. (11.28) called a weighting parameter, m′ [Bezdek, 1981]. This value has
a range m′ ∈ [1, ∞). This parameter controls the amount of fuzziness in the classification
process and is discussed shortly. Also, as before, vi is the ith cluster center, which is
described by m features (m coordinates) and can be arranged in vector form as before,
vi = {vi1, vi2, . . . , vim}.

Each of the cluster coordinates for each class can be calculated in a manner similar to
the calculation in the crisp case (see Eq. (11.16)),

vij =

n∑
k=1

µm′
ik · xkj

n∑
k=1

µm′
ik

(11.30)

where j is a variable on the feature space, i.e., j = 1, 2, . . . , m.
As in the crisp case the optimum fuzzy c-partition will be the smallest of the partitions

described in Eq. (11.28), i.e.,

J ∗
m(U∼

∗, v∗) = min
Mfc

J (U∼, v) (11.31)

As with many optimization processes (see Chapter 14), the solution to Eq. (11.31) cannot
be guaranteed to be a global optimum, i.e., the best of the best. What we seek is the best
solution available within a prespecified level of accuracy. An effective algorithm for fuzzy
classification, called iterative optimization, was proposed by Bezdek [1981]. The steps in
this algorithm are as follows:

1. Fix c (2 ≤ c < n) and select a value for parameter m′. Initialize the partition matrix,
U∼

(0). Each step in this algorithm will be labeled r , where r = 0, 1, 2,. . ..

2. Calculate the c centers {v(r)
i } for each step.
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3. Update the partition matrix for the rth step, U∼
(r) as follows:

µ
(r+1)
ik =


 c∑

j=1

(
d

(r)
ik

d
(r)
jk

)2/(m′−1)



−1

for Ik = ∅ (11.32a)

or
µ

(r+1)
ik = 0 for all classes i where i ∈ I∼k

(11.32b)

where
Ik = {i|2 ≤ c < n; d(r)

ik = 0} (11.33)

and
I∼k = {1, 2, . . . , c} − Ik (11.34)

and ∑
i∈Ik

µ
(r+1)
ik = 1 (11.35)

4. If ||U∼ (r+1) − U∼
(r)|| ≤ εL, stop; otherwise set r = r + 1 and return to step 2.

In step 4 we compare a matrix norm || || of two successive fuzzy partitions to a
prescribed level of accuracy, εL, to determine whether the solution is good enough. In step 3
there is a considerable amount of logic involved in Eqs. (11.32)–(11.35). Equation (11.32a)
is straightforward enough, except when the variable djk is zero. Since this variable is in
the denominator of a fraction, the operation is undefined mathematically, and computer
calculations are abruptly halted. So the parameters Ik and Ĩk comprise a bookkeeping system
to handle situations when some of the distance measures, dij , are zero, or extremely small
in a computational sense. If a zero value is detected, Eq. (11.32b) sets the membership
for that partition value to be zero. Equations (11.33) and (11.34) describe the bookkeeping
parameters Ik and I∼k , respectively, for each of the classes. Equation (11.35) simply says that
all the nonzero partition elements in each column of the fuzzy classification partition, U∼ ,
sum to unity. The following example serves to illustrate Eqs. (11.32)–(11.35).

Example 11.10. Suppose we have calculated the following distance measures for one step
in our iterative algorithm for a classification problem involving three classes and five data
points. The values in Table 11.7 are simple numbers for ease of illustration. The bookkeeping
parameters Ik and I∼k , where in this example k = 1, 2, 3, 4, 5, are given next, as illustration of

TABLE 11.7
Distance measures for hypothetical example
(c = 3.n = 5)

d11 = 1 d21 = 2 d31 = 3
d12 = 0 d22 = 0.5 d32 = 1
d13 = 1 d23 = 0 d33 = 0
d14 = 3 d24 = 1 d34 = 1
d15 = 0 d25 = 4 d35 = 0
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the use of Eqs. (11.33) and (11.34):

I1 = ∅ I∼1 = {1, 2, 3} − ∅ = {1, 2, 3}
I2 = {1} I∼2 = {1, 2, 3} − {1} = {2, 3}
I3 = {2, 3} I∼3 = {1, 2, 3} − {2, 3} = {1}
I4 = ∅ I∼4 = {1, 2, 3} − ∅ = {1, 2, 3}
I5 = {1, 3} I∼5 = {1, 2, 3} − {1, 3} = {2}

Now, Eqs. (11.32) and (11.35) are illustrated:

For data point 1: µ11, µ21, µ31 �= 0 and µ11 + µ21 + µ31 = 1

For data point 2: µ12 = 0 and µ22, µ32 �= 0 and µ22 + µ23 = 1

For data point 3: µ13 = 1 and µ23 = µ33 = 0

For data point 4: µ14, µ24, µ34 �= 0 and µ14 + µ24 + µ34 = 1

For data point 5: µ25 = 1 and µ15 = µ35 = 0

The algorithm given in Eq. (11.28) is a least squares function, where the parameter
n is the number of data sets and c is the number of classes (partitions) into which one is
trying to classify the data sets. The squared distance, d2

ik , is then weighted by a measure,
(uik)

m′
, of the membership of xk in the ith cluster. The value of Jm is then a measure of

the sum of all the weighted squared errors; this value is then minimized with respect to
two constraint functions. First, Jm is minimized with respect to the squared errors within
each cluster, i.e., for each specific value of c. Simultaneously, the distance between cluster
centers is maximized, i.e., max ||vi − vj ||, i �= j .

As indicated, the range for the membership exponent is m′ ∈ [1, ∞). For the case
m′ = 1, the distance norm is Euclidean and the FCM algorithm approaches a hard c-means
algorithm, i.e., only zeros and ones come out of the clustering. Conversely, as m′ → ∞,
the value of the function Jm → 0. This result seems intuitive, because the membership
values are numbers less than or equal to 1, and large powers of fractions less than 1
approach 0. In general, the larger m′ is, the fuzzier are the membership assignments of
the clustering; conversely, as m′ → 1, the clustering values become hard, i.e., 0 or 1. The
exponent m′ thus controls the extent of membership sharing between fuzzy clusters. If all
other algorithmic parameters are fixed, then increasing m′ will result in decreasing Jm. No
theoretical optimum choice of m′ has emerged in the literature. However, the bulk of the
literature seems to report values in the range 1.25 to 2. Convergence of the algorithm tends
to be slower as the value of m′ increases.

The algorithm described here can be remarkably accurate and robust in the sense that
poor guesses for the initial partition matrix, U∼

(0), can be overcome quickly, as illustrated in
the next example.

Example 11.11. Continuing with the chemical engineering example on a catalytic converter
shown in Fig. 11.4, we can see that a visual display of these points in 2D feature space (m = 2)
makes it easy for the human to cluster the data into two convenient classes based on the
proximity of the points to one another. The fuzzy classification method generally converges
quite rapidly, even when the initial guess for the fuzzy partition is quite poor, in a classification
sense. The fuzzy iterative optimization method for this case would proceed as follows.
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Using U∗ from the previous example as the initial fuzzy partition, U∼
(0), and assuming a

weighting factor of m′ = 2 and a criterion for convergence of εL = 0.01, i.e.,

max
i,k

|µ(r+1)
ik − µ

(r)
ik | ≤ 0.01

we want to determine the optimum fuzzy 2-partition U∼
∗. To begin, the initial fuzzy partition is

U∼
(0) =

[
1 1 1 0
0 0 0 1

]

Next is the calculation of the initial cluster centers using Eq. (11.30), where m′ = 2:

vij =

n∑
k=1

(µik)
2 · xkj

n∑
k=1

(µik)
2

where for c = 1,

v1j = µ2
1x1j + µ2

2x2j + µ2
3x3j + µ2

4x4j

µ2
1 + µ2

2 + µ2
3 + µ2

4

= (1)x1j + (1)x2j + (1)x3j + (0)x4j

1 + 1 + 1 + 0
= x1j + x2j + x3j

12 + 12 + 12 + 0

v11 = 1 + 1.5 + 1.3

3
= 1.26

v12 = 3 + 3.2 + 2.8

3
= 3.0


 v1 = {1.26, 3.0}

and for c = 2,

v2j or vj = x4j

0 + 0 + 0 + 1
, since x21 = x22 = x23 = 0

v21 = 3
1 = 3

v22 = 1
1 = 1

}
v2 = {3, 1}

Now the distance measures (distances of each data point from each cluster center) are found
using Eq. (11.29):

d11 = √(1 − 1.26)2 + (3 − 3)2 = 0.26 d21 = √(1 − 3)2 + (3 − 1)2 = 2.82

d12 = √(1.5 − 1.26)2 + (3.2 − 3)2 = 0.31 d22 = √(1.5 − 3)2 + (3.2 − 1)2 = 2.66

d13 = √(1.3 − 1.26)2 + (2.8 − 3)2 = 0.20 d23 = √(1.3 − 3)2 + (2.8 − 1)2 = 2.47

d14 = √(3 − 1.26)2 + (1 − 3)2 = 2.65 d24 = √(3 − 3)2 + (1 − 1)2 = 0.0

With the distance measures, we can now update U∼ using Eqs. (11.33)–(11.35) (for m′ = 2),
i.e.,

µ
(r+1)
ik =


 c∑

j=1

(
d

(r)
ik

d
(r)
jk

)2



−1
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and we get,

µ11 =

 c∑

j=1

(
d11

dj1

)2



−1

=
[(

d11

d11

)2

+
(

d11

d21

)2
]−1

=
[(

0.26

0.26

)2

+
(

0.26

2.82

)2
]−1

= 0.991

µ12 =
[(

d12

d12

)2

+
(

d12

d22

)2
]−1

=
[

1 +
(

0.31

2.66

)2
]−1

= 0.986

µ13 =
[(

d13

d13

)2

+
(

d13

d23

)2
]−1

=
[

1 +
(

0.20

2.47

)2
]−1

= 0.993

µ14 =
[(

d14

d14

)2

+
(

d14

d24

)2
]−1

=
[

1 +
(

2.65

0

)2
]−1

−→ 0.0, for I4 �= ∅

Using Eq. (11.20) for the other partition values, µ2j , for j = 1, 2, 3, 4, the new membership
functions form an updated fuzzy partition given by

U∼
(1) =

[
0.991 0.986 0.993 0
0.009 0.014 0.007 1

]

To determine whether we have achieved convergence, we choose a matrix norm |||| such as the
maximum absolute value of pairwise comparisons of each of the values in U∼

(0) and U∼
(1), e.g.,

max
i,k

|µ(1)
ik − µ

(0)
ik | = 0.0134 > 0.01

This result suggests our convergence criteria have not yet been satisfied, so we need another
iteration of the method.

For the next iteration we proceed by again calculating cluster centers, but now from
values from the latest fuzzy partition, U∼

(1); for c = 1,

v1j = (0.991)2x1j + (0.986)2x2j + (0.993)2x3j + (0)x4j

0.9912 + 0.9862 + 0.9932 + 0

v11 = 0.98(1) + 0.97(1.5) + 0.99(1.3)

2.94
= 3.719

2.94
≈ 1.26

v12 = 0.98(3) + 0.97(3.2) + 0.99(2.8)

2.94
= 8.816

2.94
≈ 3.0


 v1 = {1.26, 3.0}

and for c = 2,

v2j = (0.009)2x1j + (0.014)2x2j + (0.007)2x3j + (1)2x4j

0.0092 + 0.0142 + 0.0072 + 12

v21 = 0.0092(1) + 0.0142(1.5) + 0.0072(1.3) + 1(3)

1.000
≈ 3.0

v22 = 0.0092(3) + 0.0142(3.2) + 0.0072(2.8) + 1(1)

1.000
≈ 1.0




v2 = {3.0, 1.0}

We see that these two cluster centers are identical to those from the first step, at least to within
the stated accuracy of (0.01); hence the final partition matrix will be unchanged, to an accuracy
of two digits, from that obtained in the previous iteration. As suggested earlier, convergence
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FIGURE 11.5
Converged fuzzy partition for catalytic converter example.

is rapid, at least for this example. The final partition, U∼
(2), results in a classification shown in

Fig. 11.5.

CLASSIFICATION METRIC

In most studies involving fuzzy pattern classification, the data used in the classification
process typically come from electrically active transducer readings [Bezdek et al., 1986].
When a fuzzy clustering is accomplished, a question remains concerning the uncertainty of
the clustering in terms of the features used. That is, our interest should lie with the extent
to which pairs of fuzzy classes of U∼ overlap; a true classification with no uncertainty would
contain classes with no overlap. The question then is: How fuzzy is a fuzzy c-partition?
Suppose we compare two memberships for a given data set, xk, pairwise, using the minimum
function, i.e.,

min{ui(xk), uj (xk)} > 0 (11.36)

This comparison would indicate that membership of xk is shared by ui and uj , whereas
the minimum of these two values reflects the minimum amount of unshared member-
ship xk can claim in either ui or uj . Hence, a fuzziness measure based on functions
min{ui(xk), uj (xk)} would constitute a point-by-point assessment – not of overlap, but of
‘‘anti-overlap’’ [Bezdek, 1974]. A more useful measure of fuzziness in this context, which
has values directly dependent on the relative overlap between nonempty fuzzy class inter-
sections, can be found with the algebraic product of ui and uj , or the form uiuj (xk). An
interesting interpretation of the fuzzy clustering results is to compute the fuzzy partition
coefficient,

Fc(U∼) = tr(U∼ ∗ U∼
T)

n
(11.37)
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where U∼ is the fuzzy partition matrix being segregated into c classes (partitions), n is
the number of data sets, and the operation ‘‘∗’’ is standard matrix multiplication. The
product U∼ ∗ U∼

T is a matrix of size c × c. The partition coefficient, Fc(U∼), has some special
properties [Bezdek, 1974]: Fc(U∼) = 1 if the partitioning in U∼ is crisp (comprised of zeros
and ones); Fc(U∼) = 1/c if all the values ui = 1/c (complete ambiguity); and in general
1/c ≤ Fc(U∼) ≤ 1. The diagonal entries of U∼ ∗ U∼

T are proportional to the amount of unshared
membership of the data sets in the fuzzy clusters, whereas the off-diagonal elements of
U∼ ∗ U∼

T represent the amount of membership shared between pairs of fuzzy clusters of U∼ . If
the off-diagonal elements of U∼ ∗ U∼

T are zero, then the partitioning (clustering) is crisp. As
the partition coefficient approaches a value of unity, the fuzziness in overlap in classes is
minimized. Hence, as Fc(U∼) increases, the decomposition of the data sets into the classes
chosen is more successful.

Example 11.12 [Ross et al., 1993]. Forced response dynamics of a simple mechanical two-
degrees-of-freedom (2-DOF) oscillating system, as shown in Fig. 11.6, are conducted. In the
figure the parameters m1, k1, and c1, and m2, k2, and c2 are the mass, stiffness, and damping
coefficients for the two masses, respectively, and the base of the system is assumed fixed to
ground. The associated frequency and damping ratios for the two modes of free vibration for
this system are summarized in Table 11.8. The 2-DOF system is excited with a force actuator
on the larger of the two masses (see Fig. 11.6), and a displacement sensor on this same mass
collects data on displacement vs. time.

The response is computed for the displacement sensor in the form of frequency response
functions (FRF). The derivatives of these FRF were computed for a specific exciting frequency
of 1.0 rad/s with respect to the six modal mass and stiffness matrix elements (denoted in
Table 11.9 as x1, x2, . . . , x6). Amplitude derivatives and the covariance matrix entries of these
parameters are given in Table 11.9.

A simple FCM classification approach was conducted on the feature data (m = 2) given
in Table 11.9 and the fuzzy partitions shown in Table 11.10 resulted for a 2-class case (c = 2)
and a 3-class case (c = 3).

The resulting values of Fc(U∼) from Eq. (11.37) for the two clustering cases are listed
in Table 11.11. Of course, the result for c = 3 is intuitively obvious from inspection of

c1

c2
k2

m2

m1

k1

FIGURE 11.6
Mechanical system with two degrees of freedom.

TABLE 11.8
Modal response parameters for 2-DOF example

Mode Frequency (rad/s) Damping ratio

1 0.98617 0.01
2 1.17214 0.01
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TABLE 11.9
FRF sensitivity-parameter uncertainty data sets

Data set FRF derivative Variance

x1 3.5951 0.2370
x2 1.7842 0.2906
x3 0.1018 0.3187
x4 3.3964 0.2763
x5 1.7620 0.2985
x6 0.1021 0.4142

TABLE 11.10
Clustering results for a simple 2-DOF problem

Data pairs (c = 2)

x1 x2 x3 x4 x5 x6

Class 1 0.000 0.973 0.998 0.000 0.976 0.998
Class 2 1.000 0.027 0.002 1.000 0.024 0.002

Data pairs (c = 3)

Class 1 0 0 1 0 0 1
Class 2 0 1 0 0 1 0
Class 3 1 0 0 1 0 0

TABLE 11.11
Partitioning coefficient
for two different classes

c Fc(U∼)

2 0.982
3 1.000

Table 11.10, which is crisp. However, such obviousness is quickly lost when one deals with
problems characterized by a large database.

HARDENING THE FUZZY c-PARTITION

There are two popular methods, among many others, to defuzzify fuzzy partitions, U∼ , i.e.,
for hardening the fuzzy classification matrix. This defuzzification may be required in the
ultimate assignment of data to a particular class. These two methods are called the maximum
membership method and the nearest center classifier.

In the max membership method, the largest element in each column of the U∼ matrix
is assigned a membership of unity and all other elements in each column are assigned
a membership value of zero. In mathematical terms if the largest membership in the kth
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column is µik , then xk belongs to class i, i.e., if

µik = max
j∈c

{µik} then µik = 1; µjk = 0 for all j �= i (11.38)

for i = 2, . . . , c and k = 1, 2, . . . , n.
In the nearest center classifier, each of the data points is assigned to the class that it is

closest to; that is, the minimum Euclidean distance from a given data point and the c cluster
centers dictates the class assignment of that point. In mathematical terms, if

dik = min
j∈c

{djk} = min
j∈c

||xk − vj ||

then

µik = 1

µjk = 0 for all j �= i (11.39)

Example 11.13. If we take the partition matrix, U∼ , developed on the catalytic converter
in Example 11.8 as shown in Fig. 11.5, and harden it using the methods in Eqs. (11.38)
and (11.39), we get the following:

U∼ =
[

0.991 0.986 0.993 0
0.009 0.014 0.007 1

]

Max membership method:

UHard =
[

1 1 1 0
0 0 0 1

]

Nearest center classifier: If we take the distance measures from the catalytic converter
problem, i.e.,

d12 = 0.26 d21 = 2.82

d12 = 0.31 d21 = 2.66

d12 = 0.20 d21 = 2.47

d12 = 2.65 d21 = 0

and arrange these values in a 2 × 4 matrix, such as

dij =
[

0.26 0.31 0.20 2.65
2.82 2.66 2.47 0

]

then the minimum value (distance) in each column is set to unity, and all other values (distances)
in that column are set to zero. This process results in the following hard c-partition:

UHard =
[

1 1 1 0
0 0 0 1

]

which, for this example, happens to be the same partition that is derived using the max
membership hardening method.
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SIMILARITY RELATIONS FROM CLUSTERING

The classification idea can be recast in the form of a similarity relation that is also
a tolerance relation. This idea represents another way to look at the structure in
data, by comparing the data points to one another, pairwise, in a similarity analysis.
In classification we seek to segregate data into clusters where points in each clus-
ter are as ‘‘similar’’ to one another as possible and where clusters are dissimilar to
one another. This notion of similarity, then, is central to classification. The use of a
fuzzy similarity relation can be useful in the classification process [Bezdek and Harris,
1978].

A fuzzy relation R∼ can be constructed from the fuzzy partition U∼ as follows:

R∼ =
(

U∼
T
(∑

∧
)

U∼
)

= [rkj ] (11.40)

rkj =
c∑

i=1

µik ∧ µij (11.41)

where the symbol (
∑∧) denotes ‘‘sum of mins.’’

Example 11.14. We take the fuzzy partition U∼ from the fruit genetics example (Example 11.9)
and perform the mixed algebraic and set operations as provided in Eqs. (11.40) and (11.41).
So for

U∼
T =

[
0.91 0.09
0.58 0.42
0.13 0.87

]
and Ũ =

[
0.91 0.58 0.13
0.09 0.42 0.87

]

we get

r11 = min(0.91, 0.91) + min(0.09, 0.09) = 1

r12 = min(0.91, 0.58) + min(0.09, 0.42) = 0.67

r13 = min(0.91, 0.13) + min(0.09, 0.87) = 0.22

r23 = min(0.58, 0.13) + min(0.42, 0.87) = 0.55

and so forth, and the following fuzzy similarity relation results:

R∼ =
[

1 0.67 0.22
0.67 1 0.55
0.22 0.55 1

]

The fuzzy similarity relation R∼ provides similar information about clustering as does the
original fuzzy partition, U∼ . The fuzzy classification partition groups the data according to
class type; the fuzzy relation shows the pairwise similarity of the data without regard to
class type. Data that have strong similarity, or high membership values in R∼, should tend to
have high membership in the same class in U∼ . Although the two measures are based on the
same data (i.e., the features describing each data point), their information content is slightly
different.
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PART II PATTERN RECOGNITION

There is no idea or proposition in the field, which cannot be put into mathematical language,
although the utility of doing so can very well be doubted.

H. W. Brand
Mathematician, 1961

Pattern recognition can be defined as a process of identifying structure in data by
comparisons to known structure; the known structure is developed through methods of
classification [Bezdek, 1981] as illustrated in Part I. In the statistical approach to numerical
pattern recognition, which is treated thoroughly by Fukunaga [1972], each input observation
is represented as a multidimensional data vector (feature vector) where each component is
called a feature. The purpose of the pattern recognition system is to assign each input to
one of c possible pattern classes (or data clusters). Presumably, different input observations
should be assigned to the same class if they have similar features and to different classes if
they have dissimilar features. Statistical pattern recognition systems rest on mathematical
models; it is crucial that the measure of mathematical similarity used to match feature
vectors with classes assesses a property shared by physically similar components of the
process generating the data.

The data used to design a pattern recognition system are usually divided into two
categories: design (or training) data and test data, much like the categorization used in neural
networks. Design data are used to establish the algorithmic parameters of the pattern recogni-
tion system. The design samples may be labeled (the class to which each observation belongs
is known) or unlabeled (the class to which each data sample belongs is unknown). Test data
are labeled samples used to test the overall performance of the pattern recognition system.

In the descriptions that follow, the following notation is used:

X = {x1, x2, . . . , xn} = the universe of data samples

n = number of data samples in universe

p = number of original (nominated) features

xk ∈ Rp; kth data sample in X, in p-dimensional feature space

xkj ∈ R; j th measured feature of xk

s = number of selected or extracted features

c = number of clusters or classes

There are many similarities between classification and pattern recognition. The
information provided in Fig. 11.7 summarizes the distinction between the two made in
this textbook. Basically, classification establishes (or seeks to determine) the structure in
data, whereas pattern recognition attempts to take new data and assign them to one of the
classes defined in the classification process. Simply stated, classification defines the patterns
and pattern recognition assigns data to a class; hence, the processes of define and assign
are a coupled pair in the process described in Fig. 11.7. In both the classification process
and the pattern recognition process there are necessary feedback loops: the first loop in
classification is required when one is seeking a better segmentation of the data (i.e., better
class distinctions), and the second loop is required when pattern matching fails (i.e., no
useful assignment can be made).
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Training data for
classification Classification

Pattern
recognition Discrimination

New data

Feedback

FIGURE 11.7
Difference between classification and pattern recognition.

FEATURE ANALYSIS

Feature analysis refers to methods for conditioning the raw data so that the information that is
most relevant for classification and interpretation (recognition) is enhanced and represented
by a minimal number of features. Feature analysis consists of three components: nomination,
selection, and extraction. Feature nomination (FN) refers to the process of proposing the
original p features; it is usually done by workers close to the physical process and may
be heavily influenced by physical constraints, e.g., what can be measured by a particular
sensor. For example, the nominated features can correspond to simple characteristics of
various sensors that are represented by digitization of the sensor records. Feature selection
(FS) refers to choosing the ‘‘best’’ subset of s features (s < p) from the original p features.
Feature extraction (FE) describes the process of transforming the original p-dimensional
feature space into an s-dimensional space in some manner that ‘‘best’’ preserves or
enhances the information available in the original p-space. This is usually accomplished
mathematically by means of some linear combination of the initial measurements.

Another method of feature extraction that lies closer to the expertise of the engineer
is heuristic nomination and/or extraction. In other words, the process being examined
may suggest choices for analytic features, e.g., in sensor records of measured pressures,
the slopes (of rise and decay), areas (impulse or energy) during rise and decay, or even
transformations (Fourier or Laplace) of the pressure waveform. Implicit in both FS and
FE is a means for evaluating feature sets chosen by a particular procedure. The usual
benchmark of feature quality is the empirical error rate achieved by a classifier on labeled
test data. A second method of assessing feature quality is to refer algorithmic interpretations
of the data to domain experts: do the computed results make sense? This latter test is less
esoteric than the mathematical criteria, but very important.

PARTITIONS OF THE FEATURE SPACE

Partitioning the feature space into c regions, one for each subclass in the data, is usually
in the domain of classifier design. More specifically, crisp classifiers partition Rp (or Rs)
into disjoint subsets, whereas fuzzy classifiers assign fuzzy label vectors to each vector in
feature space. The ideal classifier never errs; since this is usually impossible, one seeks
designs that minimize the expected probability of error or, if some mistakes are more costly
than others, minimize the average cost of errors, or both. An in-depth analysis of classifier
design is available in Duda and Hart [1973]. Because many sources of data, such as those
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in image processing, do not lend themselves readily to classifier design, the discussion
presented here does not consider this aspect of pattern classification. Part I of this chapter
has discussed the nature and importance of cluster analysis and cluster validity in terms of
feature selection.

SINGLE-SAMPLE IDENTIFICATION

A typical problem in pattern recognition is to collect data from a physical process and
classify them into known patterns. The known patterns typically are represented as class
structures, where each class structure is described by a number of features. For simplicity
in presentation, the material that follows represents classes or patterns characterized by one
feature; hence, the representation can be considered one-dimensional.

Suppose we have several typical patterns stored in our knowledge base (i.e., the
computer), and we are given a new data sample that has not yet been classified. We
want to determine which pattern the sample most closely resembles. Express the typical
patterns as fuzzy sets A∼1, A∼2, . . . , A∼m. Now suppose we are given a new data sample,
which is characterized by the crisp singleton, x0. Using the simple criterion of maximum
membership, the typical pattern that the data sample most closely resembles is found by the
following expression:

µA∼ i
(x0) = max{µA∼1(x0), µA∼2(x0), . . . , µA∼m

(x0)} (11.42)

where x0 belongs to the fuzzy set A∼ i , which is the set indication for the set with the highest
membership at point x0. Figure 11.8 shows the idea expressed by Eq. (11.42), where clearly
the new data sample defined by the singleton expressed by x0 most closely resembles the
pattern described by fuzzy set A∼2.

Example 11.15 [Ross, 1995]. We can illustrate the single data sample example using the
problem of identifying a triangle, as described in Chapter 6. Suppose the single data sample is
described by a data triplet, where the three coordinates are the angles of a specific triangle, e.g.,
the triangle as shown in Fig. 6.2, x0 = {A = 85◦

, B = 50◦
, C = 45◦}. Recall from Chapter 6

that there were five known patterns stored: isosceles, right, right and isosceles, equilateral, and
all other triangles. If we take this single triangle and determine its membership in each of the

xx0

A2~

A3~

A1~

(x)µ        Ai~

FIGURE 11.8
Single data sample using max member-ship criteria.
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known patterns, we get the following results (as we did before in Chapter 6):

µI∼
(85, 50, 45) = 1 − 5

60 = 0.916

µR∼
(85, 50, 45) = 1 − 5

90 = 0.94

µIR∼
(85, 50, 45) = 1 − max

[
5

60 , 5
90

] = 0.916

µE∼
(85, 50, 45) = 1 − 1

180 (40) = 0.78

µT∼
(85, 50, 45) = 1

180 min[3.35, 3(5), 2
5 , 40] = 0.05

Using the criterion of maximum membership, we see from these values that x0 most
closely resembles the right triangle pattern, R∼.

Now let us extend the paradigm to consider the case where the new data sample is
not crisp, but rather a fuzzy set itself. Suppose we have m typical patterns represented as
fuzzy sets A∼ i on X (i = 1, 2, . . . , m) and a new piece of data, perhaps consisting of a group
of observations, is represented by a fuzzy set B∼ on X. The task now is to find which A∼ i the
sample B∼ most closely matches. To address this issue, we develop the notion of fuzzy vectors.

There are some interesting features and operations on fuzzy vectors that will become
quite useful in the discipline of fuzzy pattern recognition [Dong, 1986]. Formally, a vector
a∼ = (a1, a2, . . . , an) is called a fuzzy vector if for any element we have 0 ≤ ai ≤ 1 for
i = 1, 2, . . . , n. Similarly, the transpose of the fuzzy vector a∼, denoted a∼

T, is a column
vector if a∼ is a row vector, i.e.,

a∼
T =




a1

a2

...

an




Let us define a∼ and b∼ as fuzzy vectors of length n, and define

a∼ • b∼
T = n∨

i=1
(ai ∧ bi) (11.43)

as the fuzzy inner product of a∼ and b∼, and

a∼ ⊕ b∼
T = n∧

i=1
(ai ∨ bi) (11.44)

as the fuzzy outer product of a∼ and b∼.

Example 11.16. We have two fuzzy vectors of length 4 as defined here, and want to find the
inner product and the outer product for these two fuzzy vectors:

a∼ = (0.3, 0.7, 1, 0.4) b∼ = (0.5, 0.9, 0.3, 0.1)

a∼ • b∼
T = (0.3, 0.7, 1.0, 0.4)




0.5
0.9
0.3
0.1
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= (0.3 ∧ 0.5) ∨ (0.7 ∧ 0.9) ∨ (1 ∧ 0.3) ∨ (0.4 ∧ 0.1) = 0.3 ∨ 0.7 ∨ 0.3 ∨ 0.1 = 0.7

a∼ ⊕ b∼
T = (0.3 ∨ 0.5) ∧ (0.7 ∨ 0.9) ∧ (1 ∨ 0.3) ∧ (0.4 ∨ 0.1) = 0.5 ∧ 0.9 ∧ 1 ∧ 0.4 = 0.4

The symbol ⊕ has also been used in the literature to describe the Boolean outer
product. In this context we will use this symbol to refer to the outer product of two fuzzy
vectors. An interesting feature of these products is found in comparing them to standard
algebraic operations on vectors in physics. Whereas the inner and outer products on fuzzy
vectors result in scalar quantities, only the algebraic inner product on vectors in physics
produces a scalar; the outer product on two vectors in physics produces another vector,
whose direction is orthogonal to the plane containing the original two vectors.

We now define the complement of the fuzzy vector, or fuzzy complement vector, as

a∼ = (1 − a1, 1 − a2, . . . , 1 − an) = (a1, a2, . . . , an) (11.45)

It should be obvious that since a∼ is subject to the constraint 0 ≤ ai ≤ 1 for i = 1, 2, . . . , n,
the fuzzy complement vector is also another fuzzy vector. Moreover, we define the largest
element â in the fuzzy vector a∼ as its upper bound, i.e.,

â = max
i

(ai) (11.46)

and the smallest element a
ˆ

in the fuzzy vector a∼ as its lower bound, i.e.,

a
ˆ
= min

i
(ai) (11.47)

Some properties of fuzzy vectors that will become quite useful in the area of pattern
recognition will be summarized here. For two fuzzy vectors, a∼ and b∼, both of length n, the
following properties hold:

a∼ • b∼
T = a∼ ⊕ b∼

T
and alternatively a∼ ⊕ b∼

T = a∼ • b∼
T

(11.48)

a∼ • b∼
T ≤ (â ∧ b̂) and alternatively a∼ ⊕ b∼

T ≥ (a
ˆ
∨ b

ˆ
) (11.49)

a∼ • a∼
T = â and a∼ ⊕ a∼

T ≥ a
ˆ

(11.50)

For a∼ ⊆ b∼ then a∼ • b∼
T = â; and for b∼ ⊆ a∼ then a∼ ⊕ b∼

T = a
ˆ

(11.51)

a∼ • a∼ ≤ 1
2 and a∼ ⊕ a∼ ≥ 1

2 (11.52)

From the fuzzy vector properties given in Eqs. (11.48)–(11.52), one can show (see
Problems 11.15 and 11.16) that when two separate fuzzy vectors are identical, i.e., a∼ = b∼,
the inner product a∼ • b∼

T reaches a maximum while the outer product a∼ ⊕ b∼
T reaches a

minimum. This result is extremely powerful when used in any problem requiring a metric
of similarity between two vectors. If two vectors are identical, the inner product metric
will yield a maximum value, and if the two vectors are completely dissimilar the inner
product will yield a minimum value. This chapter makes use of the inverse duality between
the inner product and the outer product for fuzzy vectors and fuzzy sets in developing an
algorithm for pattern recognition. These two norms, the inner product and the outer product,
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can be used simultaneously in pattern recognition studies because they measure closeness
or similarity.

We can extend fuzzy vectors to the case of fuzzy sets. Whereas vectors are defined
on a finite countable universe, sets can be used to address infinite-valued universes (see
example below using Gaussian membership functions). Let P∗(X) be a group of fuzzy sets
with A∼ i �= ∅, and A∼ i �= X. Now we define two fuzzy sets from this family of sets, i.e.,
A∼, B∼ ∈ P∗(X); then either of the expressions (Eqs. (11.53) and (11.54))

(A∼, B∼)1 = (A∼ • B∼) ∧ (A∼ ⊕ B∼) (11.53)

(A∼, B∼)2 = 1
2 [(A∼ • b∼) + (A∼ ⊕ B∼)] (11.54)

describes two metrics to assess the degree of similarity of the two sets A∼ and B∼:

(A∼, B∼) = (A∼, B∼)1 or (A∼, B∼) = (A∼, B∼)2 (11.55)

In particular, when either of the values of (A∼, B∼) from Eq. (11.55) approaches 1, then the
two fuzzy sets A∼ and B∼ are ‘‘more closely similar’’; when either of the values (A∼, B∼) from
Eq. (11.55) approaches a value of 0, the two fuzzy sets are ‘‘more far apart’’ (dissimilar).
The metric in Eq. (11.53) uses a minimum property to describe similarity, and the expression
in Eq. (11.54) uses an arithmetic metric to describe similarity. It can be shown (see Problem
11.19) that the first metric (Eq. (11.53)) always gives a value that is less than the value
obtained from the second metric (Eq. (11.54)). Both of these metrics represent a concept
that has been called the approaching degree [Wang, 1983].

Example 11.17. Suppose we have a universe of five discrete elements, X = {x1, x2, x3, x4, x5},
and we define two fuzzy sets, A∼ and B∼, on this universe. Note that the two fuzzy sets are
special: They are actually crisp sets and both are complements of one another:

A∼ =
{

1

x 1
+ 1

x 2
+ 0

x 3
+ 0

x 4
+ 0

x 5

}

B∼ = A∼ =
{

0

x 1
+ 0

x 2
+ 1

x 3
+ 1

x 4
+ 1

x 5

}

If we calculate the quantities expressed by Eqs. (11.53)–(11.55), we obtain the following
values:

A∼ • B∼ = 0 A∼ ⊕ B∼ = 1 (A∼, B∼)1 = (A∼, B∼)2 = 0

The conclusion is that a crisp set and its complement are completely dissimilar.

The value of the approaching degree in the previous example should be intuitive.
Since each set is the crisp complement of the other, they should be considered distinctly
different patterns, i.e., there is no overlap. The inner product being zero and the outer
product being unity confirm this mathematically. Conversely, if we assume fuzzy set B∼ to
be identical to A∼ , i.e., B∼ = A∼ , then we would find that the inner product equals 1 and the
outer product equals 0 and the approaching degree (Eqs. (11.55)) would equal unity. The
reader is asked to confirm this (see Problem 11.18). This proof simply reinforces the notion
that a set is most similar to itself.
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Example 11.18 [Ross, 1995]. Suppose we have a one-dimensional universe on the real line,
X = [−∞, ∞]; and we define two fuzzy sets having normal, Gaussian membership functions,
A∼, B∼, which are defined mathematically as

µA∼
(x) = exp

[−(x − a)2

σ 2
a

]
µB∼

(x) = exp

[−(x − b)2

σ 2
b

]

and shown graphically in Fig. 11.9. It can be shown that the inner product of the two fuzzy sets
is equal to

A∼ • B∼ = exp

[−(a − b)2

(σa + σb)2

]
= µA∼

(x0) = µB∼
(x0)

where x0 = σa · b + σb · a
σa + σb

and that the outer product is calculated to be A∼ ⊕ B∼ = 0. Hence, the values of Eqs. (11.53)
and (11.54) are

(A∼, B∼)1 = exp

[−(a − b)2

(σa + σb)2

]
∧ 1 and (A∼, B∼)2 = 1

2

{
exp

[−(a − b)2

(σa + σb)2

]
+ 1

}

The preceding material has presented some examples in which a new data sample
is compared to a single known pattern. In the usual pattern recognition problem we are
interested in comparing a data sample to a number of known patterns. Suppose we have a
collection of m patterns, each represented by a fuzzy set, A∼ i , where i = 1, 2, . . . , m, and a
sample pattern B∼, all defined on universe X. Then the question is: Which known pattern A∼ i

does data sample B∼ most closely resemble? A useful metric that has appeared in the literature
is to compare the data sample to each of the known patterns in a pairwise fashion, determine
the approaching degree value for each of these pairwise comparisons, then select the pair
with the largest approaching degree value as the one governing the pattern recognition
process. The known pattern that is involved in the maximum approaching degree value is
then the pattern the data sample most closely resembles in a maximal sense. This concept
has been termed the maximum approaching degree [Wang, 1983]. Equation (11.56) shows
this concept for m known patterns:

(B∼, A∼ i ) = max{(B∼, A∼1), (B∼, A∼2), . . . , (B∼, A∼m)} (11.56)

Example 11.19 [Ross, 1995]. Suppose you are an earthquake engineering consultant hired
by the state of California to assess earthquake damage in a region just hit by a large earthquake.

σ b

b0

1.0

a x

a
σ 

x0

µ(x)µ

A B~~

FIGURE 11.9
Two Gaussian membership functions.
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Your assessment of damage will be very important to residents of the area because insurance
companies will base their claim payouts on your assessment. You must be as impartial as
possible. From previous historical records you determine that the six categories of the modified
Mercalli intensity (I ) scale (VI) to (XI) are most appropriate for the range of damage to the
buildings in this region. These damage patterns can all be represented by Gaussian membership
functions, A∼ i , i = 1, 2, . . . , 6, of the following form:

µA∼ i
(x) = exp

(−(x − ai)
2

σ 2
a

)

where parameters ai and σi define the shape of each membership function. Your historical
database provides the information shown in Table 11.12 for the parameters for the six regions.

You determine via inspection that the pattern of damage to buildings in a given location
is represented by a fuzzy set B∼, with the following characteristics:

µB∼
(x) = exp

(−(x − b)2

σ 2
b

)
; b = 41; σb = 10

The system you now have is shown graphically in Fig. 11.10. You then conduct the fol-
lowing calculations, using the similarity metric from Eq. (11.54) to determine the maximum
approaching degree:

(B∼, A∼1) = 1
2 (0.0004 + 1) ≈ 0.5 (B∼, A∼4) = 0.98

(B∼, A∼2) = 0.67 (B∼, A∼5) = 0.65

(B∼, A∼3) = 0.97 (B∼, A∼6) = 0.5

TABLE 11.12
Parameters for Gaussian membership functions

A∼1, VI A∼2, VII A∼3, VIII A∼4, IX A∼5, X A∼6, XI

ai 5 20 35 49 71 92
σai

3 10 13 26 18 4

5 20 35 49 71 920

1.0
~A1 ~A2 ~A3 ~A4 ~A5 ~A6

(x)µ     

x

~B

FIGURE 11.10
Six known patterns and a new fuzzy set data sample.
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5 20 35 49 71 920

1.0
~A1 ~A2 ~A3 ~A4 ~A5 ~A6

(x)µ     

x

~B

x0

FIGURE 11.11
Six known patterns and a new singleton data sample.

From this list we see that Mercalli intensity IX (A∼4) most closely resembles the damaged area
because of the maximum membership value of 0.98.

Suppose you assume the membership function of the damaged region to be a simple
singleton with the following characteristics:

µB∼
(41) = 1 and µB∼

(x �= 41) = 0 x0 = 41

as shown in Fig. 11.11. This example reduces to the single data sample problem posed earlier,
i.e.,

(B∼, A∼ i ) = µA∼ i
(x0) ∧ 1 = µA∼ i

(x0)

Your calculations, again using Eq. (11.54), produce the following results:

µA∼1(41) ≈ 0 µA∼4(41) = .91

µA∼2(41) = 0.01 µA∼5(41) = 0.06

µA∼3(41) = 0.81 µA∼6(41) ≈ 0

Again, Mercalli scale IX (A∼4) would be chosen on the basis of maximum membership (0.91).
If we were to make the selection without regard to the shapes of the membership values, as
shown in Fig. 11.11, but instead only considered the mean value of each region, we would be
inclined erroneously to select region VIII because its mean value of 35 is closer to the singleton
at 41 than it is to the mean value of region IX, i.e., to 49.

MULTIFEATURE PATTERN RECOGNITION

In the material covered so far in this chapter we have considered only one-dimensional
pattern recognition; that is, the patterns here have been constructed based only on a
single feature, such as Mercalli earthquake intensity. Suppose the preceding example on
earthquake damage also considered, in addition to earthquake intensity, the importance of
the particular building (schools versus industrial plants), seismicity of the region, previous
history of damaging quakes, and so forth. How could we address the consideration of many
features in the pattern recognition process? The literature develops many answers to this
question, but this text summarizes three popular and easy approaches: (1) nearest neighbor
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classifier, (2) nearest center classifier, and (3) weighted approaching degree. The first two
methods are restricted to the recognition of crisp singleton data samples.

In the nearest neighbor classifier we can consider m features for each data sample.
So each sample (x∼i) is a vector of features,

x∼i = {xi1, xi2, xi3, . . . , xim} (11.57)

Now suppose we have n data samples in a universe, or X = {x1, x2, x3, . . . , xn}.
Using a conventional fuzzy classification approach, we can cluster the samples into c-fuzzy
partitions, then get c-hard partitions from these by using the equivalent relations idea or by
‘‘hardening’’ the soft partition U∼ , both of which were described in Part I of this chapter.
This would result in hard classes with the following properties:

X =
c⋃

i=1

Ai Ai ∩ Aj = ∅ i �= j

Now if we have a new singleton data sample, say x, then the nearest neighbor classifier is
given by the following distance measure, d:

d(x, xi ) = min
1≤k≤n

{d(x, xk)} (11.58)

for each of the n data samples where xi ∈ Aj . That is, points x and xi are nearest neighbors,
and hence both would belong to the same class.

In another method for singleton recognition, the nearest center classifier method works
as follows. We again start with n known data samples, X = {x1, x2, x3, . . . , xn}, and each
data sample is m-dimensional (characterized by m features). We then cluster these samples
into c-classes using a fuzzy classification method such as the fuzzy c-means approach
described in Part I of this chapter. These fuzzy classes each have a class center, so

V = {v1, v2, v3, . . . , vc}
is a vector of the c class centers. If we have a new singleton data sample, say x, the nearest
center classifier is then given by

d(x, vi ) = min
1≤k≤c

{d(x, vk)} (11.59)

and now the data singleton, x, is classified as belonging to fuzzy partition, A∼ i .
In the third method for addressing multifeature pattern recognition for a sample with

several (m) fuzzy features, we will use the approaching degree concept again to compare the
new data pattern with some known data patterns. Define a new data sample characterized
by m features as a collection of noninteractive fuzzy sets, B∼ = {B∼1, B∼2, . . . , B∼m}. Because
the new data sample is characterized by m features, each of the known patterns, A∼ i , is also
described by m features. Hence, each known pattern in m-dimensional space is a fuzzy
class (pattern) given by A∼ i = {A∼ i1, A∼ i2, . . . , A∼ im}, where i = 1, 2, . . . , c describes c-classes
(c-patterns). Since some of the features may be more important than others in the pattern
recognition process, we introduce normalized weighting factors wj , where

m∑
j=1

wj = 1 (11.60)
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Then either Eq. (11.53) or (11.54) in the approaching degree concept is modified for
each of the known c-patterns (i = 1, 2, . . . , c) by

(B∼, A∼ i ) =
m∑

j=1

wj

(
B∼j , A∼ ij

)
(11.61)

As before in the maximum approaching degree, sample B∼ is closest to pattern A∼ j when

(B∼, A∼ j ) = max
1≤i≤c

{(B∼, A∼ i )} (11.62)

Note that when the collection of fuzzy sets B∼ = {B∼1, B∼2, . . . , B∼m} reduces to a
collection of crisp singletons, i.e., B∼ = {x1, x2, . . . , xm}, then Eq. (11.61) reduces to

µA∼ i
(x) =

m∑
j=1

wj · µA∼ ij
(xj ) (11.63)

As before in the maximum approaching degree, sample singleton, x, is closest to pattern A∼ j

when Eq. (11.62) reduces to
µA∼

(x) = max
1≤i≤c

{µA∼ i
(x)} (11.64)

Example 11.20. An example of multifeature pattern recognition is given where m = 2; the
patterns can be illustrated in 3D images. Suppose we have a new pattern, B∼, that we wish to
recognize by comparing it to other known patterns. This new pattern is characterized by two
features; hence, it can be represented by a vector of its two noninteractive projections, B∼1 and
B∼2. That is,

B∼ =
{

B∼1, B∼2

}

where the noninteractive patterns B∼1 and B∼2 are defined on their respective universes of
discourse, X1 and X2. The two projections together (using Eqs. (2.35)) produce a 3D pattern in
the shape of a pyramid, as shown in Fig. 11.12.

Further suppose that we have two (c = 2) patterns to which we wish to compare our
new pattern; call them patterns A∼1 and A∼2. Each of these two known patterns could also

1
2

3 4
5

0
1

2
3

4

x1
1.0

x2

B(x1, x2)µ              
~

B1~

B2~

B~

FIGURE 11.12
New pattern B and its noninteractive projections, B∼1 and B∼2.
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1.0
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A1
(x1, x2)µ              

~

A11~

A1 = {~ A11,~        A12}        ~

A12~
A1~

(a)

0
1
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3

4

x11.0
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A2
(x1, x2)µ              

~
A21~

A2 = {~ A21,~        A22}        ~

A22~

A2~
(b)

1
2

3 4 5

FIGURE 11.13
Multifeature pattern recognition: (a) known pattern A∼1 and its noninteractive projections, A∼11

and A∼12; (b) known pattern A∼2 and its noninteractive projections, A∼21 and A∼22.

be represented by their respective noninteractive projections, as shown in Figs. 11.13a and
11.13b, where the projections of each known pattern are also defined on X1 and X2.

The last step in this process is to assign weights to the various known patterns. Let us
assume that w1 = 0.3 and w2 = 0.7, since 0.3 + 0.7 = 1 by Eq. (11.60). We compare the new
pattern with the two known patterns using Eq. (11.61),

(
B∼, A∼1

)
= w1

(
B∼1, A∼11

)
+ w2

(
B∼2, A∼12

)
(

B∼, A∼2

)
= w1

(
B∼1, A∼21

)
+ w2

(
B∼2, A∼22

)
where each of the operations in the preceding expressions is determined using the method of
the approaching degree as described in Eqs. (11.53) or (11.54) for the zth pattern, i.e.,

(
B∼, A∼z

)
=
[(

B∼ • A∼z

)
∧ (B∼ ⊕ A∼z)

]
or

(
B∼, A∼z

)
= 1

2

[(
B∼ • A∼z

)
+
(

B∼ ⊕ A∼z

)]
Then we assign the new pattern to the known pattern most closely resembling the new pattern
using Eq. (11.62), i.e.,

(
B∼, A∼z

)
= max

{(
B∼, A∼1

)
,
(

B∼, A∼2

)}
The remainder of this example is left as an exercise for the reader.
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Although it is not possible to sketch the membership functions for problems dealing
with three or more features, the procedures outlined for multifeature pattern recognition
work just as they did with the previous example. The following example in chemical
engineering illustrates the multidimensional issues of Eqs. (11.60) to (11.64).

Example 11.21. A certain industrial production process can be characterized by three features:
(1) pressure, (2) temperature, and (3) flow rate. Combinations of these features are used to
indicate the current mode (pattern) of operation of the production process. Typical linguistic
values for each feature for each mode of operation are defined by the fuzzy sets given in
Table 11.13. The pattern recognition task is described as follows: the system reads sensor
indicators of each feature (pressure, temperature, flow rate), manifested as crisp read-out
values; it then determines the current mode of operation (i.e., it attempts to recognize a pattern
of operation), and then the results are logged.

The four modes (patterns) of operation, and their associated linguistic values for each
feature, are as follows:

1. Autoclaving: Here the pressure is high, temperature is high, and the flow rate is zero.
2. Annealing: Here the pressure is high, temperature is low, and the flow rate is zero.
3. Sintering: Here the pressure is low, temperature is zero, and the flow rate is low.
4. Transport: Here the pressure is zero, temperature is zero, and the flow rate is high.

This linguistic information is summarized in Table 11.13.
The features of pressure, temperature, and flow rate are expressed in the engineering

units of kPa (kilopascals), ◦C (degrees Celsius), and gph (gallons per hour), respectively.
Membership functions for these three features are shown in Figs. 11.14–11.16.

Now, suppose the system reads from a group of sensors a set of crisp readings
(pressure = 5 kPa, temperature = 150◦C, flow = 5 gph). We want to assign (recognize) this

TABLE 11.13
Relationships between operation mode and feature values

Mode (pattern) Pressure Temperature Flow rate

Autoclaving High High Zero
Annealing High Low Zero
Sintering Low Zero Low
Transport Zero Zero High

2 4 6 8

Low High1.0

µ

Zero

Pressure (kPa)

0

FIGURE 11.14
Membership functions for pressure.
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µ

Zero

Temperature (°C)

0

FIGURE 11.15
Membership functions for temperature.

20 40 60 80

Low High1.0

µ

Zero

Flow rate (gph)

100

FIGURE 11.16
Membership functions for flow rate.

group of sensor readings to one of our four patterns (modes of operation). To begin, we need
to assign weights to each of the features using Eq. (11.60). Since there is an explosion hazard
associated with the production pressure value (5 kPa), we will weight it more heavily than the
other two features:

wpressure = 0.5

wtemperature = 0.25

wflow = 0.25

Now we will use Eqs. (11.63) and (11.64) to employ the approaching degree to find
which mode of operation is indicated by the above crisp values (5 kPa, 150◦C, 5 gph). Using
Eq. (11.63) and these two expressions,

X = {5 kPa, 150◦C, 5 gph}
W = {0.5, 0.25, 0.25}

we find that

µautoclaving(x) = (0.5) · (0.25) + (0.25) · (0) + (0.25) · (0.5) = 0.25

µannealing(x) = (0.5) · (0.25) + (0.25) · (0.75) + (0.25) · (0.5) = 0.4375

µsintering(x) = (0.5) · (0.75) + (0.25) · (0.25) + (0.25) · (0.5) = 0.5625

µtransport(x) = (0.5) · (0) + (0.25) · (0.25) + (0.25) · (0) = 0.0625
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The crisp set, X = {5 kPa, 150◦C, 5 gph}, most closely matches the values of pressure,
temperature, and flow associated with sintering. Therefore, we write the production mode
‘‘sintering’’ in the logbook as the current production mode indicated by crisp readings from
our three sensors.

Now suppose for this industrial process we use the same patterns (autoclaving, annealing,
etc.). Suppose now that the readings or information on pressure, temperature, and flow are
fuzzy sets rather than crisp singletons, i.e., B∼ = {B∼pressure, B∼ temperature, B∼flow}.

These fuzzy sets are defined in Figs. 11.17–11.19. Given these fuzzy definitions for our
new pattern B∼, we use Eq. (11.62) to find which pattern is best matched by the new values B∼.

0

1.0

µ

Pressure (kPa)

Bpressure~           

1 2 3

FIGURE 11.17
Fuzzy sensor reading for pressure.

0

1.0

µ

Temperature (°C)

Btemperature~                

700100 300 500

FIGURE 11.18
Fuzzy sensor reading for temperature.

0

1.0

µ

Flow rate (gph)

10 30 4020

Bflow~

FIGURE 11.19
Fuzzy sensor reading for flow rate.
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For the approaching degree between our new pattern’s pressure feature and the stored
autoclaving pattern’s pressure feature we get

B∼pressure • autoclaving pressure = 0(max of mins)

B∼pressure ⊕ autoclaving pressure = 0(min of maxes)

as summarized in Fig. 11.20.
For the approaching degree between our new pattern’s temperature feature and the stored

autoclaving pattern’s temperature feature we get

B∼ temperature • autoclaving temperature = max[(0 ∧ 0), (0 ∧ 0.5), (0.166 ∧ 1),

(0.33 ∧ 0.5), (0 ∧ 0.5)] = 0.33

B∼ temperature ⊕ autoclaving temperature = min[(0 ∨ 0), (0 ∨ 0.5), (0.166 ∨ 1),

(0.33 ∨ 0.5), (0 ∨ 0.5)] = 0

as summarized in Fig. 11.21.
For the approaching degree between our new pattern’s flow rate feature and the stored

autoclaving pattern’s flow rate feature we get

B∼flow • autoclaving flow = max[(1 ∧ 1), (0 ∧ 0.5), (0 ∧ 0)] = 1.0

B∼flow ⊕ autoclaving flow = min[(1 ∨ 1), (0 ∨ 0.5), (0 ∨ 0)] = 0

as summarized in Fig. 11.22.

0

1.0

µ

Pressure (kPa)

71 3 5

Bpressure~           Autoclaving pressure

FIGURE 11.20
Pressure comparisons for autoclaving pattern.

0

1.0

µ

Temperature (°C)

700100 300 500

Autoclaving temperatureBtemperature~                

FIGURE 11.21
Temperature comparisons for autoclaving pattern.
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0

1.0

µ

Flow rate (gph)

7010 30 50

Autoclaving flow

Bflow~      

FIGURE 11.22
Flow rate comparisons for autoclaving pattern.
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Pressure (kPa)
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Bpressure~           Annealing pressure

FIGURE 11.23
Pressure comparisons for annealing pattern.

Now the use of Eqs. (11.54) and (11.61) enables us to calculate the approaching degree
value between the new sensor pattern and the autoclaving pattern:

(B∼, autoclaving) = 0.5
[

1
2 (0 + 1)

]+ 0.25
[

1
2 (0.33 + 1.0)

]+ 0.25
[

1
2 (1 + 1)

]
= (0.5)(0.5) + (0.25)(0.66) + (0.25)(1) = 0.665

For the next possible pattern, annealing, we again use Eq. (11.62) to determine the
approaching degree between the new sensor pressure and the annealing pressure. Because they
are disjoint,

B∼pressure • annealing pressure = 0

B∼pressure ⊕ annealing pressure = 0

as summarized in Fig. 11.23.
The approaching degree between the new sensor temperature and the annealing temper-

ature is given by
B∼ temperature • annealing temperature = 0.75

by inspection of max of mins, and

B∼ temperature ⊕ annealing temperature

= min[(0 ∨ 0), (0 ∨ 0.5), (0.5 ∨ 1), (1 ∨ 0.5), (0.5 ∨ 0), (0 ∨ 0)] = 0

as summarized in Fig. 11.24.
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FIGURE 11.24
Temperature comparisons for annealing pattern.

The approaching degree between the new sensor flow rate and the annealing flow rate is
given by

B∼flow • annealing flow = 1

B∼flow ⊕ annealing flow = 0

(identical to B∼flow and autoclaving flow).
Again using Eqs. (11.54) and (11.61), we get the approaching degree value for the

annealing pattern,

(B, annealing∼ ) = 0.5[ 1
2 (0 + 1)] + 0.25[ 1

2 (0.75 + 1)] + 0.25[ 1
2 (1 + 1)]

= (0.5)(0.5) + (0.25)(0.87) + (0.25)(1) = 0.7175

Now moving to the next pattern, sintering, we again use Eq. (11.62) for each of the
features. The first is pressure:

B∼pressure • sintering pressure ≈ 0.6

by inspection of max (mins), and

B∼pressure ⊕ sintering pressure

= min[(0 ∨ 0), (0 ∨ 0.25), (1 ∨ 0.5), (0 ∨ 0.75), (0 ∨ 1), . . .] = 0

as summarized in Fig. 11.25.
Next is temperature:

B∼ temperature • sintering temperature = 0.25

by inspection of max (mins), and

B∼ temperature ⊕ sintering temperature = min[(0 ∨ 1), (0 ∨ 0.5), (0.5 ∨ 0),

(1 ∨ 0), (0.5 ∨ 0), (0 ∨ 0)] = 0

as summarized in Fig. 11.26.



410 FUZZY CLASSIFICATION AND PATTERN RECOGNITION

0

1.0

µ

Pressure (kPa)

71 3 5

Bpressure~           Sintering pressure

FIGURE 11.25
Pressure comparisons for sintering pattern.
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FIGURE 11.26
Temperature comparisons for sintering pattern.

Finally we consider the flow rate:

B∼flow • sintering flow = 0.7

by inspection of max (mins), and

B∼flow ⊕ sintering flow = min[(0 ∨ 1), (1 ∨ 0), (0 ∨ 0)] = 0

as summarized in Fig. 11.27.
Using Eqs. (11.54) and (11.61) with the metric from Eq. (11.54), we get

(B∼, sintering) = 0.5[ 1
2 (0.6 + 1)] + 0.25[ 1

2 (0.25 + 1)] + 0.25[ 1
2 (0.7 + 1)]

= (0.5)(0.8) + (0.25)(0.625) + (0.25)(0.85) = 0.7687

Finally we consider the last pattern, the transport mode of operation. Using Eq. (11.62)
for each feature, we begin first with pressure:

B∼pressure • transport pressure ≈ 0.7

by inspection of max (mins), and

B∼pressure ⊕ transport pressure = min[(0 ∨ 1), (0 ∨ 0.75), (1 ∨ 0.5), (0.25 ∨ 0), (0 ∨ 0)] = 0

as summarized in Fig. 11.28.
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FIGURE 11.27
Flow rate comparisons for sintering pattern.
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FIGURE 11.28
Pressure comparisons for transport pattern.
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FIGURE 11.29
Temperature comparisons for transport pattern.

Then, moving to temperature:

B∼ temperature • transport temperature = 0.25

B∼ temperature ⊕ transport temperature = 0

as summarized in Fig. 11.29. And last, moving to flow rate:

B∼flow • transport flow = 0.1

B∼flow ⊕ transport flow = 0

as summarized in Fig. 11.30.
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FIGURE 11.30
Flow rate comparisons for transport pattern.

To conclude the calculations using the approaching degree on the last pattern of transport,
Eqs. (11.54) and (11.61) are used to determine

(B∼, transport) = 0.5 [ 1
2 (0.7 + 1)] + 0.25 [ 1

2 (0.25 + 1)] + 0.25 [ 1
2 (0.1 + 1)]

= (0.5)(0.85) + (0.25)(0.625) + (0.25)(0.55) = 0.7188

Summarizing the results for the four possible patterns, we have

(B∼, autoclaving) = 0.665

(B∼, annealing) = 0.7175

(B∼, sintering) = 0.7687 (max is here)

(B∼, transport) = 0.7188

The fuzzy readings of pressure, temperature, and flow collectively match most closely, in
an approaching degree sense, the sintering pattern. We therefore write the production mode
‘‘sintering’’ in our log.

IMAGE PROCESSING

An image (having various shades of gray) is represented mathematically by a spatial
brightness function f (m, n) where (m, n) denotes the spatial coordinate of a point in the
(flat) image. The value of f (m, n), 0 < f (m, n) < ∞, is proportional to the brightness
value or gray level of the image at the point (m, n). For computer processing, the continuous
function f (m, n) has been discretized both in spatial coordinates and in brightness. Such
an approximated image X(digitized) can be considered as an M × N array,

X = f (m, n) =




x11 x12 · · · x1n · · · x1N

x21 x22 · · · x2n · · · x2N

x31 x32 · · · x3n · · · x3N

...
... · · · ... · · · ...

xM1 xM2 · · · xMn · · · xMN


 (11.65)
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whose row and column indices identify a point (m, n) in the image, and the corresponding
matrix element value xmn[∼ f (m, n)] denotes the gray level at that point.

The right side of Eq. (11.65) represents what is called a digital image. Each element of
the matrix, which is a discrete quantity, is referred to as an image element, picture element,
pixel, or pel, with the last two names commonly used as abbreviations of picture element.
From now on the terms image and pixels will be used to denote a digital image and its
elements, respectively. For the purpose of processing, this image along with the coordinates
of its pixels is stored in the computer in the form of an M × N array of numbers.

The methods so far developed for image processing may be categorized into two broad
classes, namely, frequency domain methods and spatial domain methods. The techniques in
the first category depend on modifying the Fourier transform of an image by transforming
pixel intensity to pixel frequency, whereas in spatial domain methods the direct manipulation
of the pixel is adopted. Some fairly simple and yet powerful processing approaches are
formulated in the spatial domain.

In frequency domain methods, processing is done with various kinds of frequency
filters. For example, low frequencies are associated with uniformly gray areas, and high
frequencies are associated with regions where there are abrupt changes in pixel brightness.
In the spatial domain methods pixel intensities can be modified independently of pixel
location, or they can be modified according to their neighboring pixel intensities. Examples
of these methods include (1) contrast stretching, where the range of pixel intensities is
enlarged to accommodate a larger range of values, (2) image smoothing, where ‘‘salt and
pepper’’ noise is removed from the image, and (3) image sharpening, which involves edge
or contour detection and extraction.

Although many of the crisp methods for image processing have a good physical and
theoretical basis, they often correlate poorly with the recognition of an image judged by a
human because the human visual system does not process the image in a point-by-point
fashion. When pattern recognition becomes indeterminate because the underlying variability
is vague and imprecise, fuzzy methods can be very useful. A good example of this is the
recognition of human speech. Speech carries information regarding the message and the
speaker’s sex, age, health, and mind; hence it is to a large extent fuzzy in nature. Similarly,
an image carries significant fuzzy information. With this in mind we could consider an
image as an array of fuzzy singletons, each with a value of membership function denoting
the degree of brightness, or ‘‘grayness.’’

Before one is able to conduct meaningful pattern recognition exercises with images,
one may need to preprocess the image to achieve the best image possible for the recognition
process. The original image might be polluted with considerable noise, which would make
the recognition process difficult. Processing, reducing, or eliminating this noise will be a
useful step in the process. An image can be thought of as an ordered array of pixels, each
characterized by gray tone. These levels might vary from a state of no brightness, or com-
pletely black, to a state of complete brightness, or totally white. Gray tone levels in between
these two extremes would get increasingly lighter as we go from black to white. Various
preprocessing techniques such as contrast enhancement, filtering, edge detection, ambiguity
measure, segmentation, and others are described in the literature [Pal and Majumder, 1986].
For this chapter we will introduce only contrast enhancement using fuzzy procedures.

An image X of M × N dimensions can be considered as an array of fuzzy sin-
gletons, each with a value of membership denoting the degree of brightness level
p, p = 0, 1, 2, . . . , P − 1 (e.g., a range of densities from p = 0 to p = 255), or some
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relative pixel density. Using the notation of fuzzy sets, we can then write Eq. (11.65) as

X =




µ11/x11 µ12/x12 · · · µ1n/x1n · · · µ1N/x1N

µ21/x21 µ22/x22 · · · µ2n/x2n · · · µ2N/x2N

µ31/x31 µ32/x32 · · · µ3n/x3n · · · µ3N/x3N

...
... · · · ... · · · ...

µM1/xM1 µM2/xM2 · · · µMn/xMn · · · µMN/xMN


 (11.66)

where m = 1, 2, . . . , M and n = 1, 2, . . . , N , and where µmn/xmn (0 ≤ µmn ≤ 1) represents
the grade of possessing some property µmn by the (m, n)th pixel xmn. This fuzzy property
µmn may be defined in a number of ways with respect to any brightness level (pixel density)
depending on the problem.

Contrast within an image is the measure of difference between the gray levels in an
image. The greater the contrast, the greater is the distinction between gray levels in the
image. Images of high contrast have either all black or all white regions; there is very
little gray in the image. Low-contrast images have lots of similar gray levels in the image,
and very few black or white regions. High-contrast images can be thought of as crisp, and
low-contrast ones as completely fuzzy. Images with good gradation of grays between black
and white are usually the best images for purposes of recognition by humans. Heretofore,
computers have worked best with images that have had high contrast, although algorithms
based on fuzzy sets have been successful with both.

The object of contrast enhancement is to process a given image so that the result is
more suitable than the original for a specific application in pattern recognition. As with all
image processing techniques we have to be especially careful that the processed image is
not distinctly different from the original image, making the identification process worthless.
The technique used here makes use of modifications to the brightness membership value
in stretching or contracting the contrast of an image. Many contrast enhancement methods
work as shown in Fig. 11.31, where the procedure involves a primary enhancement of an
image, denoted by E1 in the figure, followed by a smoothing algorithm, denoted by S, and
a subsequent final enhancement, step E2. The fuzzy operator defined in Eq. (5.31), called
intensification, is often used as a tool to accomplish the primary and final enhancement
phases shown in Fig. 11.31.

The function of the smoothing portion of this method (the S block in Fig. 11.31) is
to blur (make more fuzzy) the image, and this increased blurriness then requires the use
of the final enhancement step, E2. Smoothing is based on the property that adjacent image
points (points that are close spatially) tend to possess nearly equal gray levels. Generally,
smoothing algorithms distribute a portion of the intensity of one pixel in the image to
adjacent pixels. This distribution is greatest for pixels nearest to the pixel being smoothed,
and it decreases for pixels farther from the pixel being smoothed.

The contrast intensification operator, Eq. (5.31), on a fuzzy set A∼ generates another
fuzzy set, A∼

′ = INT (A∼), in which the fuzziness is reduced by increasing the values of

E1In S E2 Out

FIGURE 11.31
Diagram of the enhancement model [adapted from Pal and Majumder, 1986].
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µA∼
(x) that are greater than 0.5 and by decreasing the values of µA∼

(x) that are less than
0.5 [Pal and King, 1980]. If we define this transformation T1, we can define T1 for the
membership values of brightness for an image as

T1(µmn) = T′
1(µmn) = 2µ2

mn 0 ≤ µmn ≤ 0.5

= T′′
1(µmn) = 1 − 2(1 − µmn)

2 0.5 ≤ µmn ≤ 1
(11.67)

In general, each µmn in X may be modified to µ′
mn to enhance the image X in the property

domain by a transformation function, Tr , where

µ′
mn = Tr (µmn) = T′

r (µmn) 0 ≤ µmn ≤ 0.5

= T′′
r (µmn) 0.5 ≤ µmn ≤ 1

(11.68)

and T1(µmn) represents the operator INT as defined in Eq. (5.31). The transformation Tr is
defined as successive applications of T1 by the recursive relation,

Tr (µmn) = T1{Tr−1(µmn)} r = 1, 2, . . . (11.69)

The graphical effect of this recursive transformation for a typical membership function is
shown in Fig. 11.32. As r (i.e., the number of successive applications of the INT function)
increases, the slope of the curve gets steeper. As r approaches infinity, the shape approaches
a crisp (binary) function. The parameter r allows the user to use an appropriate level of
enhancement for domain-specific situations.

Example 11.22. We will demonstrate enhancement of the image shown in Fig. 11.33a. The
dark square image of Fig. 11.33a has a lighter square box in it that is not very apparent because
the shade of the background is very nearly the same as that of the lighter box itself. Table 11.14
shows the 256 gray-scale intensity values of pixels of the 10 × 10 pixel array of the image
shown in Fig. 11.33a. If we take the intensity values from Table 11.15 and scale them on the

Tr''

0

0.5

1

0.5 1

r

r

Tr'

µ    

µ    mn

mn'

FIGURE 11.32
INT transformation function for contrast enhancement [Pal and Majumder, 1986].
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(a) (b)

FIGURE 11.33
Lighter square inside smaller square: (a) original image; (b) image after one application of INT
operator (Eq. (11.67)).

interval [0, 255], we get membership values in the density set white (low values are close
to black, high values close to white). These values, of course, will be between 0 and 1 as
membership values.

Using Eq. (11.67), we modify the pixel values to obtain the matrix shown in Table 11.16.
The reader should notice that the intensity values above and below 0.5 have been suitably
modified to increase the contrast between the intensities. The enhanced image is shown in
Fig. 11.33b. Results of successive enhancements of the image by using Eq. (11.67) repeatedly
are shown in Figs. 11.33c–11.33h.

A useful smoothing algorithm is called defocusing. The (m, n)th smoothed pixel
intensity is found [Pal and King, 1981] from

µ′
mn = a0µmn + a1

∑
Q1

µij + a2

∑
Q2

µij + · · · + as

∑
Qs

µij (11.70)

where

a0 + N1a1 + N2a2 + · · · + Nsas = 1

1 > a1 > a2 · · · as > 0

(i, j) �= (m, n)

In Eq. (11.70), µmn represents the (m, n)th pixel intensity, expressed as a membership
value; Q1 denotes a set of N1 coordinates (i, j) that are on or within a circle of radius R1

centered at the point (m, n); Qs denotes a set of Ns coordinates (i, j) that are on or within a
circle of radius Rs centered at the (m, n)th point but that do not fall into Qs−1; and so on.
For example, Q = {(m, n + 1), (m, n − 1), (m + 1, n), (m − 1, n)} is a set of coordinates
that are on or within a circle of unit radius from a point (m, n). Hence, in this smoothing
algorithm, a part of the intensity of the (m, n)th pixel is being distributed to its neighbors.
The amount of energy distributed to a neighboring point decreases as its distance from the
(m, n)th pixel increases. The parameter a0 represents the fraction retained by a pixel after
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(c) (d)

(e) ( f )

(g) (h)

FIGURE 11.33
(Continued) Lighter square inside smaller square: (c)–(h) successive applications of INT
operator on original image (a).
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TABLE 11.14
Gray-scale intensity values of pixels in a 10 × 10 pixel array of the image shown in
Fig. 11.33a

77 89 77 64 77 71 99 56 51 38
77 122 125 125 125 122 117 115 51 26
97 115 140 135 133 153 166 112 56 31
82 112 145 130 150 166 166 107 74 23
84 107 140 138 135 158 158 120 71 18
77 110 143 148 153 145 148 122 77 13
79 102 99 102 97 94 92 115 77 18
71 77 74 77 71 64 77 89 51 20
64 64 48 51 51 38 51 31 26 18
51 38 26 26 31 13 26 26 26 13

TABLE 11.15
Scaled matrix of the intensity values in Table 11.14

0.30 0.35 0.30 0.25 0.30 0.28 0.39 0.22 0.20 0.15
0.30 0.48 0.49 0.49 0.49 0.48 0.46 0.45 0.20 0.10
0.38 0.45 0.55 0.53 0.52 0.60 0.65 0.44 0.22 0.12
0.32 0.44 0.57 0.51 0.59 0.65 0.65 0.42 0.29 0.09
0.33 0.42 0.55 0.54 0.53 0.62 0.62 0.47 0.28 0.07
0.30 0.43 0.56 0.58 0.60 0.57 0.58 0.48 0.30 0.05
0.31 0.40 0.39 0.40 0.38 0.37 0.36 0.45 0.30 0.07
0.28 0.30 0.29 0.30 0.28 0.25 0.30 0.35 0.20 0.08
0.25 0.25 0.19 0.20 0.20 0.15 0.20 0.12 0.10 0.07
0.20 0.15 0.10 0.10 0.12 0.05 0.10 0.10 0.10 0.05

TABLE 11.16
Intensity matrix after applying the enhancement algorithm

0.18 0.24 0.18 0.12 0.18 0.16 0.30 0.10 0.08 0.05
0.18 0.46 0.48 0.48 0.48 0.46 0.42 0.40 0.08 0.02
0.29 0.40 0.60 0.56 0.54 0.68 0.75 0.39 0.10 0.03
0.20 0.39 0.63 0.52 0.66 0.75 0.75 0.35 0.17 0.02
0.22 0.35 0.60 0.58 0.56 0.71 0.71 0.44 0.16 0.01
0.18 0.37 0.61 0.65 0.68 0.63 0.65 0.46 0.18 0.01
0.19 0.32 0.30 0.32 0.29 0.27 0.26 0.40 0.18 0.01
0.16 0.18 0.17 0.18 0.16 0.12 0.18 0.24 0.08 0.01
0.12 0.12 0.07 0.08 0.08 0.05 0.08 0.03 0.02 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

distribution of part of its energy (intensity) to its neighbors. The set of coefficients ai is
important in the algorithm, and specific values are problem-dependent.

Example 11.23. The final enhanced image in Example 11.22 is used here with some random
‘‘salt and pepper’’ noise introduced into it. ‘‘Salt and pepper’’ noise is the occurrence of black
and white pixels scattered randomly throughout the image. In Fig. 11.34, five pixels are shown
to have intensity values different from what they should be (i.e., compared with the image
shown in Fig. 11.33h, for example).
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FIGURE 11.34
Image with five ‘‘salt and pepper’’ noise points.
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FIGURE 11.35
The pixels required around the center pixel to use the smoothing algorithm for
reducing ‘‘salt and pepper’’ noise.

TABLE 11.17
Scaled intensity values (black=0, white=1) for the image shown in
Fig. 11.34

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 1 1 0 1 1 0 1 0
0 0 1 1 1 0 1 0 0 0
0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0

We use the image-smoothing algorithm presented in Eq. (11.70) to reduce the ‘‘salt
and pepper’’ noise. Using a0 = a2 = a3 = a4 = · · · = 0 as the values for the coefficients in
Eq. (11.70) gives us the expression for the intensity (membership value) for a pixel as

µ00 = 1
4 (µ−10 + µ10 + µ01 + µ0−1)

as shown in Fig. 11.35. The expression for µ00 does limit the pixels that can be smoothed. The
pixels along the edges of the image cannot be smoothed, because all the intensity values around
the pixel of interest would not be available. The user should thus be careful when programming
for this algorithm.

To start the algorithm, we begin with the initial pixel values describing the image in
Fig. 11.34. These initial values are presented in a normalized fashion as membership values in
the set white (µ = 0 means the pixel has no membership in white, and complete membership
in the complement of white, or black) as seen in Table 11.17.
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TABLE 11.18
Intensity matrix after smoothing the image once

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.25 0.31 0.33 0.33 0.33 0.08 0.02 0.00
0.00 0.25 0.62 0.73 0.52 0.71 0.51 0.15 0.29 0.00
0.00 0.31 0.73 0.62 0.78 0.62 0.53 0.42 0.18 0.00
0.00 0.33 0.77 0.85 0.66 0.82 0.59 0.25 0.11 0.00
0.00 0.33 0.52 0.59 0.56 0.60 0.30 0.14 0.06 0.00
0.00 0.08 0.15 0.19 0.19 0.20 0.12 0.07 0.03 0.00
0.00 0.27 0.11 0.07 0.07 0.07 0.05 0.28 0.08 0.00
0.00 0.07 0.04 0.03 0.02 0.02 0.27 0.14 0.05 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FIGURE 11.36
Image from Fig. 11.34 after one application of smoothing algorithm.

After one application of the smoothing algorithm, Eq. (11.70), the intensity matrix of
Table 11.17 is modified as shown in Table 11.18, and the associated smoothed image is shown
in Fig. 11.36.

SYNTACTIC RECOGNITION

In many recognition problems structural information plays an important role in describing
the patterns. Some examples include image recognition, fingerprint recognition, chromo-
some analysis, character recognition, scene analysis, etc. In such cases, when the patterns
are complex and the number of possible descriptions is very large, it is impractical to regard
each description as defining a class; rather, description of the patterns in terms of small sets
of simple subpatterns of primitives and grammatical rules derived from formal language
theory becomes necessary [Fu, 1982].

The application of the concepts of formal language theory to structural pattern
recognition problems can be illustrated as follows. Let us consider the simplest case in
which there are two pattern classes, C1 and C2. Let us consider a set of the simplest
subpatterns, in terms of which the patterns of both classes can be described completely.
We call these the primitives. They can be identified with the terminals of formal language
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theory. Accordingly, we denote the set of primitives by VT. Each pattern may then be
looked upon as a string or sentence. Let us suppose we can find grammars G1 and G2

such that the sets of strings generated by them, L(G1) and L(G2), are exactly the same as
those corresponding to pattern classes C1 and C2, respectively. Clearly, then, if a string
corresponding to an unknown pattern is seen to be a member of L(Gi), i = 1, 2, we can
classify the pattern into Ci . Of course, if it is certain that the unknown string can only come
from either of the two classes, then it is sufficient to have just one grammar corresponding
to any one of the two classes, say, C1. In this case, if a string is not from L(G1), it is
automatically assumed to be from C2. The procedure by which one determines whether
a given string is syntactically correct with respect to a given grammar is called syntax
analysis or parsing [Fu, 1982].

Example 11.24 [Pal and Majumder, 1986]. Let us consider a very simple problem in which
we wish to distinguish ‘‘squares’’ from ‘‘rectangles.’’ Obvious primitives for this problem are
horizontal and vertical line segments of unit length, which we denote by a and b, respectively.
Let us suppose for the sake of simplicity that the dimensions of the figures under consideration
are integral multiples of the unit used. Then the two classes can be described as

Csquares = {anbnanbn | n ≥ 1} Crectangles = {ambnambn | m, n ≥ 1, m �= n}
One can easily see that Csquares is the same as L(G), the language generated by a grammar (see
Eq. 11.72)

G = (YN, VT, P, S)

where VN = {S, A, B, C}
VT = {a, b}

P = {Sa, aAb, Sabab, aAbaaAbb, aAbaaBbb, BbCa, bCabbCaa, Cba}
where P is a collection of various concatenations making up squares and rectangles. Therefore,
any pattern for which the corresponding string can be parsed by G is classified as a square.
Otherwise, it is a rectangle.

The foregoing approach has a straightforward generalization for an m-class pattern
recognition problem. Depending on whether or not the m classes exhaust the pattern
space, we choose m − 1 or m grammars. In the first case, we classify a pattern into Ci

if the corresponding string belongs to L(Gi), i = 1, 2, . . . , m − 1. Otherwise, the pattern
is classified into Cm. In the second case, a pattern is identified as coming from Ci ,
i = 1, 2, . . . , m, if the string corresponding to it can be parsed by Gi . If not, the pattern is
reckoned to be noisy and is rejected.

The syntactic (structural) approach, which draws an analogy between the hierarchical
structure of patterns and the syntax of languages, is a powerful method. After identifying
each of the primitives within the pattern, the recognition process is accomplished by
performing a syntax analysis of the ‘‘sentence’’ describing the given pattern. In the
syntactic method, the ability to select and classify the simple pattern primitives and their
relationships represented by the composition operations is the vital means by which a
system is effective. Since the techniques of composition of primitives into patterns are
usually governed by the formal language theory, the approach is often referred to as
a linguistic approach. This learned description is then used to analyze and to produce
syntactic descriptions of unknown patterns.

For the purposes of recognition by computer, the patterns are usually digitized (in
time or in space) to carry out the previously mentioned preprocessing tasks. In the syntax
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analyzer the decision is made whether the pattern representation is syntactically correct.
If the pattern is not syntactically correct, it is either rejected or analyzed on the basis
of other grammars, which presumably represent other possible classes of patterns under
consideration. For the purpose of recognition, the string of primitives of an input pattern is
matched with those of the prototypes representing the classes. The class of the reference
pattern having the best match is decided to be an appropriate category.

In practical situations, most patterns encountered are noisy or distorted. That is,
the string corresponding to a noisy pattern may not be recognized by any of the pattern
grammars, or ambiguity may occur in the sense that patterns belonging to the different
classes may appear to be the same. In light of these observations, the foregoing approach may
seem to have little practical importance. However, efforts have been made to incorporate
features that can help in dealing with noisy patterns. The more noteworthy of them are the
following [Fu, 1982]:

• The use of approximation
• The use of transformational grammars
• The use of similarity and error-correcting parsing
• The use of stochastic grammars
• The use of fuzzy grammars

The first approach proposes to reduce the effect of noise and distortion by approxi-
mation at the preprocessing and primitive extraction stage. The second approach attempts
to define the relation between noisy patterns and their corresponding noise-free patterns by
a transformational grammar. If it is possible to determine such a transformational grammar,
the problem of recognizing noisy or distorted patterns can be transformed into one of
recognizing noise-free patterns. The third approach defines distance measures between two
strings and extends these to define distance measures between a string and a language.

In the stochastic approach, when ambiguity occurs, i.e., when two or more patterns
have the same structural description or when a single (noisy) string is accepted by more
than one pattern grammar, it means that languages describing different classes overlap. The
incorporation of the element of probability into the pattern grammars gives a more realistic
model of such situations and gives rise to the concept of stochastic languages.

One natural way of generating stochastic language from ordinary formal language
is to randomize the productions of the corresponding grammars. This leads to the concept
of stochastic phrase-structure grammars, which are the same as ordinary phrase-structure
grammars except that every production rule has a probability associated with it. Also, if
a pattern grammar is being heuristically constructed, then we can tackle the problem of
‘‘unwanted’’ strings (strings that do not represent patterns in the class) by assigning very
small probabilities to such strings. Reviews of the syntactic methods and their applications
are available in Fu [1982]. The last approach is addressed next.

Formal Grammar

The concept of a grammar was formalized by linguists with a view to finding a means of
obtaining structural descriptions of sentences of a language that could not only recognize but
also generate the language [Fu, 1982; Hopcroft and Ullman, 1969]. Although satisfactory
formal grammars have not been obtained to date for describing the English language, the
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concept of a formal grammar can easily be explained with certain ideas borrowed from
English grammar.

An alphabet or vocabulary is any finite set of symbols. A sentence (or string or word)
over an alphabet is any string of finite length composed of symbols from the alphabet. If V
is an alphabet, then V∗ denotes the set of all sentences composed of symbols of V, including
the empty sentence �. A language is any set of sentences over an alphabet. For example,

If V = {a, b}, then V∗ = {�, a, b, ab, ba, . . .}
and a few examples of languages over V are

L1 = {an, n = 1, 2, . . . denoted as written, or repeated, n times}
L2 = {ambn, m �= n + 1, m, n = 1, 2, . . .}
L3 = {a, b, ab}

and so forth [Pal and Majumder, 1986]. The formal prescription of a language theory is
useful in syntactic recognition from the axiom, ‘‘If there exists a procedure (or algorithm)
for recognizing a language, then there also exists a procedure for generating it.’’

Suppose we want to parse a simple English sentence, ‘‘The athlete jumped high.’’
The rules that one applies to parsing can easily be described as follows:

〈sentence〉 −→ 〈noun phrase〉〈verb phrase〉
〈noun phrase〉 −→ 〈article〉〈noun〉
〈verb phrase〉 −→ 〈verb〉〈adverb〉
〈article〉 −→ The (11.71)

〈noun〉 −→ athlete

〈verb〉 −→ jumped

〈adverb〉 −→ high

where the symbol → denotes ‘‘can be written as.’’ We can now define a formal phrase
grammar, G, as a four-tuple [Pal and Majumder, 1986],

G = (VN, VT, P, S) (11.72)

where VN and VT are the nonterminal and terminal vocabularies of G. Essentially, the
nonterminal vocabularies are the phrases just illustrated and the terminal vocabularies are
the alphabet of the language; in a sense VT is the collection of singletons of the language
(smallest elements) and VN is the collections, or sets, containing the singletons. The symbols
P and S denote the finite set of production rules of the type α → β where α and β are
strings over V = VN ∪ VT, with α having at least one symbol of VN and S ∈ VN is a starting
symbol or a sentence (sentence or object to be recognized). In the preceding example,

VN = {〈sentence〉, 〈noun phrase〉, 〈verb phrase〉, 〈article〉, 〈noun〉, 〈verb〉, 〈adverb〉}
VT = {the, athlete, jumped, high}

P = the set of rules, Eqs. (11.71)

S = 〈sentence〉
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Fuzzy Grammar and Syntactic Recognition

The concept of a formal grammar is often found to be too rigid to handle real patterns, which
are usually distorted or noisy yet still retain underlying structure. When the indeterminacy
of the patterns is due to inherent vagueness rather than randomness, fuzzy language can
be a better tool for describing the ill-defined structural information [see Pal and Majumder,
1986]. In this case, the generative power of a grammar is increased by introducing fuzziness
either in the definition of primitives (labels of the fuzzy sets) or in the physical relations
among primitives (fuzzified production rules), or in both of these. A fuzzy grammar
produces a language that is a fuzzy set of strings with the membership value of each string
denoting the degree of belonging of the string in that language. The grade of membership
of an unknown pattern in a class described by the grammar is obtained using a max–min
composition rule.

Let V∗
T denote the set of finite strings of alphabet VT, including the null string, �. Then,

a fuzzy language (FL) on VT is defined as a fuzzy subset of V∗
T. Thus, FL is the fuzzy set

FL =
∑
x∈V∗

T

µFL(x)

x
(11.73)

where µFL(x) is the grade of membership of the string x in FL. It is further assumed that all
other strings in V∗

T have 0 membership in FL.
For two fuzzy languages FL1 and FL2 the operations of containment, equiva-

lence, union, intersection, and complement follow the same definitions for the resulting
membership as those delineated in Chapter 2.

Informally, a fuzzy grammar may be viewed as a set of rules for generating a fuzzy
subset of V∗

T. A fuzzy grammar FG is a 6-tuple given by

FG = (VN, VT, P, S, J, µ) (11.74)

where, in addition to the definitions given for Eq. (11.71), we have J: {ri | i = 1, 2, . . . n,
and n = cardinality of P}, i.e., the number of production rules, and µ is a mapping µ: J →
[0, 1], such that µ(ri) denotes the membership in P of the rule labeled ri . A fuzzy grammar
generates a fuzzy language L(FG) as follows.

A string x ∈ V∗
T is said to be in L(FG) if and only if it is derivable from S and its

grade of membership µL(FG)(x) in L(FG) is greater than 0, where

µL(FG)(x) = max
1≤k≤m

[
min

1≤k≤lk
µ(rk

i )

]
(11.75)

where m is the number of derivations that x has in FG; lk is the length of the kth derivation
chain, k = 1(1)m; and rk

i is the label of the ith production used in the kth derivation chain,
i = 1, 2, . . . , lk . Clearly if the production rule α → β is visualized as a chain link of strength
µ(r), r being the label of the rule, then the strength of a derivation chain is the strength of
its weakest link, and hence

µL(FG)(x) = strength of the strongest derivation chain for S to x, for all x ∈ V∗
T

Example 11.25 [Pal and Majumder, 1986]. Suppose FG1 = ({A, B, S}, {a, b}, P, S,
{1, 2, 3, 4}, µ), where J, P, and µ are as follows:
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1. S → AB with µ(1) = 0.8
2. S → aSb with µ(2) = 0.2
3. A → a with µ(3) = 1
4. B → b with µ(4) = 1

Then the fuzzy language must be FL1 = {x | x = anbn, n = 1, 2, . . .} with

µFL1(ab) =
{

0.8, if n = 1
0.2, if n ≥ 2

Careful inspection of Rules 1 and 2 shows that Rule 2 can be repeated over and over again,
generating, first, ab (Rule 1), second, aabb (Rule 2 using the new value for S), third, aaabbb,
and so on, recursively, with increasing n.

These grammars, of course, can be used in a wide array of pattern recognition
problems where the alphabets become line segments and the words, or vocabulary, become
geometric shapes as illustrated in the following three examples. The following example
from Pal and Majumder [1986], for a right triangle, illustrates this idea.

Example 11.26 [Pal and Majumder, 1986]. Suppose a fuzzy grammar is given by

FG2 = ({S, A, B}, (a, b, c), P, S, J, µ)

where J, P, and m are as follows:

r1 : S −→ aA with µ(r1) = µH(a)

r2 : A −→ bB with µ(r2) = µV(a)

r3 : B −→ c with µ(r3) = µob(a)

with the primitives a, b, and c being horizontal, vertical, and oblique directed line segments,
respectively, as seen in Fig. 11.37. The membership functions for these line segments are given

a
b

c
d

a

b

b
c

d

d

FIGURE 11.37
Primitive line segments and production of a triangle [Pal and Majumder, 1986].
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x
V

H

θ
FIGURE 11.38
Membership functions for horizontal, vertical, and oblique lines.

here with reference to Fig. 11.38:

µH(θ) = 1 − | tan θ |, µV(θ) = 1 −
∣∣∣∣ 1

tan θ

∣∣∣∣ , and µob(θ) = 1 −
∣∣∣∣θ − 45◦

45◦

∣∣∣∣
From the three rules, the only string generated is x = abc. This string is, of course, a right tri-
angle, as seen in Fig. 11.38, and is formed from the specified sequence in the string abc. In this
syntactic recognition, the primitives (line segments) will be concatenated in the ‘‘head-to-tail’’
style.

Another example for a geometric shape is given in Example 11.27 for a trapezoid.

Example 11.27. Consider a fuzzy grammar

FG = ({S, A, B, C}, {a, b, c, d}, P, S, J, µ)

with

P : r1 : S −→ a + A µ(r1) = µPO(a)

r2 : A −→ b + B µ(r2) = µFH(b)

r3 : B −→ c + C µ(r3) = µNO(c)

r4 : C −→∼ b µ(r4) = µIH(∼ b)

The primitives a, b, c, and ∼b represent positive oblique, forward horizontal, negative oblique,
and inverse horizontal directed line segments, respectively, as in Fig. 11.39.

The fuzzy membership functions for positive oblique (PO), forward horizontal (FH),
negative oblique (NO), and inverse horizontal (IH) are as follows:

µPO =
{

1, 0 ≤ θ ≤ 90◦
0, elsewhere

µNO =
{

1, 90◦ ≤ θ ≤ 180◦
0, elsewhere

µFH = cos θ

µIH = − cos(θ + 90◦
)

where the angle θ is as defined in Fig. 11.40.

b ~b

(a) (b)

a c

FIGURE 11.39
Directed line segments for Example 11.27: (a) primitives; (b) production of trapezoid.
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Vertical

Horizontal

θ

Oblique

FIGURE 11.40
Geometric orientation for membership functions.

Making use of a head–tail type of concatenation, the foregoing fuzzy grammar FG
produces a structure of a trapezoid with the membership function

µL(FG)(x) = min(µPO(a), µFH(b), µNO(c), µIH(∼ b))

where x = a + b + c + (∼b). The structure is shown in Fig. 11.39b. If membership values are
µPO(a) = 1, µFH(b) = 1, µNO(c) = 1, and µIH(∼b) = 0.9, then the membership value of the
trapezoid is

min(1, 1, 1, 0.9) = 0.9

This geometric idea in syntactic recognition can be extended to include other symbols,
such as illustrated in the following example.

Example 11.28. For the syntactic pattern recognition of electrical symbols in an electrical
design diagram such as a resistor, an inductor, and a capacitor, etc., several fuzzy grammars
can be used for each different symbol. An inductor and a resistor can be assigned to the same
fuzzy language. If the fuzzy grammar for this language is called FG1, then FG1 is defined as

FG1 = ({A, S}, {ai}, P, S, {1, 2, 3}, µ)

where J, P, and µ are as follows:

1. S −→ A with µ(1) = 0.15
2. S −→ aiS with µ(2) = 0.85
3. A −→ ai with µ(3) = 1

and ai is a primitive. Suppose a1 (i = 1) represents the primitive (inductor symbol) and
a2 (i = 2) represents the primitive (resistor symbol) . The preceding fuzzy grammar
generates the fuzzy language as

L(FG1) = {x | x = an
i , n = 1, 2, 3, . . .}

Further, if the concatenation of a head–tail type is used for the generation of string x, then
x = an

i infers the pattern of an inductor when i = 1 or a resistor when i = 2. These ideas are
shown in Fig. 11.41. The membership values for these two patterns can be expressed as

a1

a1
3

a2

a2
3

(a)

(b)

FIGURE 11.41
Directed line segments for Example 11.28: (a) primitives
and (b) patterns produced by the primitives.
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TABLE 11.19
The recognition of electrical elements of inductors and resistors

Number a1 a2 Inference of the element

n = 1 0.15 0
n ≥ 2 0.85 0
n = 1 0 0.15
n ≥ 2 0 0.85

1. i = 1, which infers a pattern of an inductor

µL(FG1)(a
n
1 ) =

{
0.15, n = 1
0.85, n ≥ 2

2. i = 2, which infers a pattern of a resistor

µL(FG1)(a
n
2 ) =

{
0.15, n = 1
0.85, n ≥ 2

and these patterns and associated membership values are summarized in Table 11.19.
Another fuzzy grammar FG2 can be developed to recognize the pattern of a capacitor. If

FG2 is expressed in a general form,

FG2 = (VN, VT, P, S, J, µ)

then

VN = {S, R}
VT = {a3, a4} or VT = {a4, a5}

P : S −→ L(a3, a4) or S −→ L(a4, a5)

where ai (i = 3, 4, 5) is a primitive in which a3 represents the symbol ‘‘)’’, a4 represents
the symbol ‘‘|’’, and a5 represents the symbol ‘‘(’’. L(x, y) means ‘‘x is to the right of y.’’
Therefore, the fuzzy language decided by FG2 represents a capacitor in reality. A pattern S that
meets FG2 can be considered a capacitor. Besides, FG2 belongs to a context-free grammar.

If an unknown pattern S has the primitives of a3 and a4, and the membership values for
a3 and a4 are given by

µL(FG2)(a3) = 0.8 µL(FG2)(a4) = 1

then the membership of S representing a capacitor is

µc(S) = min(µL(FG2)(a3), µL(FG2)(a4)) = min(0.8, 1) = 0.8

Similarly, if an unknown pattern S has the primitives of a4 and a5, and the membership values
for a4 and a5 are

µL(FG2)(a4) = 0.9 µL(FG2)(a5) = 0.8

then the membership for S as a capacitor is

µc(S) = min(µL(FG2)(a4), µL(FG2)(a5)) = min(0.9, 0.8) = 0.8

By modification of the fuzzy grammar used for capacitors, FG2 can be used to develop a fuzzy
language for the electrical source (AC, DC) patterns of ~ and . In those cases, VT and P are
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changed to meet requirements of different patterns. In general, for the pattern recognition of an
electrical element, the unknown pattern is first classified into a certain grammar, such as FG1
or FG2, then the recognition is carried out according to different primitives, production rules,
and membership functions.

SUMMARY

The concept of a fuzzy set first arose in the study of problems related to pattern classifica-
tion [Bellman et al., 1966]. Since the recognition and classification of patterns is integral
to human perception, and since these perceptions are fuzzy, this study seems a likely
beginning. This chapter has presented a simple idea in the area of classification involving
equivalence relations and has dealt in depth with a particular form of classification using a
popular clustering method: fuzzy c-means. The objective in clustering is to partition a given
data set into homogeneous clusters; by homogeneous we mean that all points in the same
cluster share similar attributes and they do not share similar attributes with points in other
clusters. However, the separation of clusters and the meaning of similar are fuzzy notions
and can be described as such. One of the first introductions to the clustering of data was in
the area of fuzzy partitions [Ruspini, 1969, 1970, 1973a], where similarity was measured
using membership values. In this case, the classification metric was a function involving
a distance measure that was minimized. Ruspini [1973b] points out that a definite benefit
of fuzzy clustering is that stray points (outliers) or points isolated between clusters (see
Fig. 11.2) may be classified this way; they will have low membership values in the clusters
from which they are isolated. In crisp classification methods these stray points need to
belong to at least one of the clusters, and their membership in the cluster to which they are
assigned is unity; their distance, or the extent of their isolation, cannot be measured by their
membership. These notions of fuzzy classification described in this chapter provide for a
point of departure in the recognition of known patterns, which is the subject of Part II of
this chapter.

This chapter has introduced only the most elementary forms of fuzzy pattern recogni-
tion. A simple similarity metric called the approaching degree (the name is arbitrary; other
pseudonyms are possible) is used to assess ‘‘closeness’’ between a known one-dimensional
element and an unrecognized one-dimensional element. The idea involved in the approach-
ing degree can be extended to higher-dimensional problems, as illustrated in this chapter,
with the use of noninteractive membership functions. The areas of image processing and
syntactic recognition are just briefly introduced to stimulate the reader into some exploratory
thinking about the wealth of other possibilities in both these fields. The references to this
chapter can be explored further to enrich the reader’s background in these, and other pattern
recognition, applications.
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PROBLEMS

Exercises for Equivalence Classification

11.1. A fuzzy tolerance relation, R∼, is reflexive and symmetric. Find the equivalence relation R∼e

and then classify it according to λ-cut levels = {0.9, 0.8, 0.5}.

R∼ =




1 0.8 0 0.2 0.1
0.8 1 0.9 0 0.4
0 0.9 1 0 0.3

0.2 0 0 1 0.5
0.1 0.4 0.3 0.5 1




11.2. In a pattern recognition test, four unknown patterns need to be classified according to three
known patterns (primitives) a, b, and c. The relationship between primitives and unknown
patterns is in the following table:

x1 x2 x3 x4

a 0.6 0.2 0.1 0.8
b 0.3 0.2 0.7 0.1
c 0.1 0.6 0.2 0.1
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If a λ-cut level is 0.5, then into how many classes can these patterns be divided?
Hint: Use a max–min method (see Chapter 3) to first generate a fuzzy similarity relation R∼.

11.3. As a first step in automatic segmentation of magnetic resonance imaging (MRI) data regarding
the head, it is necessary to determine the orientation of a data set to be segmented. The
standard radiological orientations are sagittal, coronal, and horizontal. One way to classify
the orientation of the new data would be to compare a slice of the new data to slices of known
orientation. To do the classification we will use a simple metric obtained by overlaying slice
images and obtaining an area of intersection, then normalizing these, based on the largest area
of intersection. This metric will be our ‘‘degree of resemblance’’ for the equivalence relation.
From data you have the following fuzzy relation:




S C H N

Sagittal 1 0.6 0.4 0.7
Coronal 0.6 1 0.5 0.7

Horizontal 0.4 0.5 1 0.5
New slice 0.7 0.7 0.5 1




(a) What kind of relation is this?
(b) Determine the equivalence relation and conduct a classification at λ-cut levels of 0.4, 0.6,

and 0.7.

Exercises for Fuzzy c-Means
11.4. (Note: This problem will require a computerized form of the c-means algorithm.) Suppose

we conduct a tensile strength test of four kinds of unidentified material. We know from other
sources that the materials are from two different categories. From the yield stress, σy , and
yield strain, 
y , data determine which materials are from the two different categories (see
Fig. P11.4).

1.5 ∆y

σyσ

9.0

FIGURE P11.4

m1 m2 m3 m4

σy 8.9 8.1 7.3 8.3

y 1.4 1.6 1.8 1.9

Determine which values for m′ and εL would give the following results after 25 iterations,
i.e.,

U∼
(25) =

[
0.911 0.824 0.002 0.906
0.089 0.176 0.998 0.094

]
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and final cluster centers of

v1 = {8.458 1.634} v2 = {7.346 1.792}
11.5. A problem in construction management is to allocate four different job sites to two different

construction teams such that the time wasted in shuttling between the sites is minimized. Let
the job sites be designated as xi and combined to give a universe, X = {x1, x2, x3, x4}. If the
head office, where the construction teams start every day, has coordinates {0, 0}, the following
vectors give the locations of the four job sites:

x1 = {4, 5}
x2 = {3, 4}
x3 = {8, 10}
x4 = {9, 12}

Conduct a fuzzy c-means calculation to determine the optimum partition, U∼
∗. Start with the

following initial 2-partition:

U∼
(0) =

{
1 1 0 0
0 0 1 1

}

(Use m′ = 2.0 and εL ≤ 0.01.)
11.6. A radar image of a vehicle is a mapping of the bright (most reflective) parts of it. Suppose we

have a radar image that we know contains two vehicles parked close together. The threshold
on the instrument has been set such that the image contains seven bright dots. We wish to
classify the dots as belonging to one or the other vehicle with a fuzzy membership before we
conduct a recognition of the vehicle type. The seven bright dots are arranged in a matrix X,
and we seek to find an optimum membership matrix U∼

∗. The features defining each of the
seven dots are given here:

2 9 9 5 8 5 6
7 3 5 6 8 10 4

Start the calculation with the following initial 2-partition:

U∼
0 =

[
0 0 0 0 0 0 1
1 1 1 1 1 1 0

]

Find the converged optimal 2-partition. (Use m′ = 2.0 and εL ≤ 0.01.)
11.7. In a magnetoencephalography (MEG) experiment, we attempt to partition the space of dipole

model order versus reduced chi-square value for the dipole fit. This could be useful to an MEG
researcher in determining any trends in his or her data-fitting procedures. Typical ranges for
these parameters would be as follows:

Dipole model order = (1, 2, . . . , 6) = x1i

Reduced χ2 ∈ (1, 3) = x2i

Suppose we have three MEG data points, xi = (x1i , x2i ), i = 1, 2, 3, to classify into two
classes. The data are

x1 = (2, 1.5) x2 = (3, 2.2) x3 = (4, 2)
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Find the optimum fuzzy 2-partition using the following initial partition:

U∼
(0) =

[
1 0 0
0 1 1

]

(Use m′ = 2.0 and εL ≤ 0.01.)
11.8. Suppose we want to sample a complex signal from a demodulator circuit and classify it into

two sets, A∅ or A1. The sample points are x1 = (−3, 1), x2 = (−2, 2), x3 = (−1, 1.5), and
x4 = (1, 2) as shown in Fig. P11.8. If the first row of your initial 2-partition is [1 0 0 0], find
the fuzzy 2-partition after three iterations, i.e., find U∼

(3). (Use m′ = 2.0 and εL ≤ 0.01.)

3

2

1

–3 –2 2 3–1 10

x2

x1

x3

x4

FIGURE P11.8

11.9. A small number of sequential operations can effectively limit the speedup of a parallel
algorithm. Let f be the fraction of operations in a computation that must be performed
sequentially, where 0 ≤ f ≤ 1. According to Amdahl’s law, the maximum speedup s

achievable by a parallel computer with p processors is

s ≤ 1

f + (1 − f )/p

Suppose we have three data points, each described by two features: the fraction of sequential
operations (f ), and the maximum efficiency (s). These data points and their features are given
in the following table:

x1 x2 x3

f 0.3 0.2 0.1
s 0.5 0.4 0.8

We want to classify these three data points into two classes (c = 2) according to the curves of
Amdahl’s law. Of the three possible hard partitions (ηMc

= 3), the one that seems graphically
plausible is [

1 1 0
0 0 1

]

Using this partition as the initial guess, find the fuzzy 2-partition after two cycles, U∼
(2). (Use

m′ = 2.0 and εL ≤ 0.01.)
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11.10. We want to classify the performance of three computer systems based on throughput (in mips)
and response time (in seconds). The data points in our sample, X = {x1, x2, x3}, are x1 = (50,
10), x2 = (40, 12), and x3 = (20, 5). Using the initial 2-partition,

U∼
(0) =

[
1 1 0
0 0 1

]

verify that the optimum fuzzy 2-partition after two cycles is

U∼
(2) =

[
0.974 0.9418 0
0.026 0.0582 1

]

(Use m′ = 2.0 and εL ≤ 0.01.)

Exercises for Classification Metric and Similarity

11.11. There are many different grades of naphtha, which is a mixture of hydrocarbons characterized
by a boiling point range between 80◦C and 250◦C. There are four types of naphtha (n = 4)
that are characterized based on density, average molecular weight, and hydrogen-to-carbon
(H/C) molar ratio (m = 3):

Type I Type II Type III Type IV

Density (g/m3) 0.679 0.7056 0.701 0.718
Avg molecular wt. (g) 85.5 93.0 91.0 98.3
H/C molar ratio 2.25 2.177 2.253 2.177

There are several studies that predict the products of the naphtha pyrolysis based on light
and medium naphtha. It would be useful to classify the above four types into either light or
medium classes (c = 2).

Using m′ = 2 and ε = 0.01 conduct the following:
(a) Hard c-means.
(b) Fuzzy c-means.
(c) Find the classification metric.
(d) Find the similarity relation that results from the U-partition found in part (b).

11.12. In gas systems there are two basic properties of gas (temperature and pressure) that can be
used to determine whether calculations for the system can be done using the ideal gas law or
if a more robust property package is required. The ideal gas law applies to systems with high
temperature (T ) and low pressure (P ). The drawback of employing a more robust approach
is that the computational requirements increase tremendously.

P (atm) T (K)

1 400
1.7 370
1 280
9 300
9.5 280

Classify the given the set of data for P and T into two classes to determine which
systems require a robust property package for thermodynamic calculations. Use m′ = 2 and
ε = 0.01 for the following:
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(a) Hard c-means.
(b) Fuzzy c-means.
(c) Find the classification metric.
(d) Find the similarity relation using the U-partition from part (b).

11.13. The following data points describe the temperature, density and mono-ethanol-amine (MEA)
weight fraction for an MEA/water solution. Classify the data into three classes using m′ = 2
and ε = 0.001.

Temperature (◦C) Density (kg/m3) Composition
(weight fraction of MEA)

10 1001.96974 0.1
20 1000.798826 0.1
30 998.611997 0.1
10 1003.339776 0.15
20 1002.280297 0.15
30 1000.204904 0.15
10 1004.709813 0.2
20 1003.761769 0.2
30 1001.79781 0.2

Conduct the following:
(a) Hard c-means.
(b) Fuzzy c-means.
(c) Discuss the classification and how it relates to the original data and how the partitions

from parts (a) and (b) are related.
(d) Find the classification metric.

11.14. The biomechanical department of a prominent university is conducting research in bone
structure. One study involves developing a relationship between the wrist joint angle and the
sarcomere length in the lower arm. In this study the following data were obtained:

Wrist joint angle (deg) −75 −50 −25 0 25
Sarcomere length (µm) 3 3.25 3.5 2.75 3

(a) Classify these data, in one cycle, into two classes using the hard c-means method.
(b) Classify these data into two classes using the fuzzy c-means method; use m′ = 2 and ε =

0.01 and conduct two cycles. What is the value of the accuracy at the end of two cycles?
(c) Find the classification metric.
(d) Find the similarity relation for the U-partition that results from part (b).

Exercises for Fuzzy Vectors
11.15. Show that when two separate fuzzy vectors are identical, i.e., a∼ = b∼, the inner product a∼ • b∼

T

reaches a maximum as the outer product a∼ ⊕ b∼
T reaches a minimum.

11.16. For two fuzzy vectors a∼ and b∼ and the particular case where â = b̂ = 1 and a
ˆ
= b

ˆ
= 0, show

that when a∼ = b∼, then the inner product a∼ • b∼
T = 1 and the outer product a∼ ⊕ b∼

T = 0.
11.17. For two fuzzy vectors a∼ and b∼, prove the following expressions (transpose on the second

vector in each operation is presumed):
(a) a∼ • b∼ = a∼ ⊕ b∼
(b) a∼ • a∼ ≤ 0.5
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11.18. Prove the following:
(a) For any A∼ ∈ P∗(X), prove that (A∼, A∼)1 or 2 = 1.
(b) For any A∼ on X, prove that

(A∼, A∼)1 ≤ 1
2

(A∼, A∼)2 ≤ 1
2

11.19. Show that the metric in Eq. (11.53) always gives a value less than or equal to the metric in
Eq. (11.54) for any pair of fuzzy sets.

Exercises for Multifeature Pattern Recognition

11.20. In signal processing the properties of an electrical signal can be important. The most
sought-after properties of continuous time signals are their magnitude, phase, and frequency
exponents. Three of these properties together determine one sinusoidal component of a signal
where a sinusoid can be represented by the following voltage:

V (t) = A sin(f0t − θ)

where A = magnitude (or amplitude) of the sinusoidal component
f0 = fundamental frequency of the sinusoidal component
θ = phase of the sinusoidal component

With each of these properties representing a ‘‘feature’’ of the electrical signal, it is possible
to model a fuzzy pattern recognition system to detect what type of sinusoidal components are
present. Let us define the prototypical values for patterns of magnitude, frequency, and phase
that we are interested in:

Components Prototypical values

0≤ A≤ 12 V 3 V, 6 V, 9 V, 12 V
0≤ f0 ≤ 80 Hz 20 Hz, 40 Hz, 60 Hz, 80 Hz
0≤ θ ≤ 180◦ 45◦, 90◦, 135◦, 180◦

Draw the resulting three-feature membership graphs.
Now let the input sinusoidal signal vector B comprise three crisp singletons, i.e., B

= {5 V, 45 Hz, 45◦}, with weights of 0.6, 0.2, and 0.2 assigned to each of the corresponding
features. Determine which pattern vector B most closely resembles.

11.21. Using the same patterns as in Problem 11.20, but with a new input fuzzy pattern B∼ and features
given by

B∼voltage =
{

0

1
+ 0.2

2
+ 0.7

3
+ 1.0

5
+ 0

6

}

B∼frequency =
{

0

20
+ 0.5

30
+ 1.0

40
+ 0.4

50
+ 0

60

}

B∼phase =
{

0

50
+ 0.3

70
+ 0.7

90
+ 1

110
+ 0.7

120
+ 0

130

}

determine the pattern that most closely matches the input pattern.
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11.22. Transuranic waste will be stored at a southeastern New Mexico site known as WIPP. The site
has underlying strata of rock salt, which is well-known for its healing and creeping properties.
Healing is the tendency of a material to close fractures or other openings, and creep is the
capacity of the material to deform under constant load. The radioactive wastes are stored in
rooms excavated deep underground. Because of the creep of the ceiling, these rooms will
eventually collapse, thus permanently sealing the wastes in place. The creep properties of
salt depend on the depth, moisture content, and clay content of the salt at the location being
considered. Rock salt from specified depths was studied through numerous tests conducted
at various labs nationwide. These data comprise the known patterns. Hence, each pattern has
three features. Now, the possibility of locating a room at a certain depth is being investigated.

We wish to determine the creep properties at some depth of salt with a certain clay and
moisture content. Membership functions for each of the patterns are shown in Fig. P11.22.

(b)

(c)
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20.015.010.05.0
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0

0

FIGURE P11.22
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Find which known pattern the unknown pattern matches the best. The features for the unknown
pattern are given by the crisp singletons

B = {depth = 1750 ft, clay content = 6.13%, moisture content = 12.5%}

The weights given to the features are W = {0.5, 0.3, 0.2}.
11.23. Using the same known pattern as in Problem 11.22, and using fuzzy features for the new

pattern, find which known pattern matches the new pattern most closely. Features for the new
pattern are as follows:

B∼depth =
{

0

1700
+ 0.5

1725
+ 1

1750
+ 0.5

1775
+ 0

1800

}

B∼clay content =
{

0

5.5
+ 0.5

5.813
+ 1.0

6.13
+ 0.5

6.44
+ 0

6.75

}

B∼moisture content =
{

0

11.0
+ 0.5

11.75
+ 1

12.5
+ 0.5

13.25
+ 0

14.0

}

11.24. A member of the police bomb squad has to be able to assess the type of bomb used in a terrorist
activity in order to gain some knowledge that might lead to the capture of the culprit. The most
commonly used explosive device is the pipe bomb. Pipe bombs can be made from a variety
of explosives ranging from large-grain black powder and gunpowder to more sophisticated
compounds, such as PETN or RDX. Identification of the explosive material used in the pipe
bomb (after detonation) will tell a bomb squad investigator where the materials might have
been purchased, the level of sophistication of the terrorist, and other important identifiers
about the criminal.

Four basic types of energetic materials are used in making pipe bombs, each with its
own distinctive pattern of post-mortem damage.
1. Explosives. Those that detonate at a velocity equal to the compressional sound speed

of the explosive material itself. These materials are by far the most energetic (also the
most difficult to acquire) and are characterized (after explosion) by very small pipe
fragments, highly discolored (usually bluish in tint) fragments, and extreme collateral
damage (especially close to the detonation).

2. Propellants. Usually formed from some compound based on nitrocellulose. These materials
do not detonate, but burn very rapidly. Usually propellants are formed in special geometric
shapes that allow their surface area to remain constant or increase as they burn, thus
causing the burning rate to increase until the compound has been completely exhausted.
The destructive force of propellant-based pipe bombs is somewhat less than that of true
explosives and is characterized by medium fragment size, little discoloration, and moderate
collateral damage.

3. Large-grain black powder. Has been around since about 600 BC, when the Chinese
discovered the carbon–sulfur–potassium nitrate mixture. The size of black powder grains
can vary tremendously, but the geometry is such that the powder always burns down (the
burn rate always decreases once the entire surface of the mixture is burning). Although
still very deadly, the damage from these types of pipe bombs is less than that of the other
two. The residual fragment size is larger, and the discoloration of the fragments is slight.

4. Gunpowder. A subclass of black powder, usually considered to be homemade. It is
characterized by very large fragments (one or two in number), almost no discoloration,
and little collateral damage. Black powder is still very common among terrorists.
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We can form a table of patterns for each feature:

Features

Fragment size Fragment discoloration Damage

Explosives Small (S) High (H) Extreme (E)
Propellants Medium (M) Medium (M) Large (L)
Black powder Large (L) Low (L) Medium (M)
Gunpowder Very large (VL) None (N) Small (S)

Assume that the membership space for each feature can be partitioned similarly into
four sections on a normalized abscissa, as shown in Fig. P11.24. The other two graphs (for
discoloration and collateral damage) would look identical to the one in Fig. P11.24 (with
different labels). The weights assigned to each feature are 0.5, 0.3, and 0.2, respectively.
Now, say a new bombing has taken place and the aftereffects measured over three features
are denoted as singletons, given as

B =
{

fragment size = 1

0.7
, fragment color = 1

0.6
, damage = 1

0.5

}

Determine the composition of the bomb used in the bombing.

1.0

0.50 1.0

µ            frag. size

VL (gunpowder)L (black powder)M (propellants)S (explosives)

FIGURE P11.24

11.25. Using the information in Problem 11.24, but selecting a fuzzy input, perform a pattern
recognition. The fuzzy input patterns in the form of triangular fuzzy numbers based on the
three features are as follows:

B∼frag. size =
{

0

0.43
+ 1

0.5
+ 0

0.57

}

B∼frag. color =
{

0

0.53
+ 1

0.6
+ 0

0.67

}

B∼damage =
{

0

0.63
+ 1

0.7
+ 0

0.77

}

11.26. We intend to recognize preliminary data coming off a satellite. Each of the five data packets
has a unique packet header identifier, as follows:

A∼1 = satellite performance metrics

A∼2 = ground positioning system
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A∼3 = IR sensor

A∼4 = visible camera

A∼5 = star mapper

The three header values each set will look for are (1) signal type, (2) terminal number, and (3)
data identifier. The weights assigned to each of the headers are 0.3, 0.3, and 0.4, respectively.
Let us define the fuzzy pattern as

A∼1 =
{

0.2

x1
+ 0.2

x2
+ 0.6

x3

}

A∼2 =
{

0.3

x1
+ 0.4

x2
+ 0.7

x3

}

A∼3 =
{

0.4

x1
+ 0.6

x2
+ 0.8

x3

}

A∼4 =
{

0.5

x1
+ 0.8

x2
+ 0.9

x3

}

A∼5 =
{

0.6

x1
+ 1.0

x2
+ 1.0

x3

}

A data stream given by the crisp singleton

B =
{

1.0

x1
+ 1.0

x2
+ 1.0

x3

}

is received. Determine which of the five different packets we are receiving at the present time.
11.27. Signals are investigated from the following four digital signal processing plants: A∼1 = least

mean squares, A∼2 = root-mean square, A∼3 = Newton’s method, and A∼4 = steepest descent
method. The three (m = 3) important parameters that will be considered in each c-space are
convergence rate, tracking, and stability. The weights assigned to each of the features are 0.4,
0.4, and 0.2, respectively. The data patterns corresponding to the features are membership
triangles

A∼1 = {0.2, 0.3, 0.8}
A∼2 = {0.4, 0.4, 0.6}
A∼3 = {0.6, 0.2, 0.4}
A∼4 = {0.8, 0.5, 0.2}

The sample data set has the following vector pattern as a membership triangle:

B∼ = {0.5, 0.5, 0.5}

Determine the pattern most closely represented by the sample data set.
11.28. Lube oils are classified by three features: color, viscosity, and flash point. Depending on the

values of these features, the lube oil is classified as 100 neutral (100N), 150 neutral (150N),
heavy solvent neutral (HSN), and 500 neutral (500N). Among the features, color is the most
important, followed by viscosity, then flash point. The reason for this ordering is that it is
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easier to blend lube oils to obtain correct viscosity and flash point than it is to blend to obtain
proper color. Any material not falling into one of these lube oil categories is downgraded to
catalyst cracker feed (PGO), where it is converted to gasoline.

Fuzzy patterns for each of these features are shown in Fig. P11.28. The weights for
these features are 0.5 for color, 0.3 for viscosity, and 0.2 for flash point. You receive a lab
analysis for a sample described by the crisp singleton

B = {color = 6.5, viscosity = 825 m2/s, flash point = 750◦C}

Under what category do you classify this sample?

1.0

51 7

Color index

93 11

µ      color PGO~ ~ ~ ~ ~500N HSN 150N 100N

1.0

700300 900

Viscosity (m2/s)

1100500 1300

µ           viscosity
~ ~ ~150N HSN 500N PGO~~100N

1.0

720640 760

Flash point (°C)

800680 840

µ             flash point
~ ~ ~150N HSN 500N PGO~~100N

0

0

0

FIGURE P11.28

11.29. Over several years a satellite tracking facility has classified several objects on the universe of
signal to noise ratio (SNR), total signal (TS), and radius (R). The fuzzy sets are shown here
for four satellites:

ASTEX A∼1 =
{

0.1

SNR
+ 0.15

TS
+ 0.2

R

}

DMSP A∼2 =
{

0.2

SNR
+ 0.2

TS
+ 0.3

R

}
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SEASAT A∼3 =
{

0.5

SNR
+ 0.7

TS
+ 0.5

R

}

MIR A∼4 =
{

0.9

SNR
+ 0.9

TS
+ 0.9

R

}

with weights w1 = 0.4, w2 = 0.4, w3 = 0.2. One night an unknown object is tracked, and the
following observation is made:

B∼ =
{

0.3

SNR
+ 0.3

TS
+ 0.3

R

}

Which satellite does the object most closely resemble?
11.30. A set of patterns indicating the performance of an aluminum smelting cell is developed.

The important features are bath temperature T (◦C), cell voltage V , and noise N (standard
deviation of the cell resistance). The cell conditions (patterns) are described as follows:

A∼1 Cell has a very small
anode–cathode distance.
Characterized by low
temperature, low voltage, and
high noise.

A∼2 Cell is in good condition.
Characterized by moderately
low temperature, moderately
low voltage, and low noise.

A∼3 Cell has a very large
anode–cathode distance.
Characterized by high
temperature, high voltage,
and low noise.

A∼4 Cell has deposits on bottom
cathode. Characterized by
moderately high temperature,
high voltage, and high noise.

The fuzzy sets are represented by Gaussian membership functions:

A∼1 =
{

exp

[
− (T − 945)2

42

]
, exp

[
− (V − 4.2)2

(0.1)2

]
, exp

[
− (N − 26)2

52

]}

A∼2 =
{

exp

[
− (T − 950)2

42

]
, exp

[
− (V − 4.4)2

(0.1)2

]
, exp

[
− (N − 6)2

22

]}

A∼3 =
{

exp

[
− (T − 970)2

82

]
, exp

[
− (V − 4.8)2

(0.1)2

]
, exp

[
− (N − 6)2

22

]}

A∼4 =
{

exp

[
− (T − 965)2

62

]
, exp

[
− (V − 4.7)2

(0.1)2

]
, exp

[
− (N − 20)2

52

]}

To reflect the relative importance of the features, select w1 = 0.3, w2 = 0.5, and w3 = 0.2.
Now a new data sample (measurements from a smelting cell) yields temperature = 953◦C,
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voltage = 4.5 V, and noise = 12 (a data singleton). Classify the operating conditions of the
cell.

11.31. Use the same patterns as in Problem 11.30. But now use a sample comprising fuzzy sets. This
is appropriate because measurements such as temperature are subject to substantial error, and
electrical signals fluctuate over time as disturbances affect the system. The new sample is
represented as the following:

B∼ =
{

exp

[
− (T − 957)2

32

]
, exp

[
− (V − 4.6)2

(0.2)2

]
, exp

[
− (N − 16)2

32

]}

Classify the operating conditions of the cell based on this information.
11.32. Skis are classified on the basis of three features: weight, performance stiffness, and response

times in turns. There are four different types of skis: freestyle, giant slalom (GS), slalom, and
all-around. These skis have Gaussian distributions on each of the features and the parameters
for the distribution are given in following table. A Gaussian distribution has the form

µA∼ ij
(x) = exp


−

(
xj − aij

σ 2
aij

)2



The fuzzy patterns are defined on a normalized scale as follows:

Feature

Weight Stiffness Response time

ai σ ai σ ai σ

All-around 50 10 40 12 60 7
Slalom 40 3 90 5 75 10
Giant slalom 30 15 80 10 60 10
Freestyle 40 10 20 6 70 3

The weights given to the features are

wweight = 0.3

wstiffness = 0.4

wresponse = 0.3

A new ski whose features are given on a normalized scale by a crisp singleton,

B = {weight = 45, stiffness = 60, response time = 65}

is introduced into the market. Determine what type of ski the new ski should be labeled.
11.33. In Problem 11.32 the new ski introduced into the market was given by a crisp singleton.

However, given the uncertainty in measurements, it is more appropriate to define a ski by
fuzzy parameters. For the same problem, and with the same weights assigned to each of the
features, classify the new ski if it is given by a fuzzy set whose membership functions are
given by a Gaussian distribution whose parameters (mean and standard deviation) are given
in the following table:
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Feature

Weight Stiffness Response time

ai σ ai σ ai σ

B∼ 45 10 60 12 65 20

Exercises for Syntactic Pattern Recognition

11.34. Generate a fuzzy grammar for the syntactic pattern recognition of an isosceles trapezoid.
11.35. Generate a fuzzy grammar for the syntactic pattern recognition of an equilateral triangle.
11.36. Continue Example 11.28 by developing fuzzy grammars for the pattern recognition of the two

electric sources, symbols ~ and .

Exercises for Image Processing

11.37. The accompanying table shows the intensity values (for an 8-bit image) associated with an
array of 25 pixels. Use the image enhancement algorithm on these intensity values to enhance
the image. Do you recognize the pattern in the image?

111 105 140 107 110
110 132 111 120 105
140 105 105 115 154
137 135 145 150 145
140 118 115 109 148

11.38. The following table shows the intensity values (for an 8-bit image) associated with an array
of 25 pixels. Use the image-softening algorithm on these intensity values to remove the ‘‘salt
and pepper’’ noise (shown as shaded pixels) from the image of the alphabetic character M.

220 30 10 15 250

205 230 0 239 230

225 20 225 20 220

217 255 30 10 215

220 25 15 255 235



CHAPTER

12
FUZZY ARITHMETIC

AND THE EXTENSION
PRINCIPLE

Said the Mock Turtle with a sigh, ‘‘I only took the regular course.’’ ‘‘What was that?’’ inquired
Alice. ‘‘Reeling and Writhing, of course, to begin with,’’ the Mock Turtle replied; ‘‘and the
different branches of Arithmetic – Ambition, Distraction, Uglification, and Derision.’’

Lewis Carroll
Alice in Wonderland, 1865

As Lewis Carroll so cleverly implied as early as 1865 (he was, by the way, a brilliant
mathematician), there possibly could be other elements of arithmetic: consider those of
ambition, distraction, uglification, and derision. Certainly fuzzy logic has been described in
worse terms by many people over the last four decades! Perhaps Mr. Carroll had a presage
of fuzzy set theory exactly 100 years before Dr. Zadeh; perhaps, possibly.

In this chapter we see that standard arithmetic and algebraic operations, which are
based after all on the foundations of classical set theory, can be extended to fuzzy arithmetic
and fuzzy algebraic operations. This extension is accomplished with Zadeh’s extension
principle [Zadeh, 1975]. Fuzzy numbers, briefly described in Chapter 4, are used here
because such numbers are the basis for fuzzy arithmetic. In this context the arithmetic
operations are not fuzzy; the numbers on which the operations are performed are fuzzy and,
hence, so too are the results of these operations. Conventional interval analysis is reviewed
as a prelude to some improvements and approximations to the extension principle, most
notably the fuzzy vertex method and its alternative forms.

EXTENSION PRINCIPLE

In engineering, mathematics, and the sciences, functions are ubiquitous elements in
modeling. Consider a simple relationship between one independent variable and one

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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f (x) yx FIGURE 12.1
A simple single-input, single-output mapping (function).

dependent variable as shown in Fig. 12.1. This relationship is a single-input, single-output
process where the transfer function (the box in Fig. 12.1) represents the mapping provided
by the general function f . In the typical case, f is of analytic form, e.g., y = f (x), the
input, x, is deterministic, and the resulting output, y, is also deterministic.

How can we extend this mapping to the case where the input, x, is a fuzzy variable
or a fuzzy set, and where the function itself could be fuzzy? That is, how can we determine
the fuzziness in the output, y, based on either a fuzzy input or a fuzzy function or
both (mapping)? An extension principle developed by Zadeh [1975] and later elaborated
by Yager [1986] enables us to extend the domain of a function on fuzzy sets.

The material of the next several sections introduces the extension principle by first
reviewing theoretical issues of classical (crisp) transforms, mappings, and relations. The
theoretical material then moves to the case where the input is fuzzy but the function itself
is crisp, then to the case where the input and the function both are fuzzy. Simple examples
to illustrate the ideas are provided. The next section serves as a more practical guide to the
implementation of the extension principle, with several numerical examples. The extension
principle is a very powerful idea that, in many situations, provides the capabilities of a
‘‘fuzzy calculator.’’

Crisp Functions, Mapping, and Relations

Functions (also called transforms), such as the logarithmic function, y = log(x), or the
linear function y = ax + b, are mappings from one universe, X, to another universe,
Y. Symbolically, this mapping (function, f ) is sometimes denoted f : X → Y. Other
terminology calls the mapping y = f (x) the image of x under f, and the inverse mapping,
x = f −1(y), is termed the original image of y. A mapping can also be expressed by a
relation R (as described in Chapter 3), on the Cartesian space X × Y. Such a relation (crisp)
can be described symbolically as R = {(x, y) | y = f (x)}, with the characteristic function
describing membership of specific x, y pairs to the relation R as

χR(x, y) =
{

1, y = f (x)

0, y �= f (x)
(12.1)

Now, since we can define transform functions, or mappings, for specific elements
of one universe (x) to specific elements of another universe (y), we can also do the
same thing for collections of elements in X mapped to collections of elements in Y. Such
collections have been referred to in this text as sets. Presumably, then, all possible sets in
the power set of X can be mapped in some fashion (there may be null mapping for many
of the combinations) to the sets in the power set of Y, i.e., f : P(X) → P(Y). For a set
A defined on universe X, its image, set B on the universe Y, is found from the mapping,
B = f (A) = {y | for all x ∈ A, y = f (x)}, where B will be defined by its characteristic
value

χB(y) = χf (A)(y) =
∨

y=f (x)

χA(x) (12.2)
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Example 12.1. Suppose we have a crisp set A = {0, 1}, or, using Zadeh’s notation,

A =
{

0

−2
+ 0

−1
+ 1

0
+ 1

1
+ 0

2

}

defined on the universe X = {−2,−1, 0, 1, 2} and a simple mapping y = |4x| + 2. We wish
to find the resulting crisp set B on an output universe Y using the extension principle. From
the mapping we can see that the universe Y will be Y = {2, 6, 10}. The mapping described
by Eq. (12.2) will yield the following calculations for the membership values of each of the
elements in universe Y:

χB(2) = ∨ {χA(0)} = 1

χB(6) = ∨ {χA(−1), χA(1)} = ∨ {0, 1} = 1

χB(10) = ∨ {χA(−2), χA(2)} = ∨ {0, 0} = 0

Notice there is only one way to get the element 2 in the universe Y, but there are two ways to
get the elements 6 and 10 in Y. Written in Zadeh’s notation this mapping results in the output

B =
{

1

2
+ 1

6
+ 0

10

}

or, alternatively, B = {2, 6}.
Suppose we want to find the image B on universe Y using a relation that expresses the

mapping. This transform can be accomplished by using the composition operation described
in Chapter 3 for finite universe relations, where the mapping y = f (x) is a general relation.
Again, for X = {−2,−1, 0, 1, 2} and a generalized universe Y = {0, 1, . . . , 9, 10}, the crisp
relation describing this mapping (y = |4x| + 2) is

R =




0 1 2 3 4 5 6 7 8 9 10
−2 0 0 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 1




The image B can be found through composition (since X and Y are finite): that is, B = A◦R
(we note here that any set, say A, can be regarded as a one-dimensional relation), where, again
using Zadeh’s notation,

A =
{

0

−2
+ 0

−1
+ 1

0
+ 1

1
+ 0

2

}

and B is found by means of Eq. (3.9) to be

χB(y) =
∨
x∈X

(χA(x) ∧ χR(x, y)) =
{

1, for y = 2, 6
0, otherwise

or in Zadeh’s notation on Y,

B =
{

0

0
+ 0

1
+ 1

2
+ 0

3
+ 0

4
+ 0

5
+ 1

6
+ 0

7
+ 0

8
+ 0

9
+ 0

10

}

Functions of Fuzzy Sets – Extension Principle

Again we start with two universes of discourse, X and Y, and a functional transform
(mapping) of the form y = f (x). Now suppose that we have a collection of elements in
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universe x that form a fuzzy set A∼ . What is the image of fuzzy set A∼ on X under the mapping
f ? This image will also be fuzzy, say we denote it fuzzy set B∼; and it will be found through
the same mapping, i.e., B∼ = f (A∼).

The membership functions describing A∼ and B∼ will now be defined on the universe
of a unit interval [0, 1], and for the fuzzy case Eq. (12.2) becomes

µB∼
(y) =

∨
f (x)=y

µA∼
(x) (12.3)

A convenient shorthand for many fuzzy calculations that utilize matrix relations
involves the fuzzy vector. Basically, a fuzzy vector is a vector containing fuzzy membership
values. Suppose the fuzzy set A∼ is defined on n elements in X, for instance on x1, x2, . . . , xn,
and fuzzy set B∼ is defined on m elements in Y, say on y1, y2, . . . , ym. The array of
membership functions for each of the fuzzy sets A∼ and B∼ can then be reduced to fuzzy
vectors by the following substitutions:

a∼ = {a1, . . . , an} = {µA∼
(x1), . . . , µA∼

(xn)} = {µA∼
(xi)}, for i = 1, 2, . . . , n (12.4)

b∼ = {b1, . . . , bm} = {µB∼
(y1), . . . , µB∼

(ym)} = {µB∼
(yj )}, for j = 1, 2, . . . , m (12.5)

Now, the image of fuzzy set A∼ can be determined through the use of the composition
operation, or B∼ = A∼◦R∼, or when using the fuzzy vector form, b∼ = a∼◦R∼ where R∼ is an n × m

fuzzy relation matrix.
More generally, suppose our input universe comprises the Cartesian product of many

universes. Then the mapping f is defined on the power sets of this Cartesian input space
and the output space, or

f : P(X1 × X2 × · · · × Xn) −→ P(Y) (12.6)

Let fuzzy sets A∼1, A∼2, . . . , A∼n be defined on the universes X1, X2, . . . , Xn. The mapping
for these particular input sets can now be defined as B∼ = f (A∼1, A∼2, . . . , A∼n), where the
membership function of the image B∼ is given by

µB∼
(y) = max

y=f (x1,x2,...,xn)
{min[µA∼1(x1), µA∼2(x2), . . . , µA∼n

(xn)]} (12.7)

In the literature Eq. (12.7) is generally called Zadeh’s extension principle. Equation (12.7)
is expressed for a discrete-valued function, f . If the function, f , is a continuous-valued
expression, the max operator is replaced by the sup (supremum) operator (the supremum is
the least upper bound).

Fuzzy Transform (Mapping)

The material presented in the preceding two sections is associated with the issue of
‘‘extending’’ fuzziness in an input set to an output set. In this case, the input is fuzzy, the
output is fuzzy, but the transform (mapping) is crisp, or f : A∼ → B∼. What happens in a
more restricted case where the input is a single element (a nonfuzzy singleton) and this
single element maps to a fuzzy set in the output universe? In this case the transform, or
mapping, is termed a fuzzy transform.



EXTENSION PRINCIPLE 449

Formally, let a mapping exist from an element x in universe X (x ∈ X) to a fuzzy set
B∼ in the power set of universe Y, P(Y). Such a mapping is called a fuzzy mapping, f∼, where
the output is no longer a single element, y, but a fuzzy set B∼, i.e.,

B∼ = f∼(x) (12.8)

If X and Y are finite universes, the fuzzy mapping expressed in Eq. (12.8) can be described
as a fuzzy relation, R∼, or, in matrix form,

R∼ =




y1 y2 . . . yj . . . ym

x1 r11 r12 . . . r1j . . . r1m

x2 r21 r22 . . . r2j . . . r2m

xi ri1 ri2 . . . rij . . . rim

xn rn1 rn2 . . . rnj . . . rnm


 (12.9)

For a particular single element of the input universe, say xi , its fuzzy image, B∼ i = f∼(xi),
is given in a general symbolic form as

µB∼i
(yj ) = rij (12.10)

or, in fuzzy vector notation,
b∼i

= {ri1, ri2, . . . , rim} (12.11)

Hence, the fuzzy image of the element xi is given by the elements in the ith row of the
fuzzy relation, R∼, defining the fuzzy mapping, Eq. (12.9).

Suppose we now further generalize the situation where a fuzzy input set, say A∼ , maps
to a fuzzy output through a fuzzy mapping, or

B∼ = f∼(A∼) (12.12)

The extension principle again can be used to find this fuzzy image, B∼, by the following
expression:

µB∼
(y) =

∨
x∈X

(µA∼
(x) ∧ µR∼

(x, y)) (12.13)

The preceding expression is analogous to a fuzzy composition performed on fuzzy vectors,
or b∼ = a∼◦R∼, or in vector form,

b∼j
= max

i
(min(ai, rij )) (12.14)

where b∼j
is the j th element of the fuzzy image B∼.

Example 12.2. Suppose we have a fuzzy mapping, f∼, given by the following fuzzy relation, R∼:

R∼ =




1.4 1.5 1.6 1.7 1.8
1 0.8 0.2 0.1 0

0.8 1 0.8 0.2 0.1
0.2 0.8 1 0.8 0.2
0.1 0.2 0.8 1 0.8
0 0.1 0.2 0.8 1




(m)
40 (kg)
50
60
70
80
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which represents a fuzzy mapping between the length and mass of test articles scheduled for
flight in a space experiment. The mapping is fuzzy because of the complicated relationship
between mass and the cost to send the mass into space, the constraints on length of the test
articles fitted into the cargo section of the spacecraft, and the scientific value of the experiment.
Suppose a particular experiment is being planned for flight, but specific mass requirements
have not been determined. For planning purposes the mass (in kilograms) is presumed to be a
fuzzy quantity described by the following membership function:

A∼ =
{

0.8

40
+ 1

50
+ 0.6

60
+ 0.2

70
+ 0

80

}
kg

or as a fuzzy vector a∼ = {0.8, 1, 0.6, 0.2, 0} kg.
The fuzzy image B∼ can be found using the extension principle (or, equivalently,

composition for this fuzzy mapping), b∼ = a∼◦R∼ (recall that a set is also a one-dimensional
relation). This composition results in a fuzzy output vector describing the fuzziness in
the length of the experimental object (in meters), to be used for planning purposes, or
b∼ = {0.8, 1, 0.8, 0.6, 0.2} m.

Practical Considerations

Heretofore we have discussed features of fuzzy sets on certain universes of discourse.
Suppose there is a mapping between elements, u, of one universe, U, onto elements, v, of
another universe, V, through a function f . Let this mapping be described by f : u → v.
Define A∼ to be a fuzzy set on universe U; that is, A∼ ⊂ U. This relation is described by the
membership function

A∼ =
{

µ1

u1
+ µ2

u2
+ · · · + µn

un

}
(12.15)

Then the extension principle, as manifested in Eq. (12.3), asserts that, for a function f that
performs a one-to-one mapping (i.e., maps one element in universe U to one element in
universe V), an obvious consequence of Eq. (12.3) is

f (A∼) = f

(
µ1

u1
+ µ2

u2
+ · · · + µn

un

)

=
{

µ1

f (u1)
+ µ2

f (u2)
+ · · · + µn

f (un)

} (12.16)

The mapping in Eq. (12.16) is said to be one-to-one.

Example 12.3. Let a fuzzy set A∼ be defined on the universe U = {1, 2, 3}. We wish to map
elements of this fuzzy set to another universe, V, under the function

v = f (u) = 2u − 1

We see that the elements of V are V = {1, 3, 5}. Suppose the fuzzy set A∼ is given by

A∼ =
{

0.6

1
+ 1

2
+ 0.8

3

}
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Then the fuzzy membership function for v = f (u) = 2u − 1 would be

f (A∼) =
{

0.6

1
+ 1

3
+ 0.8

5

}

For cases where this functional mapping f maps products of elements from two
universes, say U1 and U2, to another universe V, and we define A∼ as a fuzzy set on the
Cartesian space U1 × U2, then

f (A∼) =
{∑ min [µ1(i), µ2(j)]

f (i, j)
| i ∈ U1, j ∈ U2

}
(12.17)

where µ1(i) and µ2(j) are the separable membership projections of µ(i, j) from the
Cartesian space U1 × U2 when µ(i, j) cannot be determined. This projection involves the
invocation of a condition known as noninteraction (see Chapter 2) between the separate
universes. It is analogous to the assumption of independence employed in probability theory,
which reduces a joint probability density function to the product of its separate marginal
density functions. In the fuzzy noninteraction case we are doing a kind of intersection;
hence, we use the minimum operator (some logics use operators other than the minimum
operator) as opposed to the product operator used in probability theory.

Example 12.4. Suppose we have the integers 1 to 10 as the elements of two identical but
different universes; let

U1 = U2 = {1, 2, 3, . . . , 10}
Then define two fuzzy numbers A∼ and B∼ on universe U1 and U2, respectively:

Define A∼ = 2∼ = ‘‘approximately 2’’ =
{

0.6

1
+ 1

2
+ 0.8

3

}

Define B∼ = 6∼ = ‘‘approximately 6’’ =
{

0.8

5
+ 1

6
+ 0.7

7

}

The product of (‘‘approximately 2’’) × (‘‘approximately 6’’) should map to a fuzzy number
‘‘approximately 12,’’ which is a fuzzy set defined on a universe, say V, of integers, V =
{5, 6, . . . , 18, 21}, as determined by the extension principle, Eq. (12.7), or

2∼ × 6∼ =
(

0.6

1
+ 1

2
+ 0.8

3

)
×

(
0.8

5
+ 1

6
+ 0.7

7

)

=
{

min(0.6, 0.8)

5
+ min(0.6, 1)

6
+ · · · + min(0.8, 1)

18
+ min(0.8, 0.7)

21

}

=
{

0.6

5
+ 0.6

6
+ 0.6

7
+ 0.8

10
+ 1

12
+ 0.7

14
+ 0.8

15
+ 0.8

18
+ 0.7

21

}

In this example each of the elements in the universe, V, is determined by a unique mapping of
the input variables. For example, 1 × 5 = 5, 2 × 6 = 12, etc. Hence, the maximum operation
expressed in Eq. (12.7) is not necessary. It should also be noted that the result of this arithmetic
product is not convex, and hence does not appear to be a fuzzy number (i.e., normal and
convex). However, the nonconvexity arises from numerical aberrations from the discretization
of the two fuzzy numbers, 2∼ and 6∼, and not from any inherent problems in the extension
principle. This issue is discussed at length later in this chapter in Example 12.14.
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The complexity of the extension principle increases when we consider if more than
one of the combinations of the input variables, U1 and U2, are mapped to the same variable
in the output space, V, i.e., if the mapping is not one-to-one. In this case we take the
maximum membership grades of the combinations mapping to the same output variable,
or, for the following mapping, we get

µA∼
(u1, u2) = max

v=f (u1,u2)
[min{µ1(u1), µ2(u2)}] (12.18)

Example 12.5. We have two fuzzy sets A∼ and B∼, each defined on its own universe as follows:

A∼ =
{

0.2

1
+ 1

2
+ 0.7

4

}
and B∼ =

{
0.5

1
+ 1

2

}

We wish to determine the membership values for the algebraic product mapping

f (A∼, B∼) = A∼ × B∼ (arithmetic product)

=
{

min(0.2, 0.5)

1
+ max[min(0.2, 1), min(0.5, 1)]

2

+max[min(0.7, 0.5), min(1, 1)]

4
+ min(0.7, 1)

8

}

=
{

0.2

1
+ 0.5

2
+ 1

4
+ 0.7

8

}

In this case, the mapping involves two ways to produce a 2 (1 × 2 and 2 × 1) and two ways
to produce a 4 (4 × 1 and 2 × 2); hence the maximum operation expressed in Eq. (12.7) is
necessary.

The extension principle can also be useful in propagating fuzziness through general-
ized relations that are discrete mappings of ordered pairs of elements from input universes
to ordered pairs of elements in an output universe.

Example 12.6. We want to map ordered pairs from input universes X1 = {a, b} and X2 =
{1, 2, 3} to an output universe, Y = {x, y, z}. The mapping is given by the crisp relation, R,

R =
[ 1 2 3

a x z x
b x y z

]

We note that this relation represents a mapping, and it does not contain membership values.
We define a fuzzy set A∼ on universe X1 and a fuzzy set B∼ on universe X2 as

A∼ =
{

0.6

a
+ 1

b

}
and B∼ =

{
0.2

1
+ 0.8

2
+ 0.4

3

}

We wish to determine the membership function of the output, C∼ = f (A∼, B∼), whose relational
mapping, f , is described by R. This is accomplished with the extension principle, Eq. (12.7),
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as follows:

µC∼
(x) = max[min(0.2, 0.6), min(0.2, 1), min(0.4, 0.6)] = 0.4

µC∼
(y) = max[min(0.8, 1)] = 0.8

µC∼
(z) = max[min(0.8, 0.6), min(0.4, 1)] = 0.6

Hence,

C∼ =
{

0.4

x
+ 0.8

y
+ 0.6

z

}

The extension principle is also useful in mapping fuzzy inputs through continuous-
valued functions. The process is the same as for a discrete-valued function, but the effort
involved in the computations is more rigorous.

Example 12.7 [Wong and Ross, 1985]. Suppose we have a nonlinear system given by
the harmonic function x∼ = cos(ω∼t), where the frequency of excitation, ω∼, is a fuzzy variable
described by the membership function shown in Fig. 12.2a. The output variable, x∼, will be fuzzy
because of the fuzziness provided in the mapping from the input variable, ω∼. This function

1∆t

µω t)
~ t(ω

ω 2∆tω

t = ∆t

tω
supp ~ω t

µx(x)
~

x = cos t)ω(2∆t)cos ω( 1∆t)cos ω(
supp ~x

(c) (d)

(b)

x
1∆tω

2∆tω

µω )
~
(ω

ω1ω 2ω
supp ~ω 

(a)

1

0

1

0

1

0
0 1–1

x

FIGURE 12.2
Extension principle applied to x∼ = cos(ω∼t), at t = �t .
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represents a one-to-one mapping in two stages, ω∼ → ω∼t → x∼. The membership function of x∼
will be determined through the use of the extension principle, which for this example will take
on the following form:

µx∼
(x) =

∨
x=cos(ωt)

[µω∼
(ω)]

To show the development of this expression, we will take several time points, such as
t = 0, 1, . . .. For t = 0, all values of ω∼ map into a single point in the ω∼t domain, i.e., ω∼t = 0,
and into a single point in the x universe, i.e., x = 1. Hence, the membership of x∼ is simply a
singleton at x = 1, i.e.,

µx∼
(x) =

{
1, if x = 1
0, otherwise

For a nonzero but small t , say t = �t , the support of ω∼, denoted in Fig. 12.2a as supp ω∼,
is mapped into a small but finite support of x∼, denoted in Fig. 12.2c as supp x∼ (the support of
a fuzzy set was defined in Chapter 4 as the interval corresponding to a λ-cut of λ = 0+). The
membership value for each x∼ in this interval is determined directly from the membership of ω

in a one-to-one mapping. As can be seen in Fig. 12.2, as t increases, the support of x∼ increases,
and the fuzziness in the response spreads with time. Eventually, there will be a value of t when

1t

µω t)
~ t(ω

ω

µω )
~
(ω

ω1ω 2ω

2tω

supp

tω

µx(x)
~

x = cos t)ω(2t)cos ω( 1t)cos ω(

(c)

(a)

(d)

(b)

x

1tω

2tω
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suppω~t

suppx~

1
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0

1–1 0

1

0–1

x

FIGURE 12.3
Extension principle applied to x∼ = cos(ω∼t) when t causes overlap in support of x∼.
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FIGURE 12.4
Extension principle applied to x∼ = cos(ω∼t) when t causes complete fuzziness.

the support of x∼ folds partly onto itself, i.e., we have multi-ω-to-single-x mapping. In this
event, the maximum of all candidate membership values of ω∼ is used as the membership value
of x according to the extension principle, Eq. (12.3), as shown in Fig. 12.3(c).

When t is of such magnitude that the support of x occupies the interval [−1, 1]
completely, the largest support possible, the membership µx∼

(x) will be unity for all x within
this interval. This is the state of complete fuzziness, as illustrated in Fig. 12.4. In the equation
x∼ = cos(ω∼t), the output can have any value in the interval [−1, 1] with equal and complete
membership. Once this state is reached the system remains there for all future time.

FUZZY ARITHMETIC

Chapter 4 defines a fuzzy number as being described by a normal, convex membership
function on the real line; fuzzy numbers usually also have symmetric membership functions.
In this chapter we wish to use the extension principle to perform algebraic operations on
fuzzy numbers (as illustrated in previous examples in this chapter). We define a normal,
convex fuzzy set on the real line to be a fuzzy number, and denote it I∼.
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Let I∼ and J∼ be two fuzzy numbers, with I∼ defined on the real line in universe X and
J∼ defined on the real line in universe Y, and let the symbol ∗ denote a general arithmetic
operation, i.e., ∗ ≡ {+, −, ×, ÷}. An arithmetic operation (mapping) between these two
number, denoted I∼∗ J∼, will be defined on universe Z, and can be accomplished using the
extension principle, by

µI∼∗J∼
(z) =

∨
x∗y=z

(µI∼
(x) ∧ µJ∼

(y)) (12.19)

Equation (12.19) results in another fuzzy set, the fuzzy number resulting from the
arithmetic operation on fuzzy numbers I∼ and J∼.

Example 12.8. We want to perform a simple addition (∗ ≡ +) of two fuzzy numbers. Define
a fuzzy one by the normal, convex membership function defined on the integers,

1∼ =
{

0.2

0
+ 1

1
+ 0.2

2

}

Now, we want to add ‘‘fuzzy one’’ plus ‘‘fuzzy one,’’ using the extension principle, Eq. (12.19),
to get

1∼ + 1∼ = 2∼ =
(

0.2

0
+ 1

1
+ 0.2

2

)
+

(
0.2

0
+ 1

1
+ 0.2

2

)

=
{

min(0.2, 0.2)

0
+ max[min(0.2, 1), min(1, 0.2)]

1

+ max[min(0.2, 0.2), min(1, 1), min(0.2, 0.2)]

2

+ max[min(1, 0.2), min(0.2, 1)]

3
+ min(0.2, 0.2)

4

}

=
{

0.2

0
+ 0.2

1
+ 1

2
+ 0.2

3
+ 0.2

4

}

Note that there are two ways to get the resulting membership value for a 1 (0 + 1 and 1 + 0),
three ways to get a 2 (0 + 2, 1 + 1, 2 + 0), and two ways to get a 3 (1 + 2 and 2 + 1). These
are accounted for in the implementation of the extension principle.

The support for a fuzzy number, say I∼ (see Chapter 4), is given by

supp I∼ = {x | µI∼
(x) > 0} = I (12.20)

which is an interval on the real line, denoted symbolically as I. Since applying Eq. (12.19) to
arithmetic operations on fuzzy numbers results in a quantity that is also a fuzzy number, we
can find the support of the fuzzy number resulting from the arithmetic operation, I∼∗ J∼, i.e.,

supp
I∼∗J∼

(z) = I ∗ J (12.21)

which is seen to be the arithmetic operation on the two individual supports (crisp intervals),
I and J, for fuzzy numbers I∼ and J∼, respectively.
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Chapter 4 revealed that the support of a fuzzy set is equal to its λ-cut value at λ = 0+.
In general, we can perform λ-cut operations on fuzzy numbers for any value of λ. A
result we saw in Chapter 4 for set operations (Eq. (4.1)) is also valid for general arithmetic
operations: (

I∼∗ J∼
)

λ
= Iλ ∗ Jλ (12.22)

Equation 12.22 shows that the λ-cut on a general arithmetic operation (∗ ≡ {+, −, ×, ÷})
on two fuzzy numbers is equivalent to the arithmetic operation on the respective λ-cuts of
the two fuzzy numbers. Both (I∼∗ J∼)λ and Iλ ∗ Jλ are interval quantities; and manipulations of
these quantities can make use of classical interval analysis, the subject of the next section.

INTERVAL ANALYSIS IN ARITHMETIC

As alluded to in Chapter 2, a fuzzy set can be thought of as a crisp set with ambiguous
boundaries. In this sense, as Chapter 4 illustrated, a convex membership function defining
a fuzzy set can be described by the intervals associated with different levels of λ-cuts. Let
I1 and I2 be two interval numbers defined by ordered pairs of real numbers with lower and
upper bounds:

I1 = [a, b], where a ≤ b

I2 = [c, d], where c ≤ d

When a = b and c = d, these interval numbers degenerate to a scalar real number. We
again define a general arithmetic property with the symbol ∗, where ∗ ≡ {+, −, ×, ÷}.
Symbolically, the operation

I1 ∗ I2 = [a, b] ∗ [c, d] (12.23)

represents another interval. This interval calculation depends on the magnitudes and signs
of the elements a, b, c, and d. Table 12.1 shows the various combinations of set-theoretic
intersection (∩) and set-theoretic union (∪) for the six possible combinations of these
elements (a < b and c < d still hold). Based on the information in Table 12.1, the four
arithmetic interval operations associated with Eq. (12.23) are given as follows:

[a, b] + [c, d] = [a + c, b + d] (12.24)

[a, b] − [c, d] = [a − d, b − c] (12.25)

[a, b] · [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] (12.26)

[a, b] ÷ [c, d] = [a, b] ·
[

1

d
,

1

c

]
provided that 0 /∈ [c, d] (12.27)

α[a, b] =
{

[αa, αb] for α > 0
[αb, αa] for α < 0

(12.28)

where ac, ad, bc, and bd are arithmetic products and 1/d and 1/c are quotients.
The caveat applied to Eq. (12.27) is that the equivalence stated is not valid for the

case when c ≤ 0 and d ≥ 0 (obviously the constraint c < d still holds), i.e., zero cannot be
contained within the interval [c, d]. Interval arithmetic follows properties of associativity
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TABLE 12.1
Set operations on intervals

Cases Intersection (∩) Union (∪)

a > d ∅ [c, d] ∪ [a, b]
c > b ∅ [a, b] ∪ [c, d]
a > c, b < d [a, b] [c, d]
c > a, d < b [c, d] [a, b]
a < c < b < d [c, b] [a, d]
c < a < d < b [a, d] [c, b]

and commutativity for both summations and products, but it does not follow the property
of distributivity. Rather, intervals do follow a special subclass of distributivity known as
subdistributivity, i.e., for three intervals, I, J, and K,

I · (J + K) ⊂ I · J + I · K (12.29)

The failure of distributivity to hold for intervals is due to the treatment of two
occurrences of identical interval numbers (i.e., I) as two independent interval numbers
[Dong and Shah, 1987].

Example 12.9.

−3 · [1, 2] = [−6,−3]

[0, 1] − [0, 1] = [−1, 1]

[1, 3] · [2, 4] = [min(2, 4, 6, 12), max(2, 4, 6, 12)] = [2, 12]

[1, 2] ÷ [1, 2] = [1, 2] · [ 1
2 , 1] = [ 1

2 , 2]

Consider the following example of subdistributivity. For I = [1, 2], J = [2, 3], K = [1, 4], then

I · (J − K) = [1, 2] · ([2, 3] − [1, 4]) = [1, 2] · [−2, 2] = [−4, 4]

I · J − I · K = [1, 2] · [2, 3] − [1, 2] · [1, 4] = [2, 6] − [1, 8] = [−6, 5]

Now, [−4, 4] �= [−6, 5], but [−4, 4] ⊂ [−6, 5].

Interval arithmetic can be thought of in the following way. When we add or multiply
two crisp numbers, the result is a crisp singleton. When we add or multiply two intervals
we are essentially performing these operations on the infinite number of combinations of
pairs of crisp singletons from each of the two intervals; hence, in this sense, an interval is
expected as the result. In the simplest case, when we multiply two intervals containing only
positive real numbers, it is easy conceptually to see that the interval comprising the solution
is found by taking the product of the two lowest values from each of the intervals to form
the solution’s lower bound, and by taking the product of the two highest values from each
of the intervals to form the solution’s upper bound. Even though we can see conceptually
that an infinite number of combinations of products between these two intervals exist, we
need only the endpoints of the intervals to find the endpoints of the solution.
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APPROXIMATE METHODS OF EXTENSION

A serious disadvantage of the discretized form of the extension principle in propagating
fuzziness for continuous-valued mappings is the irregular and erroneous membership
functions determined for the output variable if the membership functions of the input
variables are discretized for numerical convenience (this problem is demonstrated in
Example 12.14). The reason for this anomaly is that the solution to the extension principle,
as expressed in Eq. (12.7), is really a nonlinear programming problem for continuous-
valued functions. It is well-known that, in any optimization process, discretization of any
variables can lead to an erroneous optimum solution because portions of the solution space
are omitted in the calculations. For example, try to plot a 10th-order curve with a series
of equally spaced points; some local minimum and maximum points on the curve are
going to be missed if the discretization is not small enough. Again, these problems do
not arise because of any inherent problems in the extension principle itself; they arise
when continuous-valued functions are discretized, then allowed to propagate from the input
domain to the output domain using the extension principle.

Other methods have been proposed to ease the computational burden in implementing
the extension principle for continuous-valued functions and mappings. Among the alter-
native methods proposed in the literature to avoid this disadvantage for continuous fuzzy
variables are three approaches that are summarized here along with illustrative numerical
examples. All of these approximate methods make use of intervals, at various λ-cut levels,
in defining membership functions.

Vertex Method

A procedure known as the vertex method [Dong and Shah, 1987] greatly simplifies
manipulations of the extension principle for continuous-valued fuzzy variables, such as
fuzzy numbers defined on the real line. The method is based on a combination of the λ-cut
concept and standard interval analysis. The vertex method can prevent abnormality in the
output membership function due to application of the discretization technique on the fuzzy
variables’ domain, and it can prevent the widening of the resulting function value set due
to multiple occurrences of variables in the functional expression by conventional interval
analysis methods. The algorithm is very easy to implement and can be computationally
efficient.

The algorithm works as follows. Any continuous membership function can be
represented by a continuous sweep of λ-cut intervals from λ = 0+ to λ = 1. Figure 12.5
shows a typical membership function with an interval associated with a specific value of λ.
Suppose we have a single-input mapping given by y = f (x) that is to be extended for fuzzy
sets, or B∼ = f (A∼), and we want to decompose A∼ into a series of λ-cut intervals, say Iλ.

When the function f (x) is continuous and monotonic on Iλ = [a, b], the interval
representing B∼ at a particular value of λ, say Bλ, can be obtained by

Bλ = f (Iλ) = [min(f (a), f (b)), max(f (a), f (b))] (12.30)

Equation (12.30) has reduced the interval analysis problem for a functional mapping
to a simple procedure dealing only with the endpoints of the interval. When the mapping
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FIGURE 12.5
Interval corresponding to a λ-cut level on fuzzy set A∼ .
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FIGURE 12.6
Three-dimensional Cartesian region involving intervals for three input variables, x1, x2, and x3.

is given by n inputs, i.e., y = f (x1, x2, x3, . . . , xn), then the input space can be represented
by an n-dimensional Cartesian region; a 3D Cartesian region is shown in Fig. 12.6. Each of
the input variables can be described by an interval, say Iiλ, at a specific λ-cut, where

Iiλ = [ai, bi] i = 1, 2, . . . , n (12.31)

As seen in Fig. 12.6, the endpoint pairs of each interval given in Eq. (12.31) intersect
in the 3D space and form the vertices (corners) of the Cartesian space. The coordinates
of these vertices are the values used in the vertex method when determining the output
interval for each λ-cut. The number of vertices, N , is a quantity equal to N = 2n, where
n is the number of fuzzy input variables. When the mapping y = f (x1, x2, x3, . . . , xn) is
continuous in the n-dimensional Cartesian region and when also there is no extreme point
in this region (or along the boundaries), the value of the interval function for a particular
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λ-cut can be obtained by

Bλ = f (I1λ, I2λ, I3λ, . . . , Inλ) =
[

min
j

(f (cj )), max
j

(f (cj ))

]
j = 1, 2, . . . , N (12.32)

where cj is the coordinate of the j th vertex representing the n-dimensional Cartesian region.
The vertex method is accurate only when the conditions of continuity and no extreme

point are satisfied. When extreme points of the function y = f (x1, x2, x3, . . . , xn) exist in
the n-dimensional Cartesian region of the input parameters, the vertex method will miss
certain parts of the interval that should be included in the output interval value, Bλ. Extreme
points can be missed, for example, in certain mappings that are not one-to-one. If the
extreme points can be identified, they are simply treated as additional vertices, Ek , in the
Cartesian space and Eq. (12.32) becomes, because the continuity property still holds,

Bλ =
[

min
j,k

(f (cj ), f (Ek)), max
j,k

(f (cj ), f (Ek))

]
(12.33)

where j = 1, 2, . . . , N and k = 1, 2, . . . , m for m extreme points in the region.

Example 12.10. We wish to determine the fuzziness in the output of a simple nonlinear
mapping given by the expression y = f (x) = x(2 − x), seen in Fig. 12.7a, where the fuzzy
input variable, x, has the membership function shown in Fig. 12.7b.

We shall solve this problem using the fuzzy vertex method at three λ-cut levels, for
λ = 0+, 0.5, 1. As seen in Fig. 12.7b, the intervals corresponding to these λ-cuts are I0+ =
[0.5, 2], I.5 = [0.75, 1.5], I1 = [1, 1] (a single point). Since the problem is one-dimensional,
the vertices, cj , are described by a single coordinate; there are N = 21 = 2 vertices (j = 1, 2).
In addition, an extreme point does exist within the region of the membership function and
is determined using a derivative of the function, df (x)/dx = 2 − 2x = 0, x0 = E1 = 1 (Ek ,
where k = 1). This extreme point is within each of the three λ-cut intervals, so will be involved
in all the following calculations for Bλ:

I0+ = [0.5, 2]

c1 = 0.5, c2 = 2, E1 = 1

0 0.5 2 x

1

A~0.75

1

y

x

µ (x)

1

0.5

0 0.5 21

0.75 1.5

(a) (b)

µ

FIGURE 12.7
Nonlinear function and fuzzy input membership.
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f (c1) = 0.5(2 − 0.5) = 0.75, f (c2) = 2(2 − 2) = 0,

f (E1) = 1(2 − 1) = 1

B0+ = [min(0.75, 0, 1), max(0.75, 0, 1)] = [0, 1]

I0.5 = [0.75, 1.5]

c1 = 0.75, c2 = 1.5, E1 = 1

f (c1) = 0.75(2 − 0.75) = 0.9375, f (c2) = 1.5(2 − 1.5) = 0.75,

f (E1) = 1(2 − 1) = 1

B0.5 = [min(0.9375, 0.75, 1), max(0.9375, 0.75, 1)] = [0.75, 1]

I1 = [1, 1]

c1 = 1, c2 = 1, E1 = 1

f (c1) = f (c2) = f (E1) = 1(2 − 1) = 1

B1 = [min(1, 1, 1), max(1, 1, 1)] = [1, 1] = 1

Figure 12.8 provides a plot of the intervals B0+ , B0.5, and B1 to form the fuzzy output, y.

DSW Algorithm

The DSW algorithm [Dong, Shah, and Wong, 1985] also makes use of the λ-cut representa-
tion of fuzzy sets, but, unlike the vertex method, it uses the full λ-cut intervals in a standard
interval analysis. The DSW algorithm consists of the following steps:

1. Select a λ value where 0 ≤ λ ≤ 1.
2. Find the interval(s) in the input membership function(s) that correspond to this λ.
3. Using standard binary interval operations, compute the interval for the output member-

ship function for the selected λ-cut level.
4. Repeat steps 1–3 for different values of λ to complete a λ-cut representation of the

solution.

y

µ(y)

1

0.5

0 0.5 1

~B

0.75

FIGURE 12.8
Fuzzy membership function for the output to y = x(2 − x).
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Example 12.11. Let us consider a nonlinear, 1D expression similar to the previous example,
or y = x(2 + x) = 2x + x2, where we again use the fuzzy input variable shown in Fig. 12.7b.
The new function is shown in Fig. 12.9a, along with the fuzzy input in Fig. 12.9b. Again, if we
decompose the membership function for the input into three λ-cut intervals, for λ = 0+, 0.5,
and 1, we get the intervals I0+ = [0.5, 2], I0.5 = [0.75, 1.5], and I1 = [1, 1] (a single point). In
terms of binary interval operations, the functional mapping on the intervals would take place
as follows for each λ-cut level:

I0+ = [0.5, 2]

B0+ = 2[0.5, 2] + [0.52, 22] = [1, 4] + [0.25, 4] = [1.25, 8]

I0.5 = [0.75, 1.5]

B0.5 = 2[0.75, 1.5] + [0.752, 1.52] = [1.5, 3] + [0.5625, 2.25] = [2.0625, 5.25]

I1 = [1, 1]

B1 = 2[1, 1] + [12, 12] = [2, 2] + [1, 1] = [3, 3] = 3

Figure 12.10 provides a plot of the intervals B0+ , B0.5, and B1 to form the fuzzy output, y.
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FIGURE 12.9
Nonlinear function and fuzzy input membership.

y

µ

1

0.5

0 1

~B

2 4 6 8

FIGURE 12.10
Fuzzy membership function for the output to y = x(2 + x).
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The previous example worked with a fuzzy input that was defined on the positive
side of the real line; hence DSW operations were conducted on positive quantities. Suppose
we want to conduct the same DSW operations, but on a fuzzy input that is defined on
both the positive and negative side of the real line. The user of the DSW algorithm
must be careful in this case. If the lower bound of an interval is negative and the upper
bound is positive (i.e., if the interval contains zero) and if the function involves a square
or an even-power operation, then the lower bound of the result should be zero. This
feature of an interval analysis, like the DSW method, is demonstrated in the following
example.

Example 12.12. Let us consider the nonlinear, 1D expression from Example 12.11, i.e.,
y = x(2 + x) = 2x + x2, which is shown in Fig. 12.9a and is repeated in Fig. 12.11a. Suppose
we change the domain of the input variable, x, to include negative numbers, as shown in
Fig. 12.11b. Again, if we decompose the membership function for the input into three λ-cut
intervals, for λ = 0+, 0.5, and 1, we get the intervals I0+ = [−0.5, 1], I0.5 = [−0.25, 0.5], and
I1 = [0, 0] (a single point). In terms of binary interval operations, the functional mapping on
the intervals would take place as follows for each λ-cut level:

I0+ = [−0.5, 1]

B0+ = 2[−0.5, 1] + [0, 12] = [−1, 2] + [0, 1] = [−1, 3]

(Note: The boldface zero is taken as the minimum, since (−0.5)2 > 0; because zero is contained
in the interval [−0.5, 1] the minimum of squares of any number in the interval will be zero.)

I0.5 = [−0.25, 0.5]

B0.5 = 2[−0.25, 0.5] + [0, 0.52] = [−0.5, 1] + [0, 0.25] = [−0.5, 1.25]

I1 = [0, 0]

B1 = 2[0, 0] + [0, 0] = [0, 0]

Figure 12.12 is a plot of the intervals B0+ , B0.5, and B1 that form the fuzzy output, y.
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FIGURE 12.11
Nonlinear function and fuzzy input membership.
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FIGURE 12.12
Fuzzy membership function for the output to y = x(2 + x).

Restricted DSW Algorithm

This method, proposed by Givens and Tahani [1987], is a slight restriction of the original
DSW algorithm. Suppose we have two interval numbers, I = [a, b] and J = [c, d]. For the
special case where neither of these intervals contains negative numbers, i.e., a, b, c, d ≥ 0,
and none of the calculations using these intervals involves subtraction, the definitions of
interval multiplication, Eq. (12.26), and interval division, Eq. (12.27), can be simplified as
follows:

I · J = [a, b] · [c, d] = [ac, bd] (12.34)

I/J = [a, b] ÷ [c, d] =
[

a

d
,
b

c

]
(12.35)

These definitions of interval multiplication and division require only one-fourth the number
of multiplications (or divisions), and there is no need for the min or max operations, unlike
the previous definitions, Eqs. (12.26, 12.27).

Example 12.13. Let us consider the function in Example 12.12, y = x(2 + x), and another
nonlinear, 1D expression of the form y = x/(2 + x), where we again use the fuzzy input
variable shown in Fig. 12.7b in both functions. In interval calculations we can represent the
scalar value 2 by the interval [2, 2]. The λ-cut interval calculations using the restricted DSW
calculations are now as follows:

y = x(2 + x)

I0+ = [0.5, 2]

B0+ = [0.5, 2] · {[2, 2] + [0.5, 2]} = [0.5, 2] · [2.5, 4] = [1.25, 8]

I0.5 = [0.75, 1.5]

B0.5 = [0.75, 1.5] · {[2, 2] + [0.75, 1.5]} = [0.75, 1.5] · [2.75, 3.5] = [2.0625, 5.25]

I1 = [1, 1]

B1 = [1, 1] · {[2, 2] + [1, 1]} = [1, 1] · [3, 3] = 3

Note that these three intervals for the output B∼ are identical to those in the previous example.
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y = x/(2 + x)

I0+ = [0.5, 2]

B0+ = [0.5, 2] ÷ {[2, 2] + [0.5, 2]} = [0.5, 2] ÷ [2.5, 4] = [0.125, 0.8]

I0.5 = [0.75, 1.5]

B0.5 = [0.75, 1.5] ÷ {[2, 2] + [0.75, 1.5]} = [0.75, 1.5] ÷ [2.75, 3.5]

= [0.2143, 0.5455]

I1 = [1, 1]

B1 = [1, 1] ÷ {[2, 2] + [1, 1]} = [1, 1] ÷ [3, 3] = 0.3333

Comparisons

It will be useful at this point to compare the three methods discussed so far – the extension
principle, the vertex method, and the DSW algorithm – by applying them to the same
problem. This comparison will illustrate the problems faced with using the extension
principle on discretized membership functions, as compared to the other two methods.

Example 12.14. We define fuzzy sets X∼ and Y∼ with the membership functions as shown
in Fig. 12.13. We will use the following methods to compute X∼ ∗ Y∼ and to demonstrate the
similarity of results:

• The extension principle
• The vertex method
• The DSW algorithm

Extension principle using discretized fuzzy sets. The fuzzy variables may be discretized at
seven points as

X∼ =
{

0

1
+ 0.33

2
+ 0.66

3
+ 1.0

4
+ 0.66

5
+ 0.33

6
+ 0

7

}

and

Y∼ =
{

0

2
+ 0.33

3
+ 0.66

4
+ 1.0

5
+ 0.66

6
+ 0.33

7
+ 0

8

}

2 4 5 6 731

X~

2 4 5 6 73 8

Y~

x y

µ
1

µ
1

0 10

FIGURE 12.13
Fuzzy sets X∼ and Y∼ .
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Their product would then give us

X∼ × Y∼ =
{

0

2
+ 0

3
+ 0

4
+ 0

5
+ 0.33

6
+ 0

7
+ 0.33

8
+ 0.33

9
+ 0.33

10
+ 0.66

12

+ 0.33

14
+ 0.66

15
+ 0.33

16
+ 0.66

18
+ 1.0

20
+ 0.33

21
+ 0.66

24
+ 0.66

25
+ 0.33

28

+ 0.66

30
+ 0

32
+ 0.33

35
+ 0.33

36
+ 0.0

40
+ 0.33

42
+ 0.0

48
+ 0.0

49
+ 0.0

56

}

The result of the operation X∼ × Y∼ for a discretization level of seven points is plotted in
Fig. 12.14a. Figures 12.14b, c, and d show the product function X∼ × Y∼ for greater discretization
levels of the fuzzy variables X∼ and Y∼ .

Vertex method. I0+ : Support for X is the interval [1, 7] and support for Y is the interval [2, 8].

(a) x = 1, y = 2, f (a) = 2
(b) x = 1, y = 8, f (b) = 8
(c) x = 7, y = 2, f (c) = 14
(d) x = 7, y = 8, f (d) = 56
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FIGURE 12.14
X∼ × Y∼ for increasing discretization of both X and Y (both variables are discretized for the
same number of points): (a) 7 points; (b) 13 points; (c) 23 points; (d) 63 points.
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Therefore, min = 2, max = 56, and B0+ = [2, 56].

I0.33 : X[2, 6], Y[3, 7].

(a) x = 2, y = 3, f (a) = 6
(b) x = 2, y = 7, f (b) = 14
(c) x = 6, y = 3, f (c) = 18
(d) x = 6, y = 7, f (d) = 42

Therefore, min = 6, max = 42, and B0.33 = [6, 42].

I0.66 : X[3, 5], Y[4, 6].

(a) x = 3, y = 4, f (a) = 12
(b) x = 3, y = 6, f (b) = 18
(c) x = 5, y = 4, f (c) = 20
(d) x = 5, y = 6, f (d) = 30

Therefore, min = 12, max = 30, and B0.66 = [12, 30].

I1.0 : X[4, 4], Y[5, 5].

(a) x = 4, y = 5, f (a) = 20

Therefore, min = 20, max = 20, and B1.0 = [20, 20].

The results of plotting the four λ-cut levels is shown in Fig. 12.15.

DSW method.

I0+ : [1, 7] • [2, 8] = [min(2, 14, 8, 56), max(2, 14, 8, 56)] = [2, 56]

I0.33 : [2, 6] • [3, 7] = [min(6, 18, 14, 42), max(6, 18, 14, 42)] = [6, 42]

I0.66 : [3, 5] • [4, 6] = [min(12, 20, 18, 30), max(12, 20, 18, 30)] = [12, 30]

I1 : [4, 4] • [5, 5] = [min(20, 20, 20, 20), max(20, 20, 20, 20)] = [20, 20]

The results of plotting the four λ-cut levels are shown in Fig. 12.16.

0 10 20 30 40 50

1

0.8

0.6

0.4

0.2

60

µ

X × Y
~ ~

FIGURE 12.15
Output profile of X∼ × Y∼ determined using the vertex method.
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FIGURE 12.16
Output profile of X∼ × Y∼ determined using the DSW algorithm.

Comparing the results from the foregoing three methods, we see that the results are
the same. The discretization method was performed for increasing levels of discretization.
In each case the outer envelope of the curves due to the discretized method gave the
correct results. It should be intuitively obvious that as the discretization is increased (the
equation is exactly simulated) the resulting curve approaches the true values of membership
functions. Also note that the discretization technique is computationally expensive for complex
problems.

SUMMARY

The extension principle is one of the most basic ideas in fuzzy set theory. It provides
a general method for extending crisp mathematical concepts to address fuzzy quantities,
such as real algebra operations on fuzzy numbers. These operations are computationally
effective generalizations of interval analysis. Several methods to convert extended fuzzy
operations into efficient computational algorithms have been presented in this chapter.
All of these approximations make use of the decomposition of a membership function
into a series of λ-cut intervals. The employment of the extension principle on discretized
fuzzy numbers can lead to counterintuitive results, unless sufficient resolution in the
discretization is maintained. This statement is simply a caution to potential users of some
of the simpler ideas in the extension principle. Although the set of real fuzzy numbers
equipped with an extended addition or multiplication is no longer a group, many structural
properties of the resulting fuzzy numbers are preserved in the process [Dubois and Prade,
1980].
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PROBLEMS

12.1. Perform the following operations on intervals:
(a) [2, 3] + [3, 4]
(b) [1, 2] × [1, 3]
(c) [4, 6] ÷ [1, 2]
(d) [3, 5] − [4, 5]

12.2. Given the following fuzzy numbers and using Zadeh’s extension principle, calculate K∼ = I∼· J∼
and explain (or show) why 6∼ is nonconvex:

I∼ = 3∼ = 0.2

2
+ 1

3
+ 0.1

4

J∼ = 2∼ = 0.1

1
+ 1

2
+ 0.3

3

12.3. This problem makes use of Zadeh’s extension principle. You are given the fuzzy sets A∼ and
B∼ on the real line as follows:

µ(xi) 0 1 2 3 4 5 6 7

A∼ 0.0 0.1 0.6 0.8 0.9 0.7 0.1 0.0
B∼ 0.0 1.0 0.7 0.5 0.2 0.1 0.0 0.0

If x and y are real numbers defined by sets A∼ and B∼, respectively, calculate the fuzzy set C∼
representing the real numbers z given by
(a) z = 3x − 2
(b) z = 4x2 + 3
(c) z = x2 + y2

(d) z = x − x

(e) z = min(x, y)

12.4. For the function y = x2
1 + x2

2 − 4x1 + 4 and the membership functions for fuzzy variables
x1 and x2 shown in Fig. P12.4, find and plot the membership function for the fuzzy output
variable, y, using
(a) A discretized form of the extension principle
(b) The vertex method
(c) The DSW algorithm
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FIGURE P12.4

12.5. The voltage drop across an element in a series circuit is equal to the series current multiplied
by the element’s impedance. The current, I∼, impedance, R∼, and voltage, V∼ , are presumed to
be fuzzy variables. Membership functions for the current and impedance are as follows:

I∼ =
{

0

0
+ 0.8

0.5
+ 1

1
+ 0.8

1.5
+ 0

2

}

R∼ =
{

0.5

500
+ 0.9

750
+ 1

1000
+ 0.9

1250
+ 0.5

1500

}

Find the arithmetic product for V∼ = I∼· R∼ using the extension principle.
12.6. Determine equivalent resistance of the circuit shown in Fig. P12.6, where R∼1 and R∼2 are fuzzy

sets describing the resistance of resistors R1 and R2, respectively, expressed in ohms. Since
the resistors are in series they can be added arithmetically. Using the extension principle, find
the equivalent resistance,

R∼eq = R∼1 + R∼2

The membership functions for the two resistors are

R∼1 =
{

0.5

3
+ 0.8

4
+ 0.6

5

}
and R∼2 =

{
0.3

8
+ 1.0

9
+ 0.4

10

}

R2

R1

Req

FIGURE P12.6

12.7. In Newtonian mechanics the equivalent force on a body in motion can be found by taking the
product of its mass and acceleration; this is commonly referred to as Newton’s second law.
For an object in a particular state, suppose the acceleration under the present force is given by
the fuzzy set

A∼ =
{

0

0
+ 0.2

1
+ 0.7

2
+ 1

3
+ 0

4

}

and the mass is given by the fuzzy set

M∼ =
{

0

1
+ 0.5

2
+ 1

3
+ 0.5

4
+ 0

5

}
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Assume both sets are in nondimensionalized units.
(a) Find the fuzzy set representing the force on the object using the extension principle.
(b) Develop analogous continuous membership functions, and plot them, for the fuzzy

acceleration and mass and solve for the fuzzy force using (i) the vertex method and (ii)
the restricted DSW algorithm.

12.8. For fluids, the product of the pressure (P) and the volume (V ) of the fluid is a constant for a
given temperature, i.e.,

PV = constant

Assume that at a given temperature a fluid of fuzzy volume

V∼1 =
{

0.0

0.5
+ 0.5

0.75
+ 1.0

1.0
+ 0.5

1.25
+ 0.0

1.5

}

is under a fuzzy pressure

P∼1 =
{

0.0

0.5
+ 0.5

1.75
+ 1.0

2.0
+ 0.5

2.25
+ 0.0

2.5

}

(a) Using the extension principle, determine the pressure P∼2 if the volume is reduced to

V∼2 =
{

0.0

0.4
+ 0.5

0.45
+ 1.0

0.5
+ 0.5

0.55
+ 0.0

0.6

}

(b) Develop analogous continuous membership functions for the fuzzy pressure P∼1 and
volume V∼1 and solve for the pressure P∼2 using (i) the vertex method and (ii) the DSW
algorithm. Plot the resulting membership function.

(c) Explain why P∼2 · V∼2 would not be the same as P∼1 · V∼1.
12.9. A circle is governed by the equation x2 + y2 = 82. Its fuzzy x coordinate is defined by the

fuzzy set

x∼ =
{

0

0
+ 0.6

2
+ 0.65

3
+ 0.7

4
+ 0.75

5
+ 0.8

6

}

Find the fuzzy y coordinate, and plot its membership function for the equation of a circle.
(a) Use the DSW algorithm.
(b) Perform the same calculation using the restricted DSW algorithm.
(c) Comment on the nature of the results using a fuzzy x that is non-normal.

12.10. For the function y = x2
1 · x2 − 3x2, where the membership functions of x1 and x2 are given in

Fig. P12.10, find and plot the fuzzy membership function for y using
(a) The vertex method

(i) Ignoring any extreme points
(ii) Including any extreme points

(b) The restricted DSW algorithm

1

1 2 40

µ

x13 5

1

10

µ

x23 42

FIGURE P12.10
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12.11. Define a fuzzy set X∼ with the membership function

x∼ =
{

0.1

1
+ 1

2
+ 0.4

3

}

Using the extension principle, determine the membership function for z∼, written in two
different forms, i.e., for
(a) z∼ = x∼

2

(b) z∼ = x∼ · x∼
For parts (a) and (b) use the direct extension principle, the vertex method, and the DSW
method, and compare the three results.
(c) z∼ = x∼

2 and z∼ = x∼ · x∼ using the vertex method
(d) z∼ = x∼

2 and z∼ = x∼ · x∼ using the DSW algorithm
(e) Discuss your answers from the different forms and methods.

12.12. Now suppose x∼ has membership function

x∼ =
{

0.1

−3
+ 0.3

−2
+ 0.7

−1
+ 1

0
+ 0.7

1
+ 0.3

2
+ 0.1

3

}

Repeat steps (a), (b), (c), and (d) of Problem 12.11 and (e) comment on any differences or
similarities.

12.13. When taking hydrostatic measurements, hydrostatic pressure is given by

P = ρgh

where ρ is density, g is acceleration due to gravity, and h is the height of the column of fluid.
In a well-drilling environment, the density of the drilling mud has some uncertainty due to the
inconsistent nature of the fluid. The well depth can also possess significant uncertainty due to
stretching in the drill pipe used to measure the well depth. A membership function for density
and depth is given in Fig. P12.13. Using the DSW algorithm determine the membership
function for hydrostatic pressure, P .

12.14. A dissipated power, P , in a resistor can be described by P = R · I 2, where R is the resistance,
in ohms, and I is the current, measured in amps, passing through the resistor. Let a fuzzy set R∼
be defined on the universe x1 = {10, 20, 30, 40, 50} ohms and a fuzzy set I∼ be defined on the
universe x2 = {0, 1, 2, 3} amps. We wish to map elements of these fuzzy sets to the dissipated
power universe, y, under the relation P = R · I 2. We have a medium resistance given by

R∼ =
{

0.3

10
+ 0.9

20
+ 1

30
+ 0.8

40
+ 0.4

50

}
= ‘‘medium resistance’’

and a low current given by

I∼ =
{

0.5

0
+ 1

1
+ 0.4

2
+ 0.1

3

}
= ‘‘low current’’

Using the discretized form of the extension principle, determine the membership values for P .
12.15. An airport passenger terminal has two activities with specific time intervals: processing times

(t1) and waiting times (t2). The universe of time is X = {10, 20, 30} in minutes. For each of
these two activities there is a membership function relating the level of service to the total
time the passengers spend waiting in line: (1) tolerable service, or (2) good service. For this
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(b) Well depth 
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FIGURE P12.13
(a) Density, (b) well depth.

exercise, suppose each of the times is ‘‘good,’’ as given below:

t1 =
{

1.0

10
+ 0.8

20
+ 0.5

30

}

t2 =
{

1.0

20
+ 0.6

30
+ 0.3

40

}

Using a discretized form of the extension principle, find the membership function for the total
time (processing time + waiting time), i.e., for the total time defined as t = t1 + t2.

12.16. Flue gas is used to heat a process stream using a counter-current heat exchanger. The process
stream is intended to meet a required temperature of 190◦C with an average heat capacity rate
WCpps. The flue gas entering the heat exchanger has WCp = 0.3 kW/◦C and T = 1000◦C
(Fig. P12.16).

Flue gas
T = 1000°C
WCp = 0.3 kW/°C

Process stream
WCpps
T = Tfg − Tapp

Tfg

T = 190°C 

FIGURE P12.16
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The outlet temperature of the gas (Tfg) is considered a discrete fuzzy set of values
related to optimum operation conditions (µ(Tfg)), and the process stream inlet temperature
depends on both Tfg and the approach temperature (�Tapp) that is also considered a discrete
fuzzy set of values (µ(�Tapp)):

µTfg =
{

0

160◦C
+ 0.5

170◦C
+ 0.75

180◦C
+ 0.9

190◦C
+ 1

200◦C

}

µ�Tapp =
{

0

20◦C
+ 0.55

30◦C
+ 0.85

40◦C
+ 1

50◦C
+ 0

60◦C

}

The following equation from the energy balance is needed:

WCpps = (0.3 kW/
◦C)(1000◦C − Tfg)

190◦C − T
with T = Tfg − �Tapp

Implementing the extension principle, find the fuzzy values of the heat capacity rate of the
process stream for optimum operation.



CHAPTER

13
FUZZY
CONTROL
SYSTEMS

The decision to reject one paradigm is always simultaneously the decision to accept another,
and the judgment leading to that decision involves the comparison of both paradigms with
nature and with each other . . . the search for assumptions (even for non-existent ones) can be
an effective way to weaken the grip of a tradition upon the mind and to suggest the basis for a
new one.

Thomas Kuhn
The Structure of Scientific Revolutions, 1962

Control applications are the kinds of problems for which fuzzy logic has had the greatest
success and acclaim. Many of the consumer products that we use today involve fuzzy
control. And, even though fuzzy control is now a standard within industry, the teaching
of this subject on academic campuses is still far from being a standard offering. But, a
paradigm shift is being realized in the area of fuzzy control, given its successes for some
problems where classical control has not been effective or efficient. In the quote, above,
such a paradigm shift can be explained. It was not long ago that fuzzy logic and fuzzy
systems were the subject of ridicule and scorn in the scientific communities, but the control
community moved quickly in accepting the new paradigm and its success is now manifested
in the marketplace.

Control systems abound in our everyday life; perhaps we do not see them as such,
perhaps because some of them are larger than what a single individual can deal with,
but they are ubiquitous. For example, economic systems are large, global systems that
can be controlled; ecosystems are large, amorphous, and long-term systems that can be
controlled. Systems that can be controlled have three key features: inputs, outputs, and
control parameters (or actions) which are used to perturb the system into some desirable
state. The system is monitored in some fashion and left alone if the desired state is realized,

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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or perturbed with control actions until the desired state is reached. Usually, the control
parameters (actions) are used to perturb the inputs to the system. For example, in the case
of economic systems the inputs might be the balance of trade index, the federal budget
deficit, and the consumer price index; outputs might be the inflation rate and the Dow
Jones Industrial index; a control parameter might be the federal lending rate that gets
adjusted occasionally by the US Federal Reserve Board. In the case of ecosystems the
inputs could be the rate of urbanization, automobile traffic, and water use; the outputs
could be reductions in green spaces, or habitat erosion; a control action could be federal
laws and policy on pollution prevention. Other, everyday, control situations are evident
in our daily lives. Traffic lights are control mechanisms: inputs are arrival rates of cars
at an intersection and time of day, outputs are the length of the lines at the lights, and
the control parameters are the length of the various light actions (green, yellow, green
arrow, etc.). And, construction projects involve control scenarios. The inputs on these
projects would include the weather, availability of materials, and labor; outputs could
be the daily progress toward goals and the dates of key inspections; the control actions
could include rewards for finishing on time or early, and penalties for finishing the project
late. There are numerous texts which focus just on fuzzy control; a single chapter on
this subject could not possibly address all the important topics in this field. References
at the end of this chapter are provided for the interested reader. So, in this chapter, we
choose to focus on only two types of control: physical system control and industrial process
control.

A control system for a physical system is an arrangement of hardware components
designed to alter, to regulate, or to command, through a control action, another physical
system so that it exhibits certain desired characteristics or behavior. Physical control
systems are typically of two types: open-loop control systems, in which the control action
is independent of the physical system output, and closed-loop control systems (also known
as feedback control systems), in which the control action depends on the physical system
output. Examples of open-loop control systems are a toaster, in which the amount of heat
is set by a human, and an automatic washing machine, in which the controls for water
temperature, spin-cycle time, and so on are preset by the human. In both these cases the
control actions are not a function of the output of the toaster or the washing machine.
Examples of feedback control are a room temperature thermostat, which senses room
temperature and activates a heating or cooling unit when a certain threshold temperature
is reached, and an autopilot mechanism, which makes automatic course corrections to an
aircraft when heading or altitude deviations from certain preset values are sensed by the
instruments in the plane’s cockpit.

In order to control any physical variable, we must first measure it. The system
for measurement of the controlled signal is called a sensor. The physical system under
control is called a plant. In a closed-loop control system, certain forcing signals of the
system (the inputs) are determined by the responses of the system (the outputs). To obtain
satisfactory responses and characteristics for the closed-loop control system, it is necessary
to connect an additional system, known as a compensator, or a controller, into the loop.
The general form of a closed-loop control system is illustrated in Fig. 13.1 [Phillips and
Harbor, 1996].

Control systems are sometimes divided into two classes. If the object of the control
system is to maintain a physical variable at some constant value in the presence of
disturbances, the system is called a regulatory type of control, or a regulator. Sometimes
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FIGURE 13.1
A closed-loop control system.

this type is also referred to as disturbance-rejection. The room temperature control and
autopilot are examples of regulatory controllers. The second class of control systems are
set-point tracking controllers. In this scheme of control, a physical variable is required
to follow or track some desired time function. An example of this type of system is
an automatic aircraft landing system (see Example 13.3), in which the aircraft follows a
‘‘ramp’’ to the desired touchdown point.

The control problem is stated as follows [Phillips and Harbor, 1996]. The output, or
response, of the physical system under control (i.e., the plant) is adjusted as required by the
error signal. The error signal is the difference between the actual response of the plant, as
measured by the sensor system, and the desired response, as specified by a reference input.
In the following section we describe a typical control system – a closed-loop (feedback)
control system.

CONTROL SYSTEM DESIGN PROBLEM

The general problem of feedback control system design is defined as obtaining a generally
nonlinear vector-valued function h( ), defined for some time, t , as follows [Vadiee, 1993]:

u(t) = h[t, x(t), r(t)] (13.1)

where u(t) is the control input to the plant or process, r(t) is the system reference (desired)
input, and x(t) is the system state vector; the state vector might contain quantities like
the system position, velocity, or acceleration. The feedback control law h is supposed to
stabilize the feedback control system and result in a satisfactory performance.

In the case of a time-invariant system with a regulatory type of controller, where the
reference input is a constant setpoint, the vast majority of controllers are based on one of the
general models given in Eqs. (13.2) and (13.3); that is, either full state feedback or output
feedback, as shown in the following:

u(t) = h[x(t)] (13.2)

u(t) = h

[
y(t), ẏ,

∫
y dt

]
(13.3)
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where y() is the system output or response function. In the case of a simple single-input,
single-output system and a regulatory type of controller, the function h takes one of the
following forms:

u(t) = KP · e(t) (13.4)

for a proportional, or P, controller;

u(t) = KP · e(t) + KI ·
∫

e(t) dt (13.5)

for a proportional-plus-integral, or PI, controller;

u(t) = KP · e(t) + KD · ė(t) (13.6)

for a proportional-plus-derivative, or PD, controller (see Example 13.1 for a PD controller);

u(t) = KP · e(t) + KI ·
∫

e(t) dt + KD · ė(t) (13.7)

for a proportional-plus-derivative-plus-integral, or PID, controller, where e(t), ė(t), and∫
e(t) dt are the output error, error derivative, and error integral, respectively; and

u(t) = −[k1 · x1(t) + k2 · x2(t) + · · · + kn · xn(t)] (13.8)

for a full state-feedback controller.
The problem of control system design is defined as obtaining the generally nonlinear

function h( ) in the case of nonlinear systems; coefficients KP, KI, and KD in the case of
output-feedback systems; and coefficients k1, k2, . . . kn in the case of a full state-feedback
control policy for linear systems. The function h( ) in Eqs. (13.2) and (13.3) describes a
general nonlinear surface that is known as a control, or decision, surface, discussed in the
next section.

Control (Decision) Surface

The concept of a control surface, or decision surface, is central in fuzzy control systems
methodology [Ross, 1995]. In this section we define this very important concept. The
function h as defined in Eqs. (13.1), (13.2), and (13.3) is, in general, defining P nonlinear
hypersurfaces in an n-dimensional space. For the case of linear systems with output feedback
or state feedback it generally is a hyperplane in an n-dimensional space. This surface is
known as the control, or decision, surface. The control surface describes the dynamics
of the controller and is generally a time-varying nonlinear surface. Owing to unmodeled
dynamics present in the design of any controller, techniques should exist for adaptively
tuning and modifying the control surface shape.

Fuzzy rule-based systems use a collection of fuzzy conditional statements derived
from a knowledge base to approximate and construct the control surface [Mamdani and
Gaines, 1981; Kiszka et al., 1985; Sugeno, 1985]. This paradigm of control system design is
based on interpolative and approximate reasoning. Fuzzy rule-based controllers or system
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identifiers, are generally model-free paradigms. Fuzzy rule-based systems are universal
nonlinear function approximators, and any nonlinear function (e.g., control surface ) of
n independent variables and one dependent variable can be approximated to any desired
precision.

Alternatively, artificial neural networks are based on analogical learning and try to
learn the nonlinear decision surface through adaptive and converging techniques, based
on numerical data available from input–output measurements of the system variables and
some performance criteria.

Assumptions in a Fuzzy Control System Design

A number of assumptions are implicit in a fuzzy control system design. Six basic assumptions
are commonly made whenever a fuzzy rule-based control policy is selected.

1. The plant is observable and controllable: state, input, and output variables are usually
available for observation and measurement or computation.

2. There exists a body of knowledge comprised of a set of linguistic rules, engineering
common sense, intuition, or a set of input–output measurements data from which rules
can be extracted (see Chapter 7).

3. A solution exists.
4. The control engineer is looking for a ‘‘good enough’’ solution, not necessarily the

optimum one.
5. The controller will be designed within an acceptable range of precision.
6. The problems of stability and optimality are not addressed explicitly; such issues are

still open problems in fuzzy controller design.

The following section discusses the procedure for obtaining the control surface, h( ),
from approximations based on a collection of fuzzy IF–THEN rules that describe the
dynamics of the controller.

Simple Fuzzy Logic Controllers

First-generation (nonadaptive) simple fuzzy controllers can generally be depicted by a
block diagram such as that shown in Fig. 13.2.

The knowledge-base module in Fig. 13.2 contains knowledge about all the input and
output fuzzy partitions. It will include the term set and the corresponding membership
functions defining the input variables to the fuzzy rule-base system and the output variables,
or control actions, to the plant under control.

The steps in designing a simple fuzzy control system are as follows:

1. Identify the variables (inputs, states, and outputs) of the plant.
2. Partition the universe of discourse or the interval spanned by each variable into a number

of fuzzy subsets, assigning each a linguistic label (subsets include all the elements in the
universe).

3. Assign or determine a membership function for each fuzzy subset.



EXAMPLES OF FUZZY CONTROL SYSTEM DESIGN 481

Scaling factors,
normalization

Defuzzification,
denormalization

Output-scaling
factors,

normalization

Fuzzification

Rule base

Inference

Knowledge
base

Plant
OutputInputs

Sensors

FIGURE 13.2
A simple fuzzy logic control system block diagram.

4. Assign the fuzzy relationships between the inputs’ or states’ fuzzy subsets on the one
hand and the outputs’ fuzzy subsets on the other hand, thus forming the rule-base.

5. Choose appropriate scaling factors for the input and output variables in order to normalize
the variables to the [0, 1] or the [−1, 1] interval.

6. Fuzzify the inputs to the controller.
7. Use fuzzy approximate reasoning to infer the output contributed from each rule.
8. Aggregate the fuzzy outputs recommended by each rule.
9. Apply defuzzification to form a crisp output.

EXAMPLES OF FUZZY CONTROL SYSTEM DESIGN

Most control situations are more complex than we can deal with mathematically. In this
situation fuzzy control can be developed, provided a body of knowledge about the control
process exists, and formed into a number of fuzzy rules. For example, suppose an industrial
process output is given in terms of the pressure. We can calculate the difference between
the desired pressure and the output pressure, called the pressure error (e), and we can
calculate the difference between the desired rate of change of the pressure, dp/dt , and the
actual pressure rate, called the pressure error rate, (ė). Also, assume that knowledge can be
expressed in the form of IF–THEN rules such as

IF pressure error (e) is ‘‘positive big (PB)’’ or ‘‘positive medium (PM)’’ and

IF pressure error rate (ė) is ‘‘negative small (NS),’’

THEN heat input change is ‘‘negative medium (NM).’’

The linguistic variables defining the pressure error, ‘‘PB’’ and ‘‘PM,’’ and the
pressure error rate, ‘‘NS’’ and ‘‘NM,’’ are fuzzy; but the measurements of both the pressure
and pressure rate as well as the control value for the heat (the control variable) ultimately
applied to the system are precise (crisp). The schematic in Fig. 13.3 shows this idea. An
input to the industrial process (physical system) comes from the controller. The physical
system responds with an output, which is sampled and measured by some device. If the
measured output is a crisp quantity it can be fuzzified into a fuzzy set (see Chapter 4). This
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FIGURE 13.3
Typical closed-loop fuzzy control situation.

fuzzy output is then considered as the fuzzy input into a fuzzy controller, which consists of
linguistic rules. The output of the fuzzy controller is then another series of fuzzy sets. Since
most physical systems cannot interpret fuzzy commands (fuzzy sets), the fuzzy controller
output must be converted into crisp quantities using defuzzification methods (again, see
Chapter 4). These crisp (defuzzified) control-output values then become the input values to
the physical system and the entire closed-loop cycle is repeated.

Example 13.1. For some industrial plants a human operator is sometimes more efficient than
an automatic controller. These intuitive control strategies, which provide a possible method
to handle qualitative information, may be modeled by a fuzzy controller. This example looks
at a pressure process controlled by a fuzzy controller. The controller is formed by a number
of fuzzy rules, such as: if pressure error is ‘‘positive big’’ or ‘‘positive medium,’’ and if the
rate of change in the pressure error is ‘‘negative small,’’ then heat input change is ‘‘negative
medium.’’ This example is illustrated in four steps.

Step 1. Value assignment for the fuzzy input and output variables. We will let the error
(e) be defined by eight linguistic variables, labeled A1, A2, . . . , A8, partitioned on the error
space of [−em, +em], and the error rate (ė, or de/dt) be defined by seven variables, labeled
B1, B2, . . . , B7, partitioned on the error rate space of [−ėm, ėm]. We will normalize these
ranges to the same interval [−a,+a] by

e1 =
(

a

em

)
· e

ė1 =
(

a

ėm

)
· ė

For the error, the eight fuzzy variables, A∼ i (i = 1, 2, . . . , 8), will conform to the linguistic
variables NB, NM, NS, N0, P0, PS, PM, PB. For the error rate, ė, the seven fuzzy variables,
B∼j (j = 1, 2, . . . , 7), will conform to the linguistic variables NB, NM, NS, 0, PS, PM, PB.
The membership functions for these quantities will be on the range [−a, a], where a = 6, and
are shown in Tables 13.1 and 13.2 (in the tables x = e and y = ė).

The fuzzy output variable, the control quantity (z), will use seven fuzzy variables on
the normalized universe, z = {−7,−6,−5, . . . , +7}. The control variable will be described
by fuzzy linguistic control quantities, C∼k(k = 1, 2, . . . , 7), which are partitioned on the control
universe. Table 13.3 is the normalized control quantity, z, which is defined by seven linguistic
variables.



EXAMPLES OF FUZZY CONTROL SYSTEM DESIGN 483

TABLE 13.1∗
Membership functions for error (e)

x −6 −5 −4 −3 −2 −1 0− 0+ 1 2 3 4 5 6

Ai

A8 PB 0 0 0 0 0 0 0 0 0 0 0.1 0.4 0.8 1
A7 PM 0 0 0 0 0 0 0 0 0 0.2 0.7 1 0.7 0.2
A6 PS 0 0 0 0 0 0 0 0.3 0.8 1 0.5 0.1 0 0
A5 P0 0 0 0 0 0 0 0 1 0.6 0.1 0 0 0 0
A4 N0 0 0 0 0 0.1 0.6 1 0 0 0 0 0 0 0
A3 NS 0 0 0.1 0.5 1 0.8 0.3 0 0 0 0 0 0 0
A2 NM 0.2 0.7 1 0.7 0.2 0 0 0 0 0 0 0 0 0
A1 NB 1 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0 0

∗ In the case of crisp control the membership values in the shaded boxes become unity and all other values become
zero.

TABLE 13.2∗
Membership functions for error rate (de/dt)

y −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Bj

B7 PB 0 0 0 0 0 0 0 0 0 0.1 0.4 0.8 1
B6 PM 0 0 0 0 0 0 0 0 0.2 0.7 1 0.7 0.2
B5 PS 0 0 0 0 0 0 0 0.9 1 0.7 0.2 0 0
B4 0 0 0 0 0 0 0.5 1 0.5 0 0 0 0 0
B3 NS 0 0 0.2 0.7 1 0.9 0 0 0 0 0 0 0
B2 NM 0.2 0.7 1 0.7 0.2 0 0 0 0 0 0 0 0
B1 NB 1 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0

∗ In the case of crisp control the membership values in the shaded boxes become unity and all other values become
zero.

TABLE 13.3∗
Membership functions for the control quantity (z)

z −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

Ck

C1 PB 0 0 0 0 0 0 0 0 0 0 0 0.1 0.4 0.8 1
C2 PM 0 0 0 0 0 0 0 0 0 0.2 0.7 1 0.7 0.2 0
C3 PS 0 0 0 0 0 0 0 0.4 1 0.8 0.4 0.1 0 0 0
C4 0 0 0 0 0 0 0 0.5 1 0.5 0 0 0 0 0 0
C5 NS 0 0 0 0.1 0.4 0.8 1 0.4 0 0 0 0 0 0 0
C6 NM 0 0.2 0.7 1 0.7 0.2 0 0 0 0 0 0 0 0 0
C7 NB 1 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0 0 0

∗ In the case of crisp control the membership values in the shaded boxes become unity and all other values become
zero.
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TABLE 13.4
Control rules (FAM table)

Ai

NB NM NS N0 P0 PS PM PB

Bj

NB PB PM NB NB NB NB
NM PB PM NM NM NS NM
NS PB PM NS NS NS NS NM NB
0 PB PM PS 0 0 NS NM NB
PS PB PM PS PS PS PS NM NB
PM PS PS PM PM NM NB
PB PB PB PB PB NM NB

Step 2. Summary of control rules. According to human operator experience, control
rules are of the form

If e is A∼1 and ė is B∼1, then z is C∼1.

If e is A∼1 and ė is B∼2, then z is C∼12.

If e is A∼ i and ė is B∼j , then z is C∼k .

Each rule can be translated into a fuzzy relation, R∼. Using such an approach will result in
linguistic variables, C∼k , shown as control entries in Table 13.4.

Step 3. Conversion between fuzzy variables and precise quantities. From the output
of the system we can use an instrument to measure the error (e) and calculate the error
rate (ė), both of which are precise numbers. A standard defuzzification procedure to develop
membership functions, such as the maximum membership principle (see Chapter 4), can be
used to get the corresponding fuzzy quantities (A∼ i , B∼i ). Sending the A∼ and B∼ obtained from
the output of the system to the fuzzy controller will yield a fuzzy action variable C∼ (control
rules) as discussed in step 2. But before implementing the control, we have to enter the precise
control quantity z into the system. We need another conversion from C∼ to z. This can be done
by a maximum membership principle, or by a weighted average method (see Chapter 4).

Step 4. Development of control table. When the procedures in step 3 are used for all e
and all ė, we obtain a control table as shown in Table 13.5. This table now contains precise
numerical quantities for use by the industrial system hardware. If the values in Table 13.5 are
plotted, they represent a control surface. Figure 13.4 is the control surface for this example, and
Fig. 13.5 would be the control surface for this example if it had been conducted using only crisp
sets and operations (for the crisp case, the values in Table 13.5 will be different). The volume
under a control surface is proportional to the amount of energy expended by the controller. It
can be shown that the fuzzy control surface (Fig. 13.4) will actually fit underneath the crisp
control surface (Fig. 13.5), indicating that the fuzzy control expends less energy than the crisp
control. Fuzzy control methods, such as this one, have been used for some industrial systems
and have achieved significant efficiency [Mamdani, 1974; Pappas and Mamdani, 1976].

In the foregoing example, we did not conduct a simulation of a control process because
we do not have a model for the controller. The development of the control surface is derived
simply from the control rules and associated membership functions. After the control surface
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TABLE 13.5
Control actions

y

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

x

−6 7 6 7 6 7 7 7 4 4 2 0 0 0
−5 6 6 6 6 6 6 6 4 4 2 0 0 0
−4 7 6 7 6 7 7 7 4 4 2 0 0 0
−3 6 6 6 6 6 6 6 3 2 0 −1 −1 −1
−2 4 4 4 5 4 4 4 1 0 0 −1 −1 −1
−1 4 4 4 5 4 4 1 0 0 0 −3 −2 −1
0+ 4 4 4 5 1 1 0 −1 −1 −1 −4 −4 −4
0+ 4 4 4 5 1 1 0 −1 −1 −1 −4 −4 −4
1 2 2 2 2 0 0 −1 −4 −4 −3 −4 −4 −4
2 1 1 1 −2 0 −3 −4 −4 −4 −3 −4 −4 −4
3 0 0 0 0 −3 −3 −6 −6 −6 −6 −6 −6 −6
4 0 0 0 −2 −4 −4 −7 −7 −7 −6 −7 −6 −7
5 0 0 0 −2 −4 −4 −6 −6 −6 −6 −6 −6 −6
6 0 0 0 −2 −4 −4 −7 −7 −7 −6 −7 −6 −7

FIGURE 13.4
Control surface for fuzzy process control in Example 13.1.

is developed, a simulation can be conducted if a mathematical or linguistic (rule-based) model
of the control process is available.

AIRCRAFT LANDING CONTROL PROBLEM

The following example shows the flexibility and reasonable accuracy of a typical application
in fuzzy control.
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FIGURE 13.5
Control surface for crisp process control in Example 13.1.

Example 13.2. We will conduct a simulation of the final descent and landing approach of
an aircraft. The desired profile is shown in Fig. 13.6. The desired downward velocity is
proportional to the square of the height. Thus, at higher altitudes, a large downward velocity
is desired. As the height (altitude) diminishes, the desired downward velocity gets smaller and
smaller. In the limit, as the height becomes vanishingly small, the downward velocity also goes
to zero. In this way, the aircraft will descend from altitude promptly but will touch down very
gently to avoid damage.

The two state variables for this simulation will be the height above ground, h, and the
vertical velocity of the aircraft, v (Fig. 13.7). The control output will be a force that, when
applied to the aircraft, will alter its height, h, and velocity, v. The differential control equations
are loosely derived as follows. See Fig. 13.8. Mass m moving with velocity v has momentum
p = mv. If no external forces are applied, the mass will continue in the same direction at
the same velocity, v. If a force f is applied over a time interval �t , a change in velocity of
�v = f �t/m will result. If we let �t = 1.0 (s) and m = 1.0 (lb s2/ft), we obtain �v = f
(lb), or the change in velocity is proportional to the applied force.

In difference notation we get

vi+1 = vi + fi

hi+1 = hi + vi · �t (1)

0

D
ow

nw
ar

d 
ve

lo
ci

ty

Height above ground

FIGURE 13.6
The desired profile of downward velocity vs. altitude.
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FIGURE 13.7
Aircraft landing control problem.

Mass (m)

Velocity (v) FIGURE 13.8

where vi+1 is the new velocity, vi is the old velocity, hi+1 is the new height, and hi is the old
height. These two ‘‘control equations’’ define the new value of the state variables v and h in
response to control input and the previous state variable values. Next, we construct membership
functions for the height, h, the vertical velocity, v, and the control force, f :

Step 1. Define membership functions for state variables as shown in Tables 13.6 and 13.7
and Figs. 13.9 and 13.10.

Step 2. Define a membership function for the control output, as shown in Table 13.8
and Fig. 13.11.

Step 3. Define the rules and summarize them in an FAM table (Table 13.9). The values
in the FAM table, of course, are the control outputs.

TABLE 13.6
Membership values for height

Height (ft)

0 100 200 300 400 500 600 700 800 900 1000

Large (L) 0 0 0 0 0 0 0.2 0.4 0.6 0.8 1
Medium (M) 0 0 0 0 0.2 0.4 0.6 0.8 1 0.8 0.6
Small (S) 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0 0 0
Near zero (NZ) 1 0.8 0.6 0.4 0.2 0 0 0 0 0 0
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TABLE 13.7
Membership values for velocity

Vertical velocity (ft/s)

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30

Up large (UL) 0 0 0 0 0 0 0 0 0 0.5 1 1 1
Up small (US) 0 0 0 0 0 0 0 0.5 1 0.5 0 0 0
Zero (Z) 0 0 0 0 0 0.5 1 0.5 0 0 0 0 0
Down small (DS) 0 0 0 0.5 1 0.5 0 0 0 0 0 0 0
Down large (DL) 1 1 1 0.5 0 0 0 0 0 0 0 0 0

Height (ft)

1.0

0

0.8

0.6

0.4

0.2

0
100 200 300 400 500 600 700 800 900 1000

Near zero Small Medium Large

FIGURE 13.9
Height, h, partitioned.
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FIGURE 13.10
Velocity, v, partitioned.

TABLE 13.8
Membership values for control force

Output force (lb)

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30

Up large (UL) 0 0 0 0 0 0 0 0 0 0.5 1 1 1
Up small (US) 0 0 0 0 0 0 0 0.5 1 0.5 0 0 0
Zero (Z) 0 0 0 0 0 0.5 1 0.5 0 0 0 0 0
Down small (DS) 0 0 0 0.5 1 0.5 0 0 0 0 0 0 0
Down large (DL) 1 1 1 0.5 0 0 0 0 0 0 0 0 0
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Control force (lbs)
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FIGURE 13.11
Control force, f , partitioned.

TABLE 13.9
FAM table

Velocity

Height DL DS Zero US UL

L Z DS DL DL DL
M US Z DS DL DL
S UL US Z DS DL
NZ UL UL Z DS DS

Step 4. Define the initial conditions, and conduct a simulation for four cycles. Since the
task at hand is to control the aircraft’s vertical descent during approach and landing, we will
start with the aircraft at an altitude of 1000 feet, with a downward velocity of −20 ft/s. We will
use the following equations to update the state variables for each cycle:

vi+1 = vi + fi

hi+1 = hi + vi

Initial height, h0: 1000 ft

Initial velocity, v0: −20 ft/s

Control f0: to be computed

Height h fires L at 1.0 and M at 0.6

Velocity v fires only DL at 1.0

Height Velocity Output
L (1.0) AND DL (1.0) ⇒ Z (1.0)
M (0.6) AND DL (1.0) ⇒ US (0.6)

We defuzzify using the centroid method and get f0 = 5.8 lb. This is the output force computed
from the initial conditions. The results for cycle 1 appear in Fig. 13.12.

Now, we compute new values of the state variables and the output for the next cycle,

h1 = h0 + v0 = 1000 + (−20) = 980 ft

v1 = v0 + f0 = −20 + 5.8 = −14.2 ft/s
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FIGURE 13.12
Truncated consequents and union of fuzzy consequent for cycle 1.
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FIGURE 13.13
Truncated consequents for cycle 2.

Height h1 = 980 ft fires L at 0.96 and M at 0.64

Velocity v1 = −14.2 ft/s fires DS at 0.58 and DL at 0.42

Height Velocity Output
L (0.96) AND DS (0.58) ⇒ DS (0.58)
L (0.96) AND DL (0.42) ⇒ Z (0.42)
M (0.64) AND DS (0.58) ⇒ Z (0.58)
M (0.64) AND DL (0.42) ⇒ US (0.42)

We find the centroid to be f1 = −0.5 lb. Results are shown in Fig. 13.13.
We compute new values of the state variables and the output for the next cycle.

h2 = h1 + v1 = 980 + (−14.2) = 965.8 ft

v2 = v1 + f1 = −14.2 + (−0.5) = −14.7 ft/s

h2 = 965.8 ft fires L at 0.93 and M at 0.67

v2 = −14.7 ft/s fires DL at 0.43 and DS at 0.57
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FIGURE 13.14
Truncated consequents for cycle 3.

Height Velocity Output
L (0.93) AND DL (0.43) ⇒ Z (0.43)
L (0.93) AND DS (0.57) ⇒ DS (0.57)
M (0.67) AND DL (0.43) ⇒ US (0.43)
M (0.67) AND DS (0.57) ⇒ Z (0.57)

We find the centroid for this cycle to be f2 = −0.4 lb. Results appear in Fig. 13.14.
Again, we compute new values of state variables and output:

h3 = h2 + v2 = 965.8 + (−14.7) = 951.1 ft

v3 = v2 + f2 = −14.7 + (−0.4) = −15.1 ft/s

and for one more cycle we get

h3 = 951.1 ft fires L at 0.9 and M at 0.7

v3 = −15.1 ft/s fires DS at 0.49 and DL at 0.51

Height Velocity Output
L (0.9) AND DS (0.49) ⇒ DS (0.49)
L (0.9) AND DL (0.51) ⇒ Z (0.51)
M (0.7) AND DS (0.49) ⇒ Z (0.49)
M (0.7) AND DL (0.51) ⇒ US (0.51)

The results are shown in Fig. 13.15, with a defuzzified centroid value of f3 = 0.3 lb.
Now, we compute the final values for the state variables to finish the simulation,

h4 = h3 + v3 = 951.1 + (−15.1) = 936.0 ft

v4 = v3 + f3 = −15.1 + 0.3 = −14.8 ft/s

The summary of the four-cycle simulation results is presented in Table 13.10. If we
look at the downward velocity vs. altitude (height) in Table 13.10, we get a descent profile
which appears to be a reasonable start at the desired parabolic curve shown in Fig. 13.6 at the
beginning of the example.
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FIGURE 13.15
Truncated consequents for cycle 4.

TABLE 13.10
Summary of four-cycle simulation results

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Height, ft 1000.0 980.0 965.8 951.1 936.0
Velocity, ft/s −20 −14.2 −14.7 −15.1 −14.8
Control force 5.8 −0.5 −0.4 0.3

FUZZY ENGINEERING PROCESS CONTROL [Parkinson, 2001]

Engineering process control, or the automatic control of physical processes, is a rather
large complex field. We discuss first some simple concepts from classical process control
in order to provide a background for fuzzy process control concepts. Since fuzzy process
control systems can be very complex and diverse, we present only enough information
here to provide an introduction to this very interesting topic. We first discuss the classical
proportional–integral–derivative (PID) controller (see Eq. (13.7)), then some fuzzy logic
controllers. Of the two types of control problems, setpoint-tracking and disturbance
rejection, we will illustrate only the setpoint-tracking problem. Most industrial problems
are single-input, single-output (SISO), or at least treated that way because multi-input,
multi-output (MIMO) problems are normally significantly more difficult. Fuzzy MIMO
problems will be discussed in this chapter because fuzzy controllers usually handle these
problems quite well; of the many types, only feedback control systems will be illustrated.

Classical Feedback Control

The classical feedback control system can be described using a block flow diagram like the
one shown in Fig. 13.16.

The first rectangular block in this figure represents the controller. The second
rectangular block represents the system to be controlled, often called the plant. The block
in the feedback loop is a converter. The converter converts the feedback signal to a signal
useable by the summer, which is the circle at the far left-hand side of the diagram. The letter
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FIGURE 3.16
Standard block flow diagram for a control system.

w represents the setpoint value or the desired control point. This is the desired value of the
variable that we are controlling. The letter v represents the output signal or the current value
of the variable that we are controlling. The symbol v′ represents the feedback variable,
essentially the same signal as the output signal but converted to a form that is compatible
with the setpoint value. The letter e represents the error, or the difference between the
setpoint value and the feedback variable value. The letter u represents the control action
supplied by the controller to the plant. A short example will clarify this explanation.

Example 13.3 Liquid-Level Control. Consider the tank with liquid in it shown in Fig. 13.17.
We want to design a controller that will either maintain that liquid level at a desired point, a
disturbance rejection problem, or one that can be used to move the level set point from, say,
4 feet to 6 feet, the setpoint-tracking problem, or both. We can do either one or both, but for
purposes of illustration, it is easier to confine our explanation to the setpoint-tracking problem.
Suppose that the tank in Fig. 13.17 is 10 feet tall and the tank is empty. We want to fill the
tank to a level of 5 feet, so we make the current setpoint, w, equal to 5. The idea is to fill
the tank to the desired setpoint as quickly and smoothly as possible. We want to minimize the
amount of overshoot, or the time that the tank has a level greater than the setpoint value before
it finally settles down. The current level at any time, t , is designated as h. Liquid flows out
of the tank through an open valve. This flow is designated by the letter q. Liquid flows into

h

A, tank cross-sectional areaQ, pump flow into tank

q, flow from tank

FIGURE 13.17
Tank with a liquid level that needs to be controlled.
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Controller
Q = f(e)

Plant

dt
dh

A = Q − q

v = h

v′= h

+

−

w = hs (5 ft) 

e = w − h u = Q

FIGURE 13.18
Block flow diagram for Example 13.3.

the tank by means of a pump. The pump flow, Q, can be regulated by the controller. The tank
cross-sectional area is designated by the letter A. Equation (13.9) describes the mass balance
for the liquid in the tank as a function of time:

A
dh

dt
= Q − q (13.9)

Flow out of the tank, q, through the outlet pipe and the valve is described by

q = �Ap

√
2gh (13.10)

where � is a friction coefficient for flow through both the small exit pipe and the valve. It can be
calculated with fair precision, or better, measured. The term Ap represents the cross-sectional
area of the small exit pipe. The gravitational constant, g, is equal to 32.2 ft/s2 in US engineering
units. Figure 13.18 shows the block flow diagram for this example.

Classical PID Control

The PID control algorithm is described by

u = KPe + KI

∫ T

0
e dt + KD

de

dt
(13.11)

where the symbols KP, KI, and KD are the proportional, integral, and derivative control
constants, respectively (as in Eq. (13.7)). These constants are specific to the system in question.
They are usually picked to optimize the controller performance and insure that the system
remains stable for all possible control actions.

If we use a PID controller, which is linear, or any other linear controller with a linear
plant, then the system is called a linear system. Linear systems have nice properties. The
control engineer can use Laplace transforms to convert the linear equations in the blocks in
Fig. 13.18 to the Laplace domain. The blocks can then be combined to form a single transfer
function for the entire system. Most of the systems studied in the control systems literature are
linear systems. In the real world, many systems are at least slightly nonlinear. However, often
this fact is ignored or the system is linearized so that linear control systems theory can be used
to solve the problem. There are several techniques for linearizing control systems. The most
common is to expand the nonlinear function in a truncated Taylor’s series. Equation (13.10)
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TABLE 13.11
Approximate linearization

h (ft)
√

h Eq. (13.12)

10 3.162 3.354
9 3.0 3.130
8 2.828 2.907
7 2.646 2.683
6 2.449 2.460
5 2.236 2.236
4 2.0 2.012
3 1.732 1.789
2 1.414 1.565
1 1.0 1.342
0 0 1.118

shows that our plant in Example 13.3 is not linear. The truncated Taylor’s series for linearizing
Eq. (13.10) about a steady state value, in this case our setpoint, is given by

√
h ≈ √

hs + 1

2
√

hs
(h − hs) (13.12)

If we choose hs = 5 ft, we can linearize the radical term over some of the control range.
Table 13.11 demonstrates how well this works.

The reader can see that the Taylor’s approximation is not a bad one, at least until one
gets near zero. The point of all this is that once the equation for the plant becomes linear,
we can take Laplace transforms of the plant equation. We can also take Laplace transforms
of the control equation, Eq. (13.11), which is already linear. The control engineer typically
redefines the variables e and h in Eqs. (13.9), (13.10), and (13.12) as deviation variables. That
is, variables that deviate about some steady state. This causes the constants and boundary
conditions to go to zero and the equations become much easier to deal with. The Laplace
transforms for the controller and the plant are combined with one for the feedback loop to form
an algebraic transfer function, G(s) (Fig. 13.19), in the Laplace domain. This transfer function
form has some very nice properties from a control system point of view.

In Fig. 13.19 G(s) is the transfer function for the entire block flow diagram including the
feedback loop. The variables w(s) and v(s) are the setpoint and output variables, respectively,
converted to the Laplace, s, domain. The control engineer can work with the system transfer
function and determine the range in which the control constants, KP, KI, and KD must fall in
order to keep the system stable. Electrical engineers design controllers for a wide variety of
systems. Many of these systems can become unstable as a result of a sudden change in the
control action. An example might be an aircraft control system. Chemical engineers, on the
other hand, usually design control systems only for chemical processes. Many of these systems
are not as likely to become unstable from a sudden change in control action. Our liquid-level
controller is an example. A sudden change in the control action, say a response to a leak in

G(s)
w(s) v(s)

FIGURE 13.19
Overall system block flow diagram or transfer function for the Laplace domain.
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FIGURE 13.20
Time- level response for the tank-filling problem in Example 13.3.

the tank, is not likely to make the system become unstable, no matter how abrupt the change.
Laplace transforms and the s domain are a very important part of classical control theory, but
are not needed to illustrate our example.

The PID controller accounts for the error, the integral of the error, and the derivative of
the error, in order to provide an adequate response to the error. Figure 13.20 shows a typical
time-domain response curve for a PID controller, for a problem like the tank-filling problem of
Example 13.3.

Figure 13.20 represents a typical response curve for a setpoint-tracking problem. At time
t∗ the tank level h(t∗) is at the point on the response curve that is pointed to by the de/dt arrow.
The error, e, is the distance between the setpoint level line, hs, and the current tank level h(t∗).
Since in this case

de/dt = d(hs − h(t))/dt = −dh/d. t

the derivative term in the PID control equation is shown as the negative derivative of the
response curve at time t∗. The shaded area between the hs line and the h curve between time
t0 and t∗ is an approximation to the integral term, in Eq. (13.11). One criterion for an optimal
controller is to find control constants than minimize the error integral. That is, find KP, KI, and
KD such that

∫ t∞
t0

edt is minimized. The term t∞ is the time at which the controlled variable,
tank-level in this case, actually reaches and stays at the setpoint. The proportional term in
Eq. (13.11) drives the control action hard when there is a large error and slower when the
error is small. The derivative term helps to home in the controller variable to the setpoint. It
also reduces overshoot because of its response to the change in the sign and the rate of change
of the error. Without the integral term, however, the controlled variable would never hold at
the setpoint, because at the setpoint both e and de/dt are equal to 0. A pure PD controller
would become an on–off controller when operating about the setpoint. The overshoot shown
in Fig. 13.20 is something that control engineers normally try to minimize. It can really present
a problem for a tank-filling exercise, especially if the level setpoint is near the top of an
open tank.

Fuzzy Control

In the simplest form, a fuzzy control system connects input membership functions, functions
representing the input to the controller, e, to output membership functions that represent
the control action, u. A good example for the fuzzy control system is a controller that



FUZZY ENGINEERING PROCESS CONTROL 497

controls the liquid level in the tank shown in Fig. 13.17. This time we want to design a
controller that will allow us to change the setpoint either up or down, and one that will
correct itself in the case of overshoot. A simple fuzzy control system designed for our
tank-level setpoint-tracking problem consists of three rules.

1. If the Level Error is Positive Then the Change in Control Action is Positive.
2. If the Level Error is Zero Then the Change in Control Action is Zero.
3. If the Level Error is Negative Then the Change in Control Action is Negative.

The input membership functions are shown in Fig. 13.21. The reader should also notice
the ‘‘dead band’’ or ‘‘dead zone’’ in the membership function Zero between about ±3
inches. This is optional and is a feature commonly used with on–off controllers. It is
easy to implement with a fuzzy controller and is useful if the control engineer wishes to
minimize control response to small transient-level changes. This step can save wear and
tear on equipment.

The output membership functions for this controller are shown in Fig. 13.22. In this
figure the defuzzified output value from the controller is a fractional value representing the
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FIGURE 13.21
Input membership functions for the fuzzy tank-level controller.
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FIGURE 13.22
Output membership functions for the fuzzy liquid-level controller.
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required pump output for the desired level change. It is defined by the following expression:

Change in Controller Action = �u = (Qi − Qsp)/Range (13.13)

where the term Qsp represents the pump output (gallons per minute) required to maintain
the setpoint level. The term Qi is the new pump output requested by the controller. If
�u > 0 then the Range is defined as Qmax − Qsp, where Qmax is the maximum pump
output. If �u < 0 then the Range is defined as Qsp. The term Qsp must be calculated using
a steady state mass balance for the tank or it must be estimated in some fashion. The steady
state calculation requires only algebra. It requires only a knowledge of the parameter �

in Eq. (13.10). This value can either be measured by experiment, or approximated quite
closely from resistance coefficients found in any fluid mechanics text (e.g., Olsen [1961]).
This is an engineering calculation that is quite different from, and usually easier to do than,
calculations needed to compute KP, KI, and KD for the PID controller.

The ranges of the fuzzy output sets Positive and Negative are +2.0 to 0.0 and −2.0
to 0.0, respectively. Since the Change in Controller Action is a fraction between either 0.0
and 1.0 or 0.0 and −1.0, it is clear that we will never obtain a control action outside of the
range of −1.0 to 1.0. Our defuzzification technique will require that we include numbers up
to 2.0 in the fuzzy set or membership function Positive and numbers down to −2.0 in the
fuzzy set Negative. Even though numbers of this magnitude can never be generated by our
fuzzy system, we can still include them in our fuzzy sets. The users can define their fuzzy
sets however they wish. The fuzzy mathematics described in earlier chapters is capable
of handling objects of this type. The user has to define the fuzzy sets so that they make
sense for the particular problem. In our case we are going to use the centroid technique for
defuzzification. We therefore need to extend our membership functions so that it is possible
to obtain centroids of ±1.0. We need this capability in order for the control system to either
turn the pump on ‘‘full blast’’ or turn it completely off.

We can describe our simple fuzzy controller as an approximation to an I or Integral
controller. Our rules are of the form �u = f (e), where �u is the Control Action Change for
the sample time interval �t . We can make the approximation that �u/�t ≈ du/dt ≈ KIe

and ∫ du = KI ∫ edt and that u = u0 + KI

∫ T

t0
edt or that

u = KI

T∫
0

e dt

Example 13.4 (continuation of Example 13.3). Suppose that we decide to change our
setpoint level from 5 feet to 8 feet in the tank described in Example 13.3. The error is defined
as the setpoint level, 8 ft, minus the current level, 5ft, or +3 ft. The three rules are fired,
producing the following results:

1. Positive error is 0.5.
2. Zero error is 0.5.
3. Negative error is 0.0,

The results are shown graphically in Fig. 13.23.
In this example an error of +3 ft intersects the membership function Zero at approxi-

mately 0.5 and the membership function Positive at approximately 0.5. We say that Rules 1



FUZZY ENGINEERING PROCESS CONTROL 499

0

0.5
0.5

1

−10 −5 0 5+3 10

Level Error (ft)

M
em

be
rs

hi
p

Negative Zero Positive

FIGURE 13.23
Resolution of input for Example 13.4.
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FIGURE 13.24
Resolution of output for Example 13.4.

and 2 were each fired with strength 0.5. The output membership functions corresponding to
Rules 1 and 2 are each ‘‘clipped’’ at 0.5. See Fig. 13.24.

The centroid of the ‘‘clipped’’ membership functions, the shaded area in Fig. 13.24,
is +0.5. This centroid becomes the term �u in Eq. (13.13). Since �u is greater than 0.0,
Eq. (13.13) can be rewritten as

Qi = (Qmax − Qsp)�u + Qsp or Qi = 0.5(Qmax + Qsp) since �u = 0.5 (13.14)

This says that the new pump output, Qi, should be adjusted to be halfway between the
current or setpoint output and the maximum heater output. After an appropriate time interval,
corresponding to a predetermined sample rate, the same procedure will be repeated until the
setpoint level, 8 ft, is achieved. The setpoint-tracking response curve for this problem will
probably look something like the one shown in Fig. 13.20. Hopefully, the overshoot will be
reduced by the addition of the dead band in the input membership functions and a judicious
choice of the sample interval time, �t . In level control problems like this one, dead bands can
be very useful, because the physical action of the liquid pouring from the pump outlet onto the
liquid surface in the tank will cause the fluid in the tank to ‘‘slosh’’ around. A good sensor
will pick up these level changes and overwork the controller. For the same reason classical
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PI controllers are often used for level control problems like this, instead of PID controllers,
because the fluid movement keeps the derivative portion very active.

Unfortunately, this simple fuzzy control system will not handle disturbance rejection
problems very well. This is because of the method that we have chosen to solve this problem.
The problem is the term Qsp. This term is reasonably easy to measure or calculate, but it
is no longer valid if there is a hole in the tank, or a plugged valve, which are probably the
most likely causes of disturbances in this system. This is reasonably easy to fix with more
rules, but the explanation is quite lengthy. The interested reader is referred to Parkinson [2001]
or Ross et. al. [2002]. The PID controller will solve both the disturbance rejection problem and
the setpoint-tracking problem, with one set of control constants. Often, however, PID control
constants that are optimized for one type of solution are not very efficient for the other type.

Multi-input, Multi-output (MIMO) Control Systems

The classical multi-input, multi-output control system is much more complicated. The
textbook approach assumes linear systems, uses a lot of linear algebra, and often the best
that can come out of these models is a set of proportional-only controllers. Phillips and
Harbor [1996] have a good readable chapter devoted to this approach. There are also entire
textbooks and graduate-level control courses devoted to linear control systems for MIMO
systems. A common industrial approach, at least in the chemical industry where systems
tend to be highly nonlinear, is to use multiple PID controllers. Because of this ‘‘brute force’’
approach, these controllers tend to interact and ‘‘fight’’ one another. There are methods
for decoupling multiple controllers, but it is a great deal of work. A good discussion for
learning how to decouple multiple controllers is given in Ogunnaike and Ray [1994]. One
of the advantages of fuzzy controllers is that it is reasonably easy to write good MIMO
control systems for highly nonlinear MIMO problems. The next example illustrates this.

Example 13.5 The Three-tank MIMO Problem. The three-tank system described here
was a real experiment [Parkinson, 2001]. It is an extension of the single-tank system discussed
in Examples 13.3 and 13.4. The tanks are smaller, however. The experimental apparatus
consisted of three Lucite tanks, in series, each holding slightly less than 0.01 m3 of liquid; the
system is shown in Fig. 13.25. The tanks are numbered from left to right in this figure as: tank
1, tank 3, and tank 2. All three tanks are connected, with the third tank in the series, tank 2,
draining to the system exit. Liquid is pumped into the first and the third tanks to maintain their
levels. The levels in the first and third tanks control the level in the middle tank. The level in
the middle tank affects the levels in the two end tanks.

A,-tank cross-sectional area

Tank 1

Pump 1
flow, Q1

h1

Tank 2

Pump 2
flow, Q2

h2

q13 q20

Tank 3h3

q32

FIGURE 13.25
The experimental three-tank system.
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The differential equations that describe this experimental system are Eqs. (13.15)–
(13.17). The tank flows are described by Eqs. (13-18)–(13.20). The symbols used in these
equations have the same meaning as those used in Examples 13.3 and 13.4, except they now
have subscripts as described in Fig. 13.25.

A
dh1

dt
= Q1 − q13 (13.15)

A
dh2

dt
= Q2 + q32 − q20 (13.16)

A
dh3

dt
= q13 − q32 (13.17)

q13 = �1Ap Sign(h1 − h3)
√

2g|h1 − h3| (13.18)

q32 = �3Ap Sign(h3 − h2)
√

2g|h3 − h2| (13.19)

q20 = �2Ap

√
2gh2 (13.20)

Again we will only describe the setpoint-tracking portion of the controller and the results for
the setpoint-tracking experiments. For the interested reader the description of the disturbance
rejection portion of the controller and the results of the disturbance rejection experiments are
given in Parkinson [2001].

The fuzzy rules for this setpoint-tracking module are given in Table 13.12. The rules are
of the form

If Error(i)is . . . then Flow Change(i) is . . .

The term Error(i) in Table 13.12 is defined as follows for both tanks 1 and 2:

Error(i) = wi − hi

Rangeh(i)
, for i = 1 or 2 (13.21)

If wi > hi then Rangeh(i) equals wi

Else Rangeh(i) equals hi max − wi , for i = 1 or 2
The variable hi is the current level for tank i and wi is the setpoint for tank i. The term hi max is
the maximum level for tank i, or the level when the tank is full. The Flow Change(i) variable
is defined by

Flow Change(i) = qi − qiss

Rangeq(i)
(13.22)

If Flow Change(i) > 0 then Rangeq(i) equals qiss
Otherwise, Rangeq(i) equals qi max – qiss, for i = 1 or 2

TABLE 13.12
Fuzzy rules for setpoint tracking

Rule number Error(i) Flow Change(i)

1 Error(1) = Negative Flow Change(1) = Negative
2 Error(1) = Zero Flow Change(1) = Zero
3 Error(1) = Positive Flow Change(1) = Positive
4 Error(2) = Negative Flow Change(2) = Negative
5 Error(2) = Zero Flow Change(2) = Zero
6 Error(2) = Positive Flow Change(2) = Positive
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The term qi max is the maximum possible flow from pump i, 6.0 L/min for each pump. The
variable qi is the current pump flow, from pump i, and qiss is the steady state, or setpoint,
flow for pump i, computed from a mass balance calculation. The mass balance calculation
is a simple algebraic calculation. It is based on Eqs. (13.15)–(13.20) with derivatives set to
zero and the tank levels set at the setpoints. The calculation simplifies to three equations with
three unknowns. The three unknowns obtained from the solution are the two steady state
pump flows and one independent steady state tank level. One difficulty is determining the flow
coefficients, �i . These coefficients can be easily measured or calculated using textbook values;
measurement of these values would be best. However, if the coefficients are calculated and the
calculation is not correct, the disturbance rejection mode will be invoked automatically and the
values will be determined by the control system.

The membership function universes for Error(i) and for Flow Change(i) have been
normalized from −1 to 1. This was done in order to construct generalized functions. In
this type of control problem, we want one set of rules to apply to all tank-level setpoints.
Generalizing these functions makes it possible to use only six rules to handle all tank levels
and all tank-level changes. Figure 13.26 shows the input membership functions for the fuzzy
controller used to solve this three-tank problem. Figure 13.27 shows the output membership
functions for the fuzzy control system. These membership function ranges have been expanded
to the limits of −2 and 2 so that the pumps can be turned on full blast if needed. These inputs
and outputs are connected by the rules shown in Table 13.12.
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FIGURE 13.26
Membership functions for input Error(i) for i = both 1 and 2 (pumps 1 and 2).
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Membership functions for Flow Change(i) for i = both 1 and 2 (pumps 1 and 2).
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Example 13.6 Three-tank problem (continued). For this example we select the setpoints,
w1 and w2, for tanks 1 and 2 to be 0.40 and 0.20 m, respectively. These are the same setpoints
that were used in the actual experiment [Parkinson, 2001]. We start with three empty tanks.
The steady state flows required to maintain these levels are computed from the mass balance
calculation to be q1ss = 1.99346 L/min and q2ss = 2.17567 L/min. The maximum pump flows
are q1 max = q2 max = 6.0 L/min. For the example, we assume that the tank levels have nearly
reached their setpoint values. The level in tank 1, h1, is 0.38 m and the level in tank 2, h2, is
0.19 m. The maximum tank levels are h1 max = h2 max = 0.62 m.

Error(1) and Error(2) are both calculated to be −0.05 from Eq. (13.21). In both cases the
memberships from Fig. 13.26 are computed to be Negative = 0.775 and Zero = 0.225. These
values cause Rules 1 and 4 to be fired with a weight of 0.775, and Rules 2 and 5 to be fired with
a weight of 0.225. The output membership functions shown in Fig. 13.27 are truncated at these
values. The defuzzification method used with the setpoint-tracking control for this controller
is the correlation minimum encoding (CME) technique. This method computes the areas and
centroids of the entire truncated triangles. That is, the negative and positive Flow Change
membership functions are extended to −2 and +2, respectively, in order to compute the
centroids and the areas. This is one of many techniques used with fuzzy output membership
functions when it is important to use the centroid of the membership function to designate
complete ‘‘shut off’’ or ‘‘go full blast.’’ The crisp, or defuzzified, value used in the control
equations, and obtained from firing these rules, is defined by Eq. (13.22). Both Flow Change(1)
and Flow Change(2) are computed to be −0.704. For both pumps, Flow Change(i) is less
than 0, so Rangeq(i) is equal to qi max − qiss. Rangeq(1) is then 4.00654 and Rangeq(2) is equal
to 3.82433. By manipulating Eq. (13.22) we obtain the following relationship:

qi = qiss − Flow Change(i) ∗ Rangeq(i) (13.23)

From Eq. (13.23) the value of q1 is computed as

q1 = 1.99346 + (0.704)(4.00654) = 4.8141

and q2 is

q2 = 2.17567 + (0.704)(3.82433) = 4.8680

This setpoint tracking test case was a tank-filling problem. The setpoint level was changed
from 0 m, an empty condition, to 0.4 m for tank 1, and 0.2 m for tank 2. The level for tank 3
cannot be set independently. For this test tank 3 found its own level at about 0.3 m. The run
time was set to 7.5 min, or 450 s. The results for the fuzzy controller are shown in Fig. 13.28.
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Tank levels versus time for the fuzzy controller.
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Attention is called to the fact that there is no overshoot on any of the three tanks, even
without a dead band in the input membership functions. Also, the filling time is very rapid.
In the actual experiment, Parkinson [2001] details several tests for both setpoint tracking and
disturbance rejection., and the fuzzy controller performed better than the classical controllers
every time.

FUZZY STATISTICAL PROCESS CONTROL [PARKINSON
AND ROSS, 2002]

There are two basic types of statistical process control (SPC) problems. One of the problem
types deals with measurement data. An example would be the measurement of the diameter
of a cylindrical part that is produced by a machining operation. The typical SPC method for
dealing with measurement data is to use X–R charts [Shewhart, 1986]. These charts work
well with one input variable and will be discussed in the next section. The second problem
type deals with attribute data. In this case, instead of dealing with the actual measurement
information, the process control person assigns an attribute like ‘‘pass’’ or ‘‘fail’’ to the
item. A common SPC technique is to use a p-chart based on binary inputs and using the
binomial distribution [Shewhart, 1986]. This technique will be discussed in the section on
attribute data. These traditional techniques work very well as long as only a single input is
required for the measurement data problems and as long as only binary input is required for
the attribute data problems.

Fuzzy SPC is useful when multiple inputs are required for each of these two SPC
problem types. Two separate studies were conducted to determine the usefulness of the
fuzzy SPC technique [Parkinson and Ross, 2002]. These case studies, illustrated here
as Examples 13.7 and 13.8, were directed at beryllium part manufacture. Although the
numbers presented here are not the actual values used in the studies, they are useful in
illustrating the fuzzy SPC technique. The fuzzy technique using measurement data was for
beryllium exposure, but would apply equally well to quality control. The other study used
attribute data for quality control of the manufacturing of beryllium parts. The beryllium
manufacturing process is quite interesting because the manufacturing process is atypical; it
is atypical because the process almost always involves small lots, and often a different part
is processed each time. In both Examples 13.7 and 13.8 a computer model of the beryllium
plant was used. The purpose of the studies was to compare fuzzy SPC techniques with
traditional SPC techniques for these atypical cases. The exposure control problem in the
beryllium plant is atypical because it must consider several variables. The traditional SPC
procedure with multiple input data is to apply a least squares technique to regress the
multiple data to one input and then use the X–R chart. The fuzzy technique, illustrated in
Example 13.7, uses rules and membership functions to reduce the multiple variables to a
single variable and then applies the X–R chart [Parkinson, 2001].

In the quality control study utilizing attribute data, illustrated in Example 13.8,
instead of the usual binary pass–fail situation, we have multiple classifications such as
firsts, seconds, recycle, and discard. The traditional SPC method of dealing with this
problem is to use a generalized p-chart based upon the chi-square distribution [Shewhart,
1986]. The fuzzy approach to this multiple-input problem is to use fuzzy rules to combine
the multiple variables and then use a fuzzy chart that is somewhat similar to the standard
p-chart technique [Parkinson, 2001].
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In both case studies, the fuzzy method proved slightly superior and much easier to use
than the standard statistical techniques. The purpose of these illustrations is not to discuss
the relative merits of the techniques, but to demonstrate the use of the fuzzy methods.
Interested students are encouraged to study the various techniques and to make their own
decisions about which technique to use in various applications.

Measurement Data – Traditional SPC

Suppose that the operation that produces the cylindrical parts mentioned above produces a
thousand parts a day. If an 8 hour day were used, this would be 125 parts an hour. Suppose,
further, that the process control engineer decides to measure the diameter of five parts every
2 hours for a week. The engineer then plots the results on an X–R chart. Figure 13.29 is a
simulated X chart for this situation. Figure 13.30 is the associated simulated R chart. The
first point on Fig. 13.29, or set number 1, is the average of the five diameter measurements
taken in the first sample. In this case the five measurements were 0.6, 0.59, 0.54, 0.57,
and 0.58 inches. The average or X for set number 1 is 0.576 inches. The first point on
Fig. 13.30, or set number 1, is the range of the five diameter measurements taken in the
first sample, 0.6 − 0.54 = 0.06. In this example four sets were sampled every day for 5
days for a total of 20 sets. The X average and range, R, of every set were determined and
plotted in Fig. 13.29 and 13.30, respectively. The average of the 20 X, or the grand average
(X) is also plotted in Fig. 13.29. The average of the 20 ranges, R, is plotted in Fig. 13.30.
The upper and lower control limits shown in Figures 13.29 and 13.30 are computed using
Table 13.13 and Eqs. (13.24)–(13.27),

UCL
X

= X + A2R (13.24)

LCL
X

= X − A2R (13.25)

UCLR = D4R (13.26)

LCLR = D3R (13.27)
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FIGURE 13.29
Simulated X chart for the measurement of cylinder diameters.
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Simulated R chart for the measurement of cylinder diameters.

TABLE 13.13
Factors for determining control limits

n A2 D3 D4

2 1.880 – 3.268
3 1.023 – 2.574
4 0.729 – 2.282
5 0.577 – 2.114
6 0.483 – 2.004
7 0.419 0.076 1.924
8 0.373 0.136 1.864
9 0.337 0.184 1.816
10 0.308 0.223 1.777
11 0.285 0.256 1.744
12 0.266 0.283 1.717
13 0.249 0.307 1.693
14 0.235 0.328 1.672
15 0.223 0.347 1.653

where UCL
X

and LCL
X

are the upper and lower control limits, respectively, for the X chart
and UCLR and LCLR are the upper and lower control limits, respectively, for the R chart
[Shewhart, 1986]. The symbols A2, D3, and D4 are listed in Table 13.13 for various sample
sizes, n. In the case of our example, the sample set size, n, is 5. A2 is 0.577. There is no D3,
or lower limit for the range for set sizes smaller than 7. D4 is 2.004.

The upper and lower control limits are roughly three standard deviations away from
the average line. This means normal or random deviations will fall between the upper and
lower control limits 99 to 100% of the time. Values falling outside of these lines should
nearly all be ‘‘special cause events’’ that need to be addressed. Values falling inside the
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control limits are normal events, due to normal random deviations in the process. The X

chart, Fig. 13.29, shows process deviations over a period of time, the deviation between
samples. The R chart, Fig. 13.30, shows deviations within the sample set. An example of
a problem that might be detected with the R chart would be a bad sensor. In this case,
Fig. 13.29 shows a process that is going out of control as time moves on. This could be
caused from a cutting tool wearing out, a situation that needs to be corrected. Figure 13.30
shows one range point ‘‘out of control.’’ This is probably due to one bad measurement
within the set. If this problem continued, it could indicate a bad set of calipers or other
measuring device.

Our beryllium problem is a little more complex than the cylindrical parts example,
but a similar technique can be applied. Exposure to beryllium particulate matter, especially
very small particles, has long been a concern to the beryllium industry because of potential
human health problems – inhaled beryllium is extremely toxic. The industrial exposure
limit has been 2 µg/m3 per worker per 8 hour shift, but recently these limits have been
reset to 0.2 µg/m3, or 10 times lower than the previous industrial standard. The beryllium
manufacturing facility investigated in our study has a workload that changes from day to
day. Also the type of work done each day can vary dramatically. This makes the average
beryllium exposure vary widely from day to day. This in turn makes it very difficult to
determine a degree of control with the standard statistical control charts.

Example 13.7 Measurement Data – Fuzzy SPC. The simulated plant has four workers and
seven machines. Each worker wears a device that measures the amount of beryllium inhaled
during his or her shift. The devices are analyzed in the laboratory and the results are reported
the next day after the exposure has occurred. An X–R chart can be constructed with these
data and presumably answer the questions of control and quality improvement. Any standard
text on SPC will contain a thorough discussion on control limits for these charts; for example,
see Wheeler and Chambers [1992] or Mamzic [1995]. Although such a chart can be useful,
because of the widely fluctuating daily circumstances, these tests for controllability are not
very meaningful.

There are four variables that have a large influence upon the daily beryllium exposure.
They are the number of parts machined, the size of the part, the number of machine setups
performed, and the type of machine cut (rough, medium, or fine). In our fuzzy model, a
semantic description of these four variables and the beryllium exposure are combined to
produce a semantic description of the type of day that each worker has had. The day type
is then averaged and a distribution is found. These values are then used to produce fuzzy
Shewhart-type X and R charts. These charts take into account the daily variability. They
provide more realistic control limits than the traditional X–R charts.

The fuzzy system consists of five input variables or universes of discourse and one
output variable. Each input universe has two membership functions and the output universe
has five membership functions. The inputs and the outputs are related by 32 rules. The five
input variables are:

1. Number of Parts – with a range of 0 to 10 and membership functions
(a) Few and (b) Many.

2. Size of Parts – with a range of 0 to 135 and membership functions
(a) Small and (b) Large.

3. Number of Setups – with a range of 0 to 130 and membership functions
(a) Few and (b) Many.

4. Type of Cut – with a range of 1 to 5 and membership functions
(a) Fine and (b) Rough.
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FIGURE 13.31
Output membership functions.

5. Beryllium Exposure – with a range of 0 to 0.4 and membership functions
(a) Low and (b) High.

The output variable is:

1. The Type of Day – with range from 0 to 1 and membership functions
(a) Good, (b) Fair, (c) OK, (d) Bad, and (e) Terrible.

For each of the five input variables there are two membership functions represented in each
case by two equal triangles. Figure 13.31 shows the five output membership functions. The
rules are based on some simple ideas. For example, if all of the four mitigating input variables
indicate that the beryllium exposure should be low, and it is low, then the Type of Day is OK.
Likewise, if all four indicate that the exposure should be high, and it is high, then the Type of
Day is also OK. If all four indicate that the exposure should be low, and it is high, then the
Type of Day is Terrible. If all four indicate that the exposure should be high, and it is low, then
the Type of Day is Good. Fair and Bad days fall in between the OK days and the Good and
Terrible extremes. The form of the rules is:

If (Number of Parts) is . . . and If (Size of Parts) is

. . . and If (Number of Setups) is . . . and If (Type of Cut) is

. . . and If (Beryllium Exposure) is . . . Then (The Type of Day) is . . . .

The Size of Parts is determined as the number of parts multiplied by the average diameter of
each part, measured in centimeters. The Type of Cut is determined by a somewhat complicated
formula based on a roughness factor for each part, the number of parts and the size of those
parts, and the number of setups required for each worker each day. A fine cut has a roughness
factor (rf) of 1, a medium cut has an rf equal to 3, and a rough cut has an rf equal to 5. The
calculation for Type of Cut is a bit complicated but it provides a daily number between 1 and
5 (fine to rough) for each worker, which is meaningful. An example of the use of the fuzzy
technique will follow a discussion of the plant simulation.

Plant simulation

The model has the following limitations or boundary conditions:

1. There are four machinists.
2. There are seven machines.
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3. Machines 1 and 2 do rough cuts only.
4. Machines 3 and 4 do both rough cuts and medium cuts.
5. Machines 5, 6, and 7 do only fine cuts.
6. Machine 7 accepts only work from machines 3 and 4.
7. Machines 5 and 6 accept only work from machines 1 and 2.
8. Each machinist does all of the work on one order.
9. All machinists have an equally likely chance of being chosen to do an order.

10. There are 10 possible paths through the plant (at this point all are equally likely).

The simulation follows the algorithm below:

1. A random number generator determines how many orders will be processed on a given day
(1 to 40).

2. Another random number generator picks a machinist.
3. A third random number generator picks a part size.
4. A fourth random number generator picks a path through the plant. For example, machine 1

to machine 3 to machine 7.
5. The machine and path decide the type of cut (rough, medium, or fine). Machines 1 and 2

are for rough cuts only, machines 5, 6, and 7 are for fine cuts only, and machines 3 and 4 do
rough cuts if they are the first machines in the path and medium cuts if they are the second
machines in the path.

6. A random number generator picks the number of setups for each machine on the path.
7. Another random generator picks the beryllium exposure for the operator at each step.

The above procedure is carried out for each part, each day. The entire procedure is repeated
the following day, until the required number of days has passed. For this study the procedure
was run for 30 days to generate some sample control charts. A description of the fuzzy control
chart construction follows.

Establishing fuzzy membership values
We follow each step of the process for a specific machinist for a given day; this process is
then extended to the work for the entire day for all machinists. From the simulation, on day 1,
13 part orders were placed. Machinist 2 processed four of these orders, machinist 1 processed
three, machinist 3 processed four, and machinist 4 processed two orders. Machinist 2 will be
used to demonstrate the fuzzy system.

The cumulative size of the four parts that machinist 2 processed on day 1 was calculated
to be 64.59. The number of setups that he or she performed was 45. The numeric value for
the type of cuts he or she performed on that day was 1.63. Finally, the machinist’s beryllium
exposure was 0.181 µg/m3 for that 8 hour period.

Upon inserting the input values into the simple input membership functions described
above, we obtain the following values. For Number of Parts = 4 the membership in Many is
0.4 and the membership in Few is 0.6. For Size of Parts = 64.59 the membership in Small
is 0.52 and the membership in Large is 0.48. For Number of Setups = 45 the membership in
Many is 0.35 and the membership in Few is 0.65. For Type of Cuts = 1.63 the membership
in Rough is 0.16 and the membership in Fine is 0.84. The Beryllium Exposure is 0.181. The
membership in High is 0.45 and the membership in Low is 0.55.

In this example a max – min Mamdani inference was used on the rules and the centroid
method was used for defuzzification. For example, Rule 1 is fired with the following weights:

• Number of Parts – Few = 0.6
• Size of Parts – Small = 0.52
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FIGURE 13.32
‘‘Truncated’’ output membership functions for the example.

• Number of Setups – Few = 0.65
• Type of Cut – Fine = 0.84
• Beryllium Exposure – Low = 0.55

The consequent of Rule 1 is Fair and takes the minimum value, 0.52. Of the 32 rules that are
all fired for this example, Fair is the consequent of 10 of them with membership values ranging
from 0.16 to 0.52. The max–min rule assigns the maximum value of 0.52 to the consequent
Fair. Similarly, the consequent Terrible appears five times with a maximum value of 0.45, OK
appears twice with a maximum value of 0.35, Bad appears 10 times with a maximum value
of 0.45, and Good appears five times with a maximum value of 0.4. The Mamdani inference
process truncates the output membership functions at their maximum value (see Chapter 5).
In this example the membership functions are truncated as follows: Good = 0.4, Fair = 0.52,
OK = 0.35, Bad = 0.45, and Terrible = 0.45. The shaded area in Fig. 13.32 shows the results
of the truncation in this example. The defuzzified value is the centroid (see Chapter 4) of the
shaded area in Fig. 13.32, and is equal to 0.5036. So on day 1, machinist 2 had an OK Type of
Day (0.5036 ≈ 0.5).

The next step is to provide an average and a distribution for the entire day based on the
results from each machinist. The procedure outlined above can be followed for each machinist,
for day 1. The Type of Day results for the other machinists were: machinist 1 = 0.4041,
machinist 3 = 0.4264, and machinist 4 = 0.4088. The set average, or X, for day 1 is 0.4357.
This is the point for the first data set shown in Fig. 13.33, the fuzzy Type of Day X chart. For
the same 30 day run, the daily average beryllium exposure and beryllium exposure ranges were
also plotted in the form of X − R charts. The X chart is presented in Fig. 13.34. In Fig. 13.33,
all of the important variables are taken into account and the control chart indicates that nothing
is out of control. This is the result that we would expect from this simulation since it is based on
random numbers, representing only the normal or ‘‘common-cause’’ variation. In Fig. 13.34,
the traditional SPC technique, two points are above the upper control limit, representing an
out-of-control situation. This represents two false alarms generated because all of the important
variables are not factored into the solution of the problem. The corresponding R charts are not
shown because, for this example, they did not add any information. Other simulations were
run, in which the system was purposely perturbed. In all cases where the significant variables
influenced the outcome the fuzzy SPC technique significantly outperformed the traditional
SPC technique.

Attribute Data – Traditional SPC

The p chart is probably the most common test used with attribute data. Other common
attribute data test charts are: np charts, c charts, and u charts. Wheeler and Chambers
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FIGURE 13.33
Fuzzy X chart for a ‘‘normal’’ 30 day beryllium plant run.
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FIGURE 13.34
Beryllium exposure X chart for a ‘‘normal’’ 30 day beryllium plant run.

[1992] and Mamzic [1995] both give very good descriptions of these types of tests. We
will use the p chart test as an illustration here. The p chart looks very much like the X

chart. If we use the same example as we did for the cylindrical parts measurement data
problem, we can construct a p chart. This time, suppose we accept only cylindrical parts
with a measured diameter of 0.575 ± 0.020 inches; we will reject the rest. This creates
the binary attribute system of ‘‘accept’’ and ‘‘reject.’’ In the first sample set, we have five
measurements of 0.60, 0.59, 0.54, 0.57, and 0.58 inches respectively. We will reject the
parts with diameters of 0.60 and 0.54 inches. The proportion rejected, p, is then 2/5 or
0.4. The p chart corresponding to the original example with this ‘‘accept – reject’’ criteria
is shown in Fig. 13.35, where the p-value for set number 1 is 0.4. p is computed as the
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FIGURE 13.35
The p chart for the example problem.

average proportion rejected for the entire 20 sets. The upper and lower control limits can be
computed as follows:

UCLp = p + 3

√
p(1 − p)

n
(13.28)

LCLp = p − 3

√
p(1 − p)

n
(13.29)

These limits are ±3 standard deviations from the mean, based upon having a true binomial
distribution to represent the data. The reader will probably notice that these limits are wider
than those for the X chart. The reason for the tighter limits for the X chart is that the values
for X have already been averaged, and the standard deviation must be again divided by√

n. The p chart in Fig. 13.35 would have much tighter bounds if it had been developed
totally with data that were ‘‘in control’’; the p chart would then tell us a different story.
One advantage of the p chart is that the simple formulation for the control limits is based
upon the convenient properties of the binomial distribution. Our questions is: What happens
if there are more than two attributes and the binomial distribution no longer applies? Our
beryllium quality control study addresses this question.

The quality control issue in our beryllium manufacturing plant is a multivalued
attribute problem. The beryllium material is very expensive; therefore, care is taken not to
waste it. Suppose the parts from this plant are required to satisfy two different applications:
one application requires very stringent quality control, and the second application requires
somewhat less quality control. An effort is made to rework parts that do not meet
specification because of the cost of the material. Therefore parts produced from the plant
can fall into one of five categories: Premium or ‘‘Firsts,’’ ‘‘Seconds,’’ ‘‘Culls,’’ ‘‘Possible
Rework to a First,’’ and ‘‘Possible Rework to a Second.’’ In SPC terms, these are attribute
data, normally analyzed with a p chart. Two papers by Raz and Wang [1990] presented
some fuzzy solutions to multivalued or multinomial attribute problems. This work was
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criticized by Laviolette and Seaman [1992, 1994] and Laviolette et al. [1995]. But one
problem with the work presented by Raz and Wang was that their example membership
functions were not well-defined. There has to be some physical justification for assigning
the membership functions. In our beryllium simulation we take special care in matching
fuzzy membership functions to the physical world.

Our computer simulation is the same as that for Example 13.7 with the addition of
the randomly generated flaws that represent the number of scratches, their length, and their
depth. A 30 day simulation was accomplished in order to generate some sample control
charts. This inspection technique is only one of several proposed, and the number and size
of flaws in the material are strictly arbitrary.

Example 13.8 Attribute Data, Fuzzy SPC. Our fuzzy system is divided into two parts. A
fuzzy rule-base is used to assign inspected parts to the proper category. This is the connection
to the physical world that provides realistic membership functions for each category. The
second part is the fuzzy approach to developing a multinomial p chart. The development of
the p chart works like this:

• First we choose our sample set size to be the total daily plant production.
• Then we count the number of parts that fall into each category, Firsts, Seconds, etc., from

the sample set.
• We use the fraction in each category to define a fuzzy sample set in terms of membership

functions.
• We defuzzify the sample to get a single representative value for the sample set and use that

to construct a p chart.
• Finally, we use the fuzzy p chart just like a binomial p chart to determine the state of our

process.

All parts going through the beryllium plant are inspected twice. The first inspector measures
part dimensions with a machine to see if they are within the desired tolerance limits. This
machine is a precision instrument, so parts are assigned to categories in a crisp manner. There
are three major categories, ‘‘Firsts,’’ ‘‘Seconds,’’ and ‘‘Culls.’’ Suppose there is a substantial
demand for the ‘‘Seconds,’’ and a tight tolerance for the ‘‘Firsts.’’ Enough ‘‘Seconds’’ are
generated by this procedure to satisfy demand. The ‘‘Firsts’’ are assigned a score of 0.0, the
‘‘Seconds’’ a score of 0.5, and the ‘‘Culls’’ a score of 1.0. Due to the high cost of the beryllium,
two more categories are added; they represent the possibility of reworking the part to qualify it
to be either a ‘‘First’’ or a ‘‘Second.’’ A second inspector looks at the surface finish of the part.
This inspector visually checks for scratches, and records the number of scratches, the average
length, and the average depth of any scratch. The numbers used in this example are not the true
values for scratch sizes; they are representative values created by the plant simulator.

A fuzzy rule-based system determines how much to ‘‘downgrade’’ each part from the
first inspection category, based on the number, depth, and length of the scratches. The fuzzy
membership functions that describe the beryllium parts after the inspections are shown in
Fig. 13.36.

The fuzzy system used to downgrade parts consists of three input variables and one
output variable. The input variables are:

• Number of Scratches – with a range of 0–9.
• Length of Scratches – with a range of 0–2.4 cm.
• Depth of Scratches – with a range of 0–10 microns.

The output variable is the Amount of Downgrade.
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Fuzzy membership functions describing beryllium parts after inspections.

0

0.5

1

0 0.1 0.2

Amount of downgrade

0.3 0.4

M
em

be
rs

hi
p

Very small Small Medium

Large Very large

FIGURE 13.37
Output membership functions for rules to downgrade beryllium parts.

Each input variable has three membership functions and the output variable has five
membership functions. The inputs and the outputs are related by 27 rules. The input membership
functions are quite simple; each variable is represented by three triangles; two equal-sized right
triangles, with an equilateral triangle in the middle. The area of the equilateral triangle is twice
the area of one of the right triangles. The configuration is such that the sum of membership
values for each variable adds to unity (the so-called orthogonal membership functions defined
in Chapter 10). The output membership functions are a little bit more interesting and are shown
in Fig. 13.37. The form of the rules is

If (Number of Scratches) is . . . and If (Depth of Scratches) is . . .

and If (Length of Scratches) is . . . Then the Amount of Downgrade is . . . .

The input variables are determined by measurements or estimates by the second
inspector. The appropriate rules are fired using a max–min Mamdani procedure, and a centroid
method is used to defuzzify the result. This defuzzified value is added to the score given by
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the first inspector producing a final score. The final score is used with Fig. 13.36 to place the
part in its final category (Firsts, Rework to Firsts, Seconds, Rework to Seconds, Culls). The
categorization is accomplished by projecting a vertical line onto the score chart, Fig. 13.36, at
the point on the abscissa corresponding to the final score, and then picking the category with
the highest membership value.

We used the information produced by our 30 day simulation of the plant operation to
build a control chart for the beryllium manufacturing process. For each part, in each set, for
each day, the categorization procedure described above is carried out. The next step is to
provide a fuzzy representation for each day based on the categorization of each part for that
day. This is done using the extension principle (see Chapter 12) and the concept of a triangular
fuzzy number (TFN) [Kaufmann and Gupta, 1985]. A TFN can be completely described by
the vector [t1, t2, t3]T. The values t1, t2, and t3 are the x values of the x − y pairs representing
the corners of a triangle with the base resting on the x axis (y = 0) and the apex resting on
the line y = 1. For example, the triangular membership function Seconds in Fig. 13.36 can be
described as a TFN with t1 = 0.25, t2 = 0.5, and t3 = 0.75, or [0.25, 0.5, 0.75]T. The other
four output membership functions are described as follows:

• Firsts = [0.0, 0.0, 0.25]T

• Rework to Firsts = [0.15, 0.25, 0.35]T

• Rework to Seconds = [0.65, 0.75, 0.85]T

• Culls = [0.75, 1.0, 1.0]T

A matrix, called the A matrix, can be constructed with columns comprised of the five-output
membership function TFNs. For this example the A matrix is

A =
[

0.0 0.15 0.25 0.65 0.75
0.0 0.25 0.5 0.75 1.0

0.25 0.35 0.75 0.85 1.0

]

Next a five-element vector called B is constructed. The first element of the B vector is the
fraction of the daily readings that were Firsts. The second element is the fraction of the readings
that were Rework to Seconds, and so on. A B vector can be constructed for every day of the
run. For example, for day 1, our simulation generated 13 parts and categorized them in the
following manner:

• Number of parts categorized as Firsts = 6
• Number of parts categorized as Rework to Firsts = 2
• Number of parts categorized as Seconds = 2
• Number of parts categorized as Rework to Seconds = 1
• Number of parts categorized as Culls = 2

The following value is obtained for the B vector:

B = [6/13, 2/13, 2/13, 1/13, 2/13]T = [0.462, 0.154, 0.154, 0.077, 0.154]T

The product AB is a TFN that represents the fuzzy distribution for the day. For day 1 of the
30 day run, the TFN AB ≈ [0.227, 0.327, 0.504]T. This is a triangular distribution that is
approximately halfway between Rework to Firsts and Seconds. Figure 13.38 shows how day
1 is distributed on a ‘‘Score chart’’ like Fig. 13.36. The shaded area is the TFN, or fuzzy
distribution for day 1. A different distribution is obtained every day. In order to construct a
control chart, values for both a centerline and control limits must be determined. There are
several metrics that can be used to represent the central tendency of a fuzzy set; the metric
we used is the α-level (we called this a λ-level in Chapter 4) fuzzy midrange, as in Laviolette
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Fuzzy p chart using the α-level fuzzy midrange technique with α = 1/3.

and Seaman [1994]. The α-level fuzzy midrange, for α =1/3, for day 1 is 0.353. This is the
midrange of the shaded triangle in Fig. 13.38. The mean or the centerline for the 30 day run
has a value of 0.285. These are the values shown in Fig. 13.39 for the set 1 p value and the
mean. Figure 13.39 is the p chart for the 30 day simulation run.

The α-level fuzzy midrange is defined for a fuzzy set as the midpoint of the crisp
interval that divides the set into two subsets. One subset contains all of the values that have
a membership in the original set of greater than or equal to α. The other subset contains all
of the values with memberships less than α. This interval is called the α-cut (or the λ-cut
in Chapter 4). The central tendency of the TFN AB described above can be represented by
Eq. (13.30).

R = αTAB (13.30)

where R is the α-level fuzzy midrange and α is a vector defined by

α =
[

1 − α

2
α

1 − α

2

]T

(13.31)
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where α is the scalar value chosen for the α-cut. If we pick α equal to 1/3 then the
vector α = [1/3, 1/3, 1/3]. For sufficiently large sample size, n, the vector B constitutes an
observation from a multivariate normal distribution with a rank of c − 1, where c is the number
of categories in the problem. The scalar R is then an observation from a univariate normal
distribution with a mean µ = αTAπ and a variance σ 2 = αTA�ATα where π and � are the
respective mean vector and covariance matrix of the set of B vectors. The covariance matrix
� is defined by

� = [σij] =
{

πi(1 − πi)/n, i = j
−πiπj /n, i 	= j

(13.32)

This is convenient because it provides upper and lower control limits, UCLpf and LCLpf , for
the fuzzy p chart:

UCLpf = µ + zcσ (13.33)

LCLpf = µ − zcσ (13.34)

The factor zc is a function of the confidence level for the normalized Gaussian random variable.
These factors are readily available; for example, see Williams [1991]. For this problem we
picked zc = 1.96, for a 95% confidence level. The control limits for each sample will be a
function of n, the sample size. This can be seen in Fig. 13.39 where the irregular shapes of
the upper and lower control limits, UCLpf and LCLpf , were computed using the technique
described above. Figure 13.39 shows that two points are beyond the 95% confidence limit;
these are points 16 and 25. Of 30 points, 28 are within the control limits; this represents 93.33%
of the data, which is very close to 95% level that we would expect.

INDUSTRIAL APPLICATIONS

Two recent papers have provided an excellent review of the wealth of industrial products
and consumer appliances that are bringing fuzzy logic applications to the marketplace. One
paper describes fuzzy logic applications in a dozen household appliances [Quail and Adnan,
1992] and the other deals with a large suite of electronics components in the general area
of image processing equipment [Takagi, 1992]. A conference in 1992 dealt entirely with
industrial applications of fuzzy control [Yen et al., 1992].

Few of us could have foreseen the revolution that fuzzy set theory has already
produced. Dr. Zadeh himself predicts that fuzzy logic will be part of every appliance when
he says that we will ‘‘see appliances rated not on horsepower but on IQ’’ [Rogers and
Hoshai, 1990]. In Japan, the revolution has been so strong that ‘‘fuzzy logic’’ has become
a common advertising slogan [Reid, 1990]. Whereas the Eastern world equates the word
fuzzy with a form of computer intelligence, the Western world still largely associates the
word derisively within the context of ‘‘imprecise or approximate science.’’

The consumer generally purchases new appliances based on their ability to streamline
housework and to use the consumer’s available time more effectively. Fuzzy logic is being
incorporated worldwide in appliances to accomplish these goals, primarily in the control
mechanisms designed to make them work. Appliances with fuzzy logic controllers provide
the consumer with optimum settings that more closely approximate human perceptions
and reactions than those associated with standard control systems. Products with fuzzy
logic monitor user-defined settings, then automatically set the equipment to function at the
user’s preferred level for a given task. For example, fuzzy logic is well-suited to making
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adjustments in temperature, speed, and other control conditions found in a wide variety of
consumer products [Loe, 1991] and in image processing applications [Takagi, 1992]. Ross
[1995] provided a good summary of several industrial applications using fuzzy control,
including blood pressure control during anesthesia [Meier et al., 1992], autofocusing for
a 35 mm camera [Shingu and Nishimori, 1989], image stabilization for video camcorders
[Egusa et al., 1992], adaptive control of a home heating system [Altrock et al., 1993], and
adaptive control of an automobile’s throttle system [Cox, 1993]. The literature abounds
in papers and books pertaining to fuzzy control systems [see, for example, Passino and
Yurkovitz, 1998].

SUMMARY

New generations of fuzzy logic controllers are based on the integration of conventional and
fuzzy controllers. Fuzzy clustering techniques have also been used to extract the linguistic
IF–THEN rules from the numerical data. In general, the trend is toward the compilation and
fusion of different forms of knowledge representation for the best possible identification
and control of ill-defined complex systems. The two new paradigms – artificial neural
networks and fuzzy systems – try to understand a real-world system starting from the very
fundamental sources of knowledge, i.e., patient and careful observations, measurements,
experience, and intuitive reasoning and judgments, rather than starting from a preconceived
theory or mathematical model. Advanced fuzzy controllers use adaptation capabilities
to tune the vertices or supports of the membership functions or to add or delete rules
to optimize the performance and compensate for the effects of any internal or external
perturbations. Learning fuzzy systems try to learn the membership functions or the rules.
In addition, principles of genetic algorithms, for example, have been used to find the best
string representing an optimum class of input or output symmetrical triangular membership
functions (see Chapter 4).

It would take an entire book to thoroughly discuss the subject of classical control
theory and there are many good ones available. The interested reader should see, for
example, Phillips and Harbor [1996], Shinskey [1988], Ogunnaike and Ray [1994], or
Murrill [1991]. For more information on the fuzzy logic control aspects the reader is
referred to Ross et al. [2003], Passino and Yurkovich [1998], Wang [1997], and Parkinson
[2001].

All the engineering process control examples are for setpoint-tracking control. For a
problem involving the tougher problem of disturbance rejection, the reader is referred to
Problem 13.10 at the end of the chapter.

For the illustrations of fuzzy statistical process control, the fuzzy ‘‘type of day’’
Shewhart-type X − R control chart has the potential to take into account task-dependent
beryllium exposure for beryllium plant operations. Based upon the studies completed to
this point, we believe these control charts will provide more realistic information than the
standard single-variable X − R chart using only beryllium exposure information. Because
of the ability to take into account task-dependency, ‘‘the type of day’’ chart can be used
to determine the significance of plant improvements as well as initiate ‘‘out-of-control’’
alarms. This fuzzy technique should work well with many other task-dependent problems,
which are characteristic of small-lot problems, as long as they are well-defined semantically.
A least squares approach, which was studied but not presented here, will also work for this
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type of problem, but in many cases will not be as descriptive as the fuzzy approach. The
least squares approach can produce problems if the data used to develop a control chart have
many out-of-control points in them. This is because the technique squares the difference
between the expected value and the measured value.

The fuzzy technique for dealing with multinomial attribute data works quite well
if the problem is defined well. With our simulation, we have also compared the fuzzy
technique with individual p charts which deal with multinomial attribute data. While not
presented here, these comparisons have shown the fuzzy technique to be superior. We have
also compared our fuzzy technique with the chi-square technique for multinomial data, and
have discovered that the chi-square technique works nearly as well as the fuzzy technique,
but has only one control limit. The single control limit is not a problem in the examples
illustrated here because all efforts were directed toward keeping the process below the
upper limit. If both upper and lower limits are important, additional work will be required
to determine the meaning given by the chi-square chart.

The computer models of the beryllium plant operation described here were built from
a semantic description of the process as was the fuzzy rule-base and membership functions.
Consequently the correlation between the fuzzy model and the plant simulation was quite
good. Both models come from the same description. It is important when developing a
fuzzy model of a process that a lot of care is taken to listen to the experts and get the best
model possible. If the domain expert is knowledgeable this task is usually not that difficult,
but it may require several iterations to achieve validity. The fuzzy control chart will only
be as good as the fuzzy rules and membership functions that comprise the system.
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PROBLEMS

13.1. The interior temperature of an electrically heated oven is to be controlled by varying the heat
input, u, to the jacket. The oven is shown in Fig. P13.1a. Let the heat capacities of the oven
interior and of the jacket be c1 and c2, respectively. Let the interior and the exterior jacket
surface areas be a1 and a2, respectively. Let the radiation coefficients of the interior and exterior
jacket surfaces be r1 and r2, respectively. Assume that there is uniform and instantaneous
distribution of temperature throughout, and the rate of loss of heat is proportional to area and
the excess of temperature over that of the surroundings. If the external temperature is T0, the
jacket temperature is T1, and the oven interior temperature is T2, then we have

c1Ṫ1 = −a2r2(T1 − T0) − a1r1(T1 − T2) + u

c2Ṫ2 = a1r1(T1 − T2)

T1

T0

T2
Heating coil

FIGURE P13.1a

Let the state variables be the excess of temperature over the exterior, i.e., x1 = T1 − T0 and
x2 = T2 − T0. With these substituted into the preceding equations we find that they can be
written as

ẋ1 = − (a2r2 + a1r1)

c1
· x1 + a1r1

c1
· x2 + 1

c1
· u

and
ẋ2 = a1r1

c2
· x1 − a1r1

c2
· x2

Assuming that
a2r2

c1
= a1r1

c1
= a1r1

c2
= 1

c1
= 1

we have
ẋ1(t) = −2x1(t) + x2(t) + u(t)
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and
ẋ2(t) = x1(t) − x2(t)

and
ẋi (t + 1) = xi(t) + αẋi(t), i = 1, 2

Let α = 1/10.
The membership functions for each of x1, x2, and u, each given on the same universe,

are shown in Fig. P13.1b. For each of the variables, membership functions are taken to be low
(L), medium (M), and high (H) temperatures.

70 210 350

1.0
µ

L

Temperature (°C)

~ M~ H~

FIGURE P13.1b

Using the accompanying FAM table, conduct a graphical simulation of this control problem.
The entries in the table are the control actions (u). Conduct at least four simulation cycles
similar to Example 13.2. Use initial conditions of x1(0) = 80◦, and x2(0) = 85◦.

Interior temperature excess, x2

Jacket temperature excess, x1 L M H

L H M L
M H – L
H H M L

13.2. Conduct a simulation of an automobile cruise control system. The input variables are speed and
angle of inclination of the road, and the output variable is the throttle position. Let speed = 0
to 100 (mph), incline = −10◦ to +10◦, and throttle position = 0 to 10. The dynamics of the
system are given by the following:

T = k1v + θk2 + mv̇

v̇ = v(n + 1) − v(n)

T (n) = k1v(n) + θ(n)k2 + m(vn+1 − vn)

vn+1 =
(

1 − k1

m

)
v(n) + T (n) − k2

m
θ(n)

vn+1 = kav(n) + [1 − kb]

[
T (n)

θ(n)

]
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where T = throttle position
k1 = viscous friction
v = speed
θ = angle of incline
k2 = mg sin θ

v̇ = acceleration
m = mass

ka = 1 − k1

m
and kb = k2

m

Assign k1/m = k2/m = 0.1. The membership function for speed is determined by the cruise
control setting, which we will assume to be 50 mph. The membership functions are shown in
Fig. P13.2.

45 50 55

1.0

µ(v)
Low

v (mph)

(a)

–5 0 5
θ (degrees)

(b)

1.0

µ(θ)

10
Throttle position

(c)

1.0

4

µ(T )

θ

(v) (θ)θ µ

~
OK
~

High
~

Down
~

Level
~

Up
~

Low
~

LM
~

Med.
~

HM
~

High
~

2 6 8

FIGURE P13.2

The FAM table is shown next:

Inclination of the road

Speed Up Level Down

High LM LM Low
OK HM Medium LM
Low High HM HM

Use initial conditions of speed = 52.5 mph and angle of incline = −5◦. Conduct at least four
simulation cycles.

13.3. A printer drum is driven by a brushless DC motor. The moment of inertia of the drum is
J = 0.00185 kgm2. The motor resistance is R = 1.12 �. The torque constant for the motor is
KT = 0.0363 Nm/A. The back EMF constant is k = 0.0363 V/(rad/s). The equation of the
system is

J θ̈ = KT(V − θ̇k)

R

where
(V − θ̇k)

R
I = motor current

θ = rotational angle
V = motor control voltage
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The state variables are x1 = θ and x2 = θ̇ . Also

θ̈ = KT

JR
V − KTk

JR
θ̇

Now
x2 = ẋ1

Therefore,

ẋ2 = KT

JR
V − KTk

JR
x2

Substituting in the values of the constants, we find

ẋ2 + 0.64x2 = 17.5 V

The resulting difference equations will be

x1(k + 1) = x2(k) + x1(k)

x2(k + 1) = 17.5V (k) + 0.36x2(k)

The motor can be controlled to run at constant speed or in the position mode. The membership
functions for x1, x2, and V are shown in Fig. P13.3. The rule-based system is summarized in
the following FAM table:

x2

x1 Negative Zero Positive

N PB P N
Z P Z N
P Z Z NB

Using the initial conditions of x1 = 7.5◦ and x2 = −150 rad/s and the difference equations,
conduct at least four graphical simulation cycles.

(a)

–300 0 300
x2 (rad/s)

(b)

1.0

–20 20
Motor control voltage (V )

(c)

1.0

–10 0 10

µ(V)µ

–10 0 10
x1(degrees)

1.0

µ(x1)
~

(x1) µ(x2)(x2)
N ~Z ~P ~N ~Z ~P ~NB ~N ~Z ~P ~PB

FIGURE P13.3
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13.4. The basic mechanical system behind clocks that are enclosed in glass domes is the torsional
pendulum. The general equation that describes the torsional pendulum is

J
d2θ(t)

dt2
= τ(t) − B

dθ(t)

dt
− kθ(t)

The moment of inertia of the pendulum bob is represented by J , the elasticity of the brass
suspension strip is represented by k, and the friction between the bob and the air is represented
by B. The controlling torque τ(t) is applied at the bob. When this device is used in clocks
the actual torque is not applied at the bob but is applied through a complex mechanism at the
main spring. The foregoing differential equation is the sum of the torques of the pendulum
bob. The numerical values are J = 1 kgm2, k = 5 Nm/rad, and B = 2 Nms/rad.
The final differential equation with the foregoing constants incorporated is given by

d2θ(t)

dt2
+ 2

dθ(t)

dt
+ 5θ(t) = τ(t)

The state variables are
x1 = θ(t) and x2(t) = θ̇ (t)

ẋ1 = θ̇ (t) and ẋ2(t) = θ̈ (t)

Rewriting the differential equation using state variables, we have

ẋ2(t) = τ(t) − 2x2(t) − 5x1(t) (P13.4.1)

ẋ1(t) = x2(t) (P13.4.2)

Using these equations,
ẋ1(t) = x1(k + 1) − x1(k)

ẋ2(t) = x2(k + 1) − x2(k)

in Eqs. (P13.4.1) and (P13.4.2), and rewriting the equations in terms of θ and θ̇ in matrix
form, we have

[
θ(k + 1)

θ̇(k + 1)

]
=

[
θ(k) + θ̇ (k)

−5θ(k) − θ̇ (k)

]
+

[
0

τ(k)

]

The membership values for θ , θ̇ , and τ are shown in Fig. P13.4. The rules for the control
system are summarized in the accompanying FAM table.

θ̇

θ Positive Zero Negative

P NB N Z
Z Z Z Z
N Z P PB
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The initial conditions are given as

θ(0) = 0.7◦

θ̇ (0) = −0.2 rad/s

–0.314 0 0.314

1.0

–4 4
Torque (N.m)

1.0

–2 0 2–45 0 45
θ (degrees)

1.0

µ( µ(
.

θ (rad/s)

µ(τ

.

~N ~Z ~P ~N ~Z ~P ~NB ~N ~Z ~P ~PB

(a) (b) (c)

FIGURE P13.4

Conduct a graphical simulation for the control system.
13.5. On the electrical circuit shown in Fig. P13.5a it is desired to control the output current at

inductor L2 by using a variable voltage source, V . By using Kirchhoff’s voltage law, the
differential equation for loop 1 is given in terms of the state variables as

dL1(t)

dt
= −2L1(t) + 2L2(t) + 2V (t) (P13.5.1)

R1 = 1 Ω L2 = 2 Η

R2 = 3 Ω  L1 = 0.5 Η

V(t)

FIGURE P13.5a

and that for loop 2 is
dL2(t)

dt
= 0.5L1(t) − 2L2(t) (P13.5.2)

Converting the system of differential equations into a system of difference equations, we get

L1(k + 1) = −L1(k) + 2L2(k) + 2V (k)

L2(k + 1) = 0.5L1(k) − L2(k)

Rewriting the equations in matrix form, we get[
L1(k + 1)

L2(k + 1)

]
=

[−L1(k) + 2L2(k)

0.5L1(k) − L2(k)

]
+

[
2V (k)

0

]
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–2 0 2

1.0

–10 10
Voltage (V)

1.0

–5 0 5–2 0 2
L1 (Henry)

1.0

µθ

L2 (Henry)

~N ~Z ~P ~N ~Z ~P ~NB ~N ~Z ~P ~PB
µτµθ

FIGURE P13.5b

The membership functions are given in Fig. P13.5b and the rules are presented in this table:

L2

L1 Negative Zero Positive

N PB P Z
Z Z Z Z
P Z N NB

The initial conditions are L1(0) = 1 H and L2(0) = −1 H . Conduct a simulation of the
system.

13.6 We have a cylindrical tank with cross-sectional area, Ac. Liquid flows in at a rate Fi and
liquid flows out at a constant rate Fo. We want to control the tank liquid level h using a level
controller to change the liquid level set height hs. The available tank liquid height is HT. The
flow rate in the tank (Fi) is proportional to the percentage that the value is opened. We call
this set flow into the tank Fis.

Fi − Fo = Ac
dh

dt

dh

dt
= Fi − Fo

Ac

The difference between the liquid-level setpoint and the actual tank liquid level is

e = h − hs

and the percentage difference is

e = h − hs

h

The percentage difference is used to govern the flow into the system with the following rules:

If e = 0% then �Fi = 0

If e > 10% then �Fi = 4%

If e < −10% then �Fi = −4%
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The percentage change in flow into the system (�Fi) is

�Fi% = Fis − Fi

Fis

The initial values are

Fis = 0.3 m3/s

Fis = 0.3 m3/s

HT = 2 m

Ac = 3 m2

hs = 1 m

At t = 0 the disturbance in the inlet flow is

Fi = 0.4 m3/s

Fo = 0.3 m3/s

e = 0

At t = 0.5 s �h = (0.4 − 0.3)/3 = 0.03 m; thus h = 1.03 m and e = (1.03 − 1)/1 = 3%.
We now make use of the fuzzy controller. The single-input membership function is as

shown in Fig. P13.6a:

µ = 1.0

0%

<− 10%

−12 −6 0 6 12

> 10%

e(%)

FIGURE P13.6a

µ = 1.0

0%

<− 4%

−12 −6 0 6 12

> 4%

Fi(%)

FIGURE P13.6b

while the output membership function is as shown in Fig. P13.6b:
Using a weighted average defuzzification, conduct a three-cycle simulation of this system.
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13.7 The transport of toxic chemicals in water principally depends on two phenomena: advection
and dispersion. In advection, the mathematical expression for time-variable diffusion is a
partial differential equation accounting for concentration difference in space and time, which
is derived from Fick’s first law:

J = −DA · �C

�x

V · �C

�t
= −DA · �C

�x
and V = A · �α

�C

�t
= −D · �C

�x�x
⇒ ∂C

∂t
= −D

∂2C

∂x2

where J = the mass flux rate due to molecular diffusion, mg/s
D = the molecular diffusion coefficient, cm2/s
A = the area of the cross section, cm2

�C

�t
= the concentration gradient in time, mg/cm3/s

�x = movement distance, cm

So if we want to control �C/�t , we can set a control with the following inputs:

W1 = C (concentration, mg/cm3cm)

W2 = �C

�x
(concentration gradient in space, mg/cm3s)

and the output: �C/�t = α. So

dW1

dx
= W2 and

dW2

dx
= −α (if D = 1.0 cm2/s)

Therefore

W1 (k + 1) = W1(k) + W2(k) and W2(k + 1) = W2(k) − α(k)

For this problem, we assume

0 ≤ W1 ≤ 2000 mg/cm3

− 400 ≤ W2 ≤ 0 mg/cm3

0 ≤ α ≤ 80 mg/cm3

(W2 is negative because flow direction is from high concentration to low concentration).
Step 1: Partition W1 to zero (PZ), low (PL), high (PH) (Fig. P13.7a).

1.0

0 1000 2000

PZ PL PH

W1

FIGURE P13.7a
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1.0

400 −200 0

NH NL NZ

W2

FIGURE P13.7b

Partition W2 to zero (Z), low (NL), high (NH) (Fig. P13.7b)
Step 2: Partition α to low (L) and high (H) (Fig. P13.7c).

0 40 80

L Hµ

α

= 1.0

FIGURE P13.7c

Step 3: Construct rules based on experience as in the following FAM table:

W2

W1 NZ NL NH

PZ L L L
PL L L H
PH L H H

Step 4: Initial conditions:

W1(0) = 800 mg/cm3 and W2(0) = −280 mg/cm3 cm

Now conduct a two-cycle simulation using a centroidal defuzzification method.
13.8 GIS (Global Information System) is a powerful tool in environmental modeling. It integrates

geographical information with data stored in databases. The main issue in using GIS is
selecting the appropriate spatial resolution. If the spatial resolution selected is low, then the
mapping tool cannot fully represent the true topography. On the other hand, if the spatial
resolution selected is too high, then the database size will be larger than necessary, thus
increasing storage requirement and processing speed.
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Two parameters can be used in a fuzzy control system to govern the GIS. The first one
is the digital elevation (DE) value. This value is the difference between the highest and lowest
elevation in a certain geographical area. The second parameter is the area of coverage (AC).
The update equation is defined as follows:

DEnew = SR2

AC
DEold + DEold

In the above equation SR represents spatial resolution (meters).
The first input is DE and can be either {small, medium, large} (in meters) as shown in

Fig. P13.8a, the second input is AC and can be either {small, medium, large} (in meters2) as
shown in P13.8b, and SR is the output, which can either be {increase (I), decrease (D)} as
seen in Fig. P13.8c and the FAM table.

DE

AC L M S

L D I I
M I D I
S D D D

Initial condition for DE is DE(0) = 2000 m.
Initial condition for AC is AC(0) = 5000 m2.

S M L

0 500 1000 1500 2000
DE (m)

(DE) = 1.0µ

FIGURE P13.8a

S M L

0 4000 5000

0.75

0.25

8000 12000 16000
AC (m2)

(AC) = 1.0µ

FIGURE P13.8b
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FIGURE P13.8c

Using a weighted average defuzzification, conduct a two-cycle simulation.
13.9. A businessman employs five people: one engineer to do his SPC work and four woodcarvers.

The woodcarvers sit by the side of the road and carve figures of small animals for tourists.
For the purposes of this problem each figure is equally hard to carve. The tourist picks the
type of figure and the type of wood that the figure is to be carved from. There are several
types of wood with ratings of 0 for very soft to 10 for very hard. The tourist pays a price for
the carving based upon the number of flaws in the final product. The businessman wants to
be able to keep track of the quality of the work, but knows that number of flaws alone is not a
good metric. The number of flaws per worker per day is a function of the hardness of the wood
and the number of carvings each worker has to do each day. The businessman decides to use
the fuzzy ‘‘type of day’’ approach discussed in this chapter for his SPC work. He develops
rules of the form

If the wood hardness is . . . and the number of carvings is . . . and the number of flaws is . . .

Then the type of day is . . . .

The input membership functions are described by the following triangular fuzzy numbers:

Wood hardness: Soft (0.0, 0.0, 10.0); Hard (0.0, 10.0, 10.0)

Number of carvings: Small (0.0, 0.0, 5.0); Medium (0.0, 5.0, 10.0); Large (5.0, 10.0, 10.0)

Number of flaws: Small (0.0,0.0, 50.0); Medium (0.0, 50.0, 100.0); Large (50.0, 100.0, 100.0)

The output membership functions are the day types Good, Fair, OK, Bad, and Terrible, and
are exactly the same as those shown in the body of the text.

There are 18 rules and they are given in Table P13.9a.
The businessman uses X − R charts to gain information about the quality of his product.
For these charts he computes a type of day for each worker, each day, using his fuzzy
rule-based system. He then uses the four type of day readings to compute his set average
and set range. He does this for about 20 working days and then computes his grand average,
average range, and control limits. Since he is paying his woodcarvers the minimum wage,
there is quite a bit of turnover. For this reason he keeps his R charts to see if a statistical
difference between workers develops. He also keeps the X charts to see if the average type
of day is changing with any statistical significance over a period of time. Since the turnover
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TABLE P13.9a
Woodcutters’ rules

Rule number Wood hardness Number of
carvings

Number of flaws Type of day

1 Soft Small Small Fair
2 Soft Small Medium OK
3 Soft Small Large Bad
4 Soft Medium Small OK
5 Soft Medium Medium OK
6 Soft Medium Large Bad
7 Soft Large Small Good
8 Soft Large Medium Fair
9 Soft Large Large OK
10 Hard Small Small OK
11 Hard Small Medium Bad
12 Hard Small Large Terrible
13 Hard Medium Small Fair
14 Hard Medium Medium OK
15 Hard Medium Large OK
16 Hard Large Small Fair
17 Hard Large Medium OK
18 Hard Large Large Bad

rate is high, he does not know his carver’s names. They are just called A, B, C, and D. One
other thing that the businessman is looking for is: Has there been an out-of-control situation
during the last control period? He makes his carvers work out of doors, because it attracts
tourists. But the number of flaws in the carvings also influence the price of the carvings and
his profit.

The 20 day period has ended and the SPC engineer has nearly completed the analysis.
There was some bad weather during this period and the businessman wants to know if there was
a statistically significant effect on the quality of work, or on the type of day. Unfortunately, his
engineer left work early before the calculation was completed. Table P13.9b lists the partially
completed work of the SPC engineer.

Day 20 was nearly completed but not quite. Worker A had a type of day of 0.45,
worker B had a type of day of 0.45, and worker C had a type of day of 0.43. The type of day
calculation was not finished for worker D. Worker D had the following statistics: the number
of carvings was 5, the total number of flaws was 35, and the average wood hardness for these
wood carvings for the day was 8.

Assumethatyouare thebusinessman.Finish thecalculationsbycomputing the following:

(a) The type of day for worker D.
(b) The set average and set range for day 20.
(c) The grand average, the average range, and all of the control limits for the 20 X and R

values.
(d) Determine from the X chart if the system was ever ‘‘out of control’’.
(e) Is there anything in the R chart that would indicate a significant difference between the

workers at any time?
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TABLE P13.9b
Partially completed work

Day or
set number

Worker average type
of day (X)

Range (R)

1 0.43 0.10
2 0.45 0.07
3 0.41 0.06
4 0.41 0.08
5 0.62 0.12
6 0.59 0.06
7 0.58 0.03
8 0.44 0.03
9 0.44 0.06
10 0.43 0.02
11 0.40 0.08
12 0.43 0.08
13 0.47 0.08
14 0.46 0.05
15 0.45 0.06
16 0.40 0.04
17 0.45 0.06
18 0.47 0.02
19 0.42 0.10
20 – –

13.10. In this problem we have a hot liquid that is a product stream coming from a poorly mixed
stirred tank reactor. The reaction is exothermic so that the fluid leaving the reactor can get
very hot. This fluid is cooled with cooling water flowing through a counter-current heat
exchanger, with the hot fluid on the shell side. The situation is depicted in Fig. P13.10. The
hot fluid temperature needs to be maintained at about 110◦F, because it is used in another
process. There is some leeway. The process that is accepting the new hot fluid can easily
handle a fluctuation of ± 5◦F. Differences much larger than this start to become a problem.
The cooling water comes from a cooling tower where the temperature of the cold water is
maintained at 85◦F. Since this temperature is constant, the only way of controlling the hot
fluid temperature is to allow more or less cooling water to flow through the heat exchanger.
The flow is controlled by opening and closing a control valve. The amount of flow through
the valve is relative to the valve stem position. A stem position of 1 represents fully opened
and a position of 0 equals fully closed. The system is controlled using an SISO fuzzy control
system. The fuzzy rules for the system are of the form:

If the �T is . . . Then the valve fractional change is . . . .

where �T is T − Ts, or the current hot fluid temperature minus the setpoint temperature.
The valve fractional change, f , is a fraction defined by the output membership functions

of a Range. If the fraction, f , is greater than 0, the Range is defined as ‘‘full open’’ (1.0)
minus the current valve position. If f is less than 0, the Range is defined as the current valve
position. The control action described by the fuzzy controller is:

New valve position = old valve position + f ∗ Range
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FIGURE P13.10
SISO fluid cooling problem.

TABLE P13.10
Fuzzy rules for hot fluid problem

Rule number �T Valve fractional
change, f

1 Large positive Large positive
2 Small positive Small positive
3 Zero Zero
4 Small negative Small negative
5 Large negative Large negative

The fuzzy rules are given in Table P13.10.
There are five input membership functions for �T . Since they are not all triangles, we

will give the (x,y) coordinates rather than the TFNs:
• Large negative: (−20.0, 1.0) (−15.0, 1.0) (−10.0, 0.0)
• Small negative: (−15.0, 0.0) (−10.0, 1.0) (−5.0, 0.0)
• Zero: (−10.0, 0.0) (−5.0, 1.0) (+5.0, 1.0) (+10.0, 0.0) – note the dead band
• Small positive: (+5.0, 0.0) (+10.0, 1.0) (+15.0, 0.0)
• Large positive: (+10.0, 0.0) (+15.0, 1.0) (+20.0, 1.0)
There are five output membership functions for valve fractional change. Since they are all
triangles, we will give their TFNs:
• Large negative: (−1.5, −1.0, −0.5)
• Small negative: (−1.0, −0.5, 0.0)
• Zero: (−0.5, 0.0, 0.5)
• Small positive: (0.0, 0.5, 1.0)
• Large positive: (0.5, 1.0, 1.5)
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Assuming that the current valve position is 0.6 calculate the following:
(a) If the hot fluid temperature suddenly increases to 113◦F, what is the new valve position

recommended by the fuzzy controller?
(b) If the hot fluid temperature suddenly rises to 122◦F, what is the new valve position

recommended by the fuzzy controller?
(c) If the hot fluid temperature suddenly drops to 98◦F, what would be the new valve position

recommended by the fuzzy controller?
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Knowing ignorance is strength, and ignoring knowledge is sickness.

Lao Tsu
Chinese philosopher, in Tao Te Ching, circa 600 BC

This chapter exposes the reader to a few of the additional application areas that have been
extended with fuzzy logic. These few areas cannot cover the wealth of other applications,
but they give to the reader an appreciation of the potential influence of fuzzy logic in almost
any technology area. Addressed in this chapter are just four additional application areas:
optimization, fuzzy cognitive mapping, system identification, and linear regression.

FUZZY OPTIMIZATION

Most technical fields, including all those in engineering, involve some form of optimization
that is required in the process of design. Since design is an open-ended problem with many
solutions, the quest is to find the ‘‘best’’ solution according to some criterion. In fact,
almost any optimization process involves trade-offs between costs and benefits because
finding optimum solutions is analogous to creating designs – there can be many solutions,
but only a few might be optimum, or useful, particularly where there is a generally nonlinear
relationship between performance and cost. Optimization, in its most general form, involves
finding the most optimum solution from a family of reasonable solutions according to an
optimization criterion. For all but a few trivial problems, finding the global optimum (the
best optimum solution) can never be guaranteed. Hence, optimization in the last three
decades has focused on methods to achieve the best solution per unit computational cost.

In cases where resources are unlimited and the problem can be described analytically
and there are no constraints, solutions found by exhaustive search [Akai, 1994] can

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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guarantee global optimality. In effect, this global optimum is found by setting all the
derivatives of the criterion function to zero, and the coordinates of the stationary point that
satisfy the resulting simultaneous equations represent the solution. Unfortunately, even if
a problem can be described analytically there are seldom situations with unlimited search
resources. If the optimization problem also requires the simultaneous satisfaction of several
constraints and the solution is known to exist on a boundary, then constraint boundary
search methods such as Lagrangian multipliers are useful [deNeufville, 1990]. In situations
where the optimum is not known to be located on a boundary, methods such as the steepest
gradient, Newton–Raphson, and penalty function have been used [Akai, 1994], and some
very promising methods have used genetic algorithms [Goldberg, 1989].

For functions with a single variable, search methods such as Golden section and
Fibonacci are quite fast and accurate. For multivariate situations, search strategies such
as parallel tangents and steepest gradients have been useful in some situations. But most
of these classical methods of optimization [Vanderplaats, 1984] suffer from one or more
disadvantages: the problem of finding higher order derivatives of a process, the issue of
describing the problem as an analytic function, the problem of combinatorial explosion
when dealing with many variables, the problem of slow convergence for small spatial or
temporal step sizes, and the problem of overshoot for step sizes too large. In many situations,
the precision of the optimization approach is greater than the original data describing the
problem, so there is an impedance mismatch in terms of resolution between the required
precision and the inherent precision of the problem itself.

In the typical scenario of an optimization problem, fast methods with poorer conver-
gence behavior are used first to get the process near a solution point, such as a Newton
method, then slower but more accurate methods, such as gradient schemes, are used to
converge to a solution. Some current successful optimization approaches are now based on
this hybrid idea: fast, approximate methods first, slower and more precise methods second.
Fuzzy optimization methods have been proposed as the first steps in hybrid optimization
schemes. One of these methods will be introduced here. More methods can be found in
Sakawa [1993].

One-dimensional Optimization

Classical optimization for a one-dimensional (one independent variable) relationship can be
formulated as follows. Suppose we wish to find the optimum solution, x∗, which maximizes
the objective function y = f (x), subject to the constraints

gi(x) ≤ 0, i = 1, m (14.1)

Each of the constraint functions gi(x) can be aggregated as the intersection of all the
constraints. If we let Ci = {x | gi(x) ≤ 0}, then

C = C1 ∩ C2 ∩ · · · ∩ Cm = {x | g1(x) ≤ 0, g2(x) ≤ 0, . . . , gm(x) ≤ 0} (14.2)

which is the feasible domain described by the constraints Ci . Thus, the solution is

f (x∗) = max
x∈C

{f (x)} (14.3)
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FIGURE 14.1
Function to be optimized, f (x), and fuzzy constraint, C.

In a real environment, the constraints might not be so crisp, and we could have fuzzy
feasible domains (see Fig. 14.1) such as ‘‘x could exceed x0 a little bit.’’ If we use λ-cuts
on the fuzzy constraints C∼, fuzzy optimization is reduced to the classical case. Obviously,
the optimum solution x∗ is a function of the threshold level λ, as given in Eq. (14.4):

f (x∗
λ) = max

x∈Cλ

{f (x)} (14.4)

Sometimes, the goal and the constraint are more or less contradictory, and some trade-
off between them is appropriate. This can be done by converting the objective function
y = f (x) into a pseudogoal G∼ [Zadeh, 1972] with membership function

µG∼
(x) = f (x) − m

M − m
(14.5)

where m = inf
x∈X

f (x)

M = sup
x∈X

f (x)

Then the fuzzy solution set D∼ is defined by the intersection

D∼ = C∼ ∩ G∼ (14.6)

membership is described by

µD∼
(x) = min{µC∼

(x), µG∼
(x)} (14.7)

and the optimum solution will be x∗ with the condition

µD∼
(x∗) ≥ µD∼

(x) for all x ∈ X (14.8)

where µC∼
(x), C∼, x should be substantially greater than x0. Figure 14.2 shows this situation.
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FIGURE 14.2
Membership functions for goal and constraint [Zadeh, 1972].

Example 14.1. Suppose we have a deterministic function given by

f (x) = xe(1−x/5)

for the region 0 ≤ x ≤ 5, and a fuzzy constraint given by

µC∼
(x) =




1, 0 ≤ x ≤ 1

1

1 + (x − 1)2
, x > 1

Both of these functions are illustrated in Fig. 14.3. We want to determine the solution set D∼
and the optimum solution x∗, i.e., find f (x∗) = y∗. In this case we have M = sup[f (x)] = 5
and m = inf[f (x)] = 0; hence Eq. (14.5) becomes

µG∼
(x) = f (x) − 0

5 − 0
= x

5
e(1−x/5)

which is also shown in Fig. 14.3. The solution set membership function, using Eq. (14.7), then
becomes

µD∼
(x) =




x

5
e(1−x/5), 0 ≤ x ≤ x∗

1

1 + (x − 1)2
, x > x∗

0

µ(x), yµ

µC(x)µ
~

x* x

y*

µG(x)µ
~

f(x)

1 5

FIGURE 14.3
Problem domain for Example 14.1.
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and the optimum solution x∗, using Eq. (14.8), is obtained by finding the intersection

x∗

5
e(1−x∗/5) = 1

1 + (x − 1)2

and is shown in Fig. 14.3.

When the goal and the constraint have unequal importance the solution set D∼ can be
obtained by the convex combination, i.e.,

µD∼
(x) = αµC∼

(x) + (1 − α)µG∼
(x) (14.9)

The single-goal formulation expressed in Eq. (14.9) can be extended to the multiple-goal
case as follows. Suppose we want to consider n possible goals and m possible constraints.
Then the solution set, D∼ , is obtained by the aggregate intersection, i.e., by

D∼ =
(

∩
i=1,m

C∼ i

)
∩

(
∩

j=1,n
G∼ j

)
(14.10)

Example 14.2. A beam structure is supported at one end by a hinge and at the other end by a
roller. A transverse concentrated load P is applied at the middle of the beam, as in Fig. 14.4.
The maximum bending stress caused by P can be expressed by the equation σb = P l/wz,
where wz is a coefficient decided by the shape and size of a beam and l is the beam’s length.
The deflection at the centerline of the beam is δ = P l3/(48EI) where E and I are the beam’s
modulus of elasticity and cross-sectional moment of inertia, respectively. If 0 ≤ δ ≤ 2 mm,
and 0 ≤ σb ≤ 60 MPa, the constraint conditions are these: the span length of the beam,

l =
{
l1, 0 ≤ l1 ≤ 100 m
200 − l1, 100 < l1 ≤ 200 m

and the deflection,

δ =
{

2 − δ1, 0 ≤ δ1 ≤ 2 mm
0, δ1 > 2 mm

To find the minimum P for this two-constraint and two-goal problem (the goals are the stress,
σb, and the deflection, δ), we first find the membership function for the two goals and two
constraints.

1. The µG1 for bending stress σb is given as follows:

P(0) = 0, P (60 MPa) = wz60

l
, P (σb) = wzσb

l
; thus, µG1 = σb

60

l

δ

P

FIGURE 14.4
Simply supported beam with a transverse concentrated load.
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To change the argument in µG1 into a unitless form, let x = σb/60, where 0 ≤ x ≤ 1.
Therefore, µG1(x) = x when 0 ≤ x ≤ 1.

2. The µG2 for deflection δ is as follows:

P(δ) = 48EIδ

l3
, P (0) = 0, P (2) = 48EI × 2

l3
; thus, µG2 = δ

2

Let x = δ/2, so that the argument of µG2 is unitless. Therefore, µG2 = x, 0 ≤ x ≤ 1.
3. Using Eq. (14.10), we combine µG1(x) and µG2(x) to find µG(x):

µG(x) = min(µG1(x), µG2(x)) = x 0 ≤ x ≤ 1

4. The fuzzy constraint function µC1 for the span is

µC1(x) =
{

2x, 0 ≤ x ≤ 0.5
2 − 2x, 0.5 < x ≤ 1

where x = l1/200. Therefore, the constraint function will vary according to a unitless
argument x.

5. The fuzzy constraint function µC2 for the deflection δ can be obtained in the same way as
in point 4:

µC2 (x) =
{

1 − x, 0 ≤ x ≤ 1
0, x > 1

where x = δ/2.
6. The fuzzy constraint function µC(x) for the problem can be found by the combination of

µC1(x) and µC2(x), using Eq. (14.10):

µC(x) = min(µC1(x), µC2 (x))

and µC(x) is shown as the bold line in Fig. 14.5.

Now, the optimum solutions P can be found by using Eq. (14.10):

D = (G ∩ C)

µD(x) = µC(x) ∧ µG(x)

1.0

0 0.5 1.0 x

µC1
(x)µ

~

µC(x)µ
~

µC2
(x)µ

~
µ( )µ

FIGURE 14.5
Minimum of two constraint functions.
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FIGURE 14.6
Graphical solution to minimization problem of Example 14.2.

The optimum value can be determined graphically, as seen in Fig. 14.6, to be x∗ = 0.5. From
this, we can obtain the optimum span length, l = 100 m, optimum deflection, δ = 1 mm, and
optimum bending stress, σb = 30 MPa. The minimum load P is

P = min

(
σbwz

l
,

48EIδ

l3

)

Suppose that the importance factor for the goal function µG(x) is 0.4. Then the solution
for this same optimization problem can be determined using Eq. (14.9) as

µD = 0.4µG + 0.6µC

where µC can be expressed by the function (see Fig. 14.5)

µC(x) =
{

2x, 0 ≤ x ≤ 1
3

1 − x, 1
3 < x ≤ 1

Therefore,

0.6µC(x) =
{

1.2x, 0 ≤ x ≤ 1
3

0.6 − 0.6x, 1
3 < x ≤ 1

and 0.4µG(x) = 0.4x. The membership function for the solution set, from Eq. (14.9), then is

µD(x) =
{

1.6x, 0 ≤ x ≤ 1
3

0.6 − 0.2x, 1
3 < x ≤ 1

The optimum solution for this is x∗ = 0.33, which is shown in Fig. 14.7.

0.5

0 0.5 1.0 x

µD(x)µ x*

FIGURE 14.7
Solution of Example 14.2 considering an importance factor.
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FUZZY COGNITIVE MAPPING

Cognitive maps (CMs) were introduced by Robert Axelrod [1976] as a formal means of
modeling decision making in social and political systems. CMs are a type of directed graph
that offers a means to model interrelationships or causalities among concepts; there are
various forms of CMs, such as signed digraphs, weighted graphs, and functional graphs. The
differences amongst these various forms can be found in Kardaras and Karakostas [1999].
CMs can also be used for strategic planning, prediction, explanation, and for engineering
concept development. The use of simple binary relationships (i.e., increase and decrease)
is done in a conventional (crisp) CM. All CMs offer a number of advantages that make
them attractive as models for engineering planning and concept development. CMs have a
clear way to visually represent causal relationships, they expand the range of complexity
that can be managed, they allow users to rapidly compare their mental models with reality,
they make evaluations easier, and they promote new ways of thinking about the issue
being evaluated.

Concept variables and causal relations

CMs graphically describe a system in terms of two basic types of elements: concept
variables and causal relations. Nodes represent concept variables, Cx , where x = 1, . . . , N .
A concept variable at the origin of an arrow is a cause variable, whereas a concept variable
at the endpoint of an arrow is an effect variable. For example, for Ch → Ci, Ch is the cause
variable that impacts Ci , which is the effect variable. Figure 14.8 represents a simple CM,
in which there are four concept variables (Ch represents utilization of waste steam for heat,
Ci represents the amount of natural gas required to generate heat, Ck represents economic
gain for the local economy, and Cj represents the market value of waste steam (which is
dependent on the price of natural gas)).

Arrows represent the causal relations between concept variables, which can be

positive or negative. For example, for Ch
−→Ci, Ch has a negative causal relationship on Ci .

Therefore, an increase in Ch results in a decrease in Ci .

Amount of natural gas
required to generate heat

Market value of
waste steam

Utilization
of waste
steam for

heat

Economic
gain

+ +

− +

Cj

Ch

Ci

Ck

FIGURE 14.8
A conventional cognitive map for the utilization of waste steam.
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Paths and cycles

A path between two concept variables, Ch and Ck, denoted by P (h, k), is a sequence of
all the nodes which are connected by arrows from the first node (Ch) to the last node (Ck)

(Fig. 14.8) [Kosko, 1986]. A cycle is a path that has an arrow from the last point of the path
to the first point.

Indirect effect

The indirect effect of a path from the cause variable Ch to the effect variable Ck, which
is denoted by I (h, k), is the product of the causal relationships that form the path from
the cause variable to the effect variable [Axelrod, 1976]. If a path has an even number
of negative arrows, then the indirect effect is positive. If the path has an odd number of
negative arrows, then the indirect effect is negative. In Fig. 14.8 the indirect effect of cause
variable Ch on the effect variable Ck through path P (h, i, k) is negative; the indirect effect
of the cause variable Ch on the effect variable Ck through path P (h, j, k) is positive.

Total effect

The total effect of the cause variable Ch on the effect variable Ck, which is denoted by
T (h, k), is the union of all the indirect effects of all the paths from the cause variable to
the effect variable [Axelrod, 1976]. If all the indirect effects are positive, the total effect
is positive. If all the indirect effects are negative, so is the total effect. If some indirect
effects are positive and some are negative, the sum is indeterminate [Kosko, 1986]. A large
CM, that is one with a large number of concepts and paths, will therefore be dominated by
the characteristic of being indeterminate. In Fig. 14.8 the total effect of cause variable Ch

to effect variable Ck is the collection of the indirect effect of Ch to Ck through the paths
P (h, i, k) and P (h, j, k). Since one indirect effects is positive and the other is negative in
this case, this means that the total effect is indeterminate.

Indeterminacy

The character of a conventional CM being indeterminate can be resolved, but it comes at
a computational and conceptual price. To do so, the CM must accommodate a numerical
weighting scheme [Kosko, 1986]. If the causal edges are weighted with positive or negative
real numbers, then the indirect effect is the product of each of the weights in a given
path, and the total effect is the sum of the path products. This scheme of weighting the
path relationships removes the problem of indeterminacy from the total effect calculation,
but it also requires a finer causal discrimination. Such a fineness may not be available
from the analysts or experts who formulate the CM. This finer discrimination between
concepts in the CM would make knowledge acquisition a more onerous process–forced
numbers from insufficient decision information, different numbers from different experts,
or from the same expert on different days, and so on. However, causal relationships could
be represented by linguistic quantities as opposed to numerical ones. Such is the context of
a fuzzy CM (FCM).

Fuzzy Cognitive Maps

If one were to emphasize that the simple binary relationship of a CM needed to be extended
to include various degrees of increase or decrease (small decrease, large increase, almost
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no increase, etc.), then a fuzzy cognitive map (FCM) is more appropriate. An FCM extends
the idea of conventional CMs by allowing concepts to be represented linguistically with an
associated fuzzy set, rather than requiring them to be precise. Extensions by Taber [1994]
and Kosko [1992] allow fuzzy numbers or linguistic terms to be used to describe the degree
of the relationship between concepts in the FCM. FCMs are analyzed either geometrically
or numerically [Pelaez and Bowles, 1996]. A geometric analysis is used primarily for small
FCMs, where it simply traces the increasing and decreasing effects along all paths from
one concept to another. For larger FCMs, such as those illustrated later in this section, a
numerical analysis is required, where the concepts are represented by a state vector and the
relations between concepts are represented by a fuzzy relational matrix, called an adjacency
matrix. This, along with a few other key features of FCMs that distinguish them from CMs,
are mentioned below.

Adjacency matrix

A CM can be transformed using a matrix called an adjacency matrix [Kosko, 1986]. An
adjacency matrix is a square matrix that denotes the effect that a cause variable (row)
given in the CM has on the effect variable (column). Figure 14.9 is an adjacency matrix
for the CM displayed in Fig. 14.8. In other words, the adjacency matrix for a CM with n

nodes uses an n × n matrix in which an entry in the (i, j) position of the matrix denotes an
arrow between nodes Ch and Ci . This arrow (as shown in Fig. 14.8) simply represents the
‘‘strength’’ of the effect between the two nodes (i.e., a ‘‘+1’’ represents that the effect is to
increase, whereas a ‘‘−1’’ represents that the effect is to decrease).

Threshold function

Concept states are held within defined boundaries through the threshold function. The
type of threshold function chosen determines the behavior of a CM. A bivalent threshold
function requires concepts to have a value of 1 or 0, which is equivalent to ‘‘on’’ or ‘‘off’’:

f (xi) = 0, xi ≤ 0

f (xi) = 1, xi > 0

The trivalent threshold function includes negative activation. Therefore, concepts have a
value of 1, 0, or −1, which is equivalent to ‘‘positive effect’’, ‘‘no effect,’’ and ‘‘negative
effect’’, respectively:

f (xi) = −1, xi ≤ −0.5

Ch Ci Ck Cj

0 −1 0 +1

0 0 +1 0

0 0 +1 0

0

Ch

Ci

Cj

Ck
E =

0 0 0
FIGURE 14.9
The adjacency matrix for the cognitive map in Fig. 14.8.
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f (xi) = 0, − 0.5 < xi < 0.5

f (xi) = 1, xi ≥ 0.5

Concepts are multiplied by their connecting causal relation weights to give the total input
to the effect concept. In cases where there are multiple paths connecting a concept, the sum
of all the causal products is taken as the input [Tsadiras and Margaritis, 1996]:

xi =
n∑

j = 1
j 	= i

Cjwji (14.11)

where xi = input
Cj = concept state
wji = weight of the causal relations

Feedback

For FCMs we can model dynamic systems that are cyclic, and therefore, feedback within
a cycle is allowed. Each concept variable is given an initial value based on the belief of
the expert(s) of the current state. The FCM is then free to interact until an equilibrium is
reached [Kosko, 1997]. An equilibrium is defined to be the case when a new state vector is
equal to a previous state vector.

Min–max inference approach

The min–max inference approach is a technique that can be used to evaluate the indirect
and total effects of an FCM. The causal relations between concepts are often defined by
linguistic variables, which are words that describe the strength of the relationship. The
min–max inference approach can be utilized to evaluate these linguistic variables [Pelaez
and Bowles, 1995]. The minimum value of the links in a path is considered to be the path
strength. If more than one path exists between the cause variable and the effect variable,
the maximum value of all the paths is considered to be the overall effect. In other words,
the indirect effect amounts to specifying the weakest linguistic variable in a path, and the
total effect amounts to specifying the strongest of the weakest paths.

Example 14.3. Figure 14.10 depicts an FCM with five concept variables (C1 represents
utilization of waste steam for heat, C2 represents amount of natural gas required to produce
heat, C3 represents the resulting carbon dioxide (CO2) emissions produced from the burning
of a methane-based gas, C4 represents carbon credits that would need to be purchased, and
C5 represents the economic gain). Carbon credits are credits a company would receive from
reducing its CO2 emissions below the required level stipulated by the government’s Kyoto
implementation plan. Those companies not meeting their required level may need to purchase
credits from others. In the FCM the ‘‘effects’’ of the paths, P , are linguistic instead of simple
binary quantities like a ‘‘+1’’ (increase) or a ‘‘−1’’ (decrease). However, the numerical
quantities +1, 0, and −1 for a trivalent FCM are still used to convey the signs of the linguistic
term. For example, a linguistic effect of ‘‘significant, +1’’ means that the effect is ‘‘significantly
positive.’’ A linguistic effect of ‘‘a lot, −1’’ means that the effect is ‘‘negatively a lot.’’ The
values of the paths can be in matters of degree such as ‘‘none,’’ ‘‘some,’’ ‘‘much,’’ or ‘‘a lot.’’
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C1

C2

C4

C3 C5
Economic
gain

Purchasing of
carbon credits

Natural gas
requirements

A lot
(+1)

Much
(+1)

A lot (−1)

A lot (−1)

Some (−1)

CO2
emissions

FIGURE 14.10
A fuzzy cognitive map involving waste steam and greenhouse gas emissions.

In this example, then, P = {none < some < much < a lot}. These P values would be the
linguistic values that would be contained within the adjacency matrix of the FCM:




0 −1 0 0 0
0 0 +1 0 −1
0 0 0 +1 0
0 0 0 0 −1
0 0 0 0 0




To implement the FCM we start by activating C1 (i.e., we begin the process by assessing the
impact of an increase in waste steam for a facility); this results in the initial state vector

[1, 0, 0, 0, 0]

This state vector is activating only concept C1 in Fig. 14.10. Causal flow in the FCM was
determined with repeated vector–matrix operations and thresholding [Pelaez and Bowles,
1995].

The new state is the old state multiplied by the adjacency matrix [Pelaez and Bowles,
1996]:

[C1C2 . . . Cn]new = [C1C2 . . . Cn]old ∗



C11 . . . C1n

...
. . .

...
Cn1 . . . Cnn


 (14.12)
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The values of the state vector were thresholded to keep their values in the set {−1, 0, 1}, and
the activated concept (in this case C1) was reset to 1 after each matrix multiplication. Using
the algorithm developed by Pelaez and Bowles [1995] we premultiply the trivalent adjacency
matrix shown above by this initial state vector. At each iteration of this multiplication, the
trivalent threshold function is invoked. This multiplication is continued until the output vector
reaches a limiting state (i.e., it stabilizes). For this simple example, the resulting state vector
stabilized after four iterations to the following form:

[1.0,−1.0,−1.0,−1.0, 1.0]

This stabilized output vector can be understood in the following sense. For an increase in
the waste steam (+1), the natural gas requirements will decrease (−1), the CO2 emissions
will decrease (−1), and carbon credits also decrease (−1). Finally, there is an increase in
economic gain (+1).

With a conventional CM we would get the following results. First, we see that path
I1 = (1, 2, 5) has two negative causal relationships, and its indirect path effect would be
positive (two negatives yield a positive). For path I2 = (1, 2, 3, 4, 5) we see that it has one
negative causal relationship (between C1 and C2) and three positive relationships for the other
three elements of the path; hence, the indirect effect of this path is negative (one negative
and three positives yield a negative effect). Hence, in the conventional CM characterization
of this simple example, the results would be indeterminate (one positive indirect effect and a
negative indirect effect). For an FCM, we can accommodate linguistic characterizations of the
elements, as discussed previously, and as seen in Fig. 14.10. Two unique paths that exist from
the cause variable (C1) to the effect variable (C5) are I1 = (1, 2, 5) and I2 = (1, 2, 3, 4, 5).
The indirect effects of C1 on C5, expressed in terms of the linguistic values of P , are [Kosko,
1992]

I1(C1, C5) = min{e12, e25} = min{a lot, a lot}
= a lot

I2(C1, C5) = min{e12, e23, e34, e45} = min{a lot, a lot, much, some}
= some

Therefore, the linguistic total effect is expressed as

T (C1, C5) = max{I1(C1, C5), I2(C1, C5)}
= max{a lot, some} = a lot

Applying these linguistic results to the stabilized vector above, i.e., [1.0, −1.0,−1.0,−1.0,
1.0], we come to the conclusion that an increase in waste steam for this facility results in ‘‘a
lot of increase’’ in economic gain.

To conclude the example, fuzzy cognitive mapping does suffer in comparison with other
methods in that there is a large degree of subjectivity. But fuzzy cognitive mapping does allow
for varying degrees of magnitude or significance of relationships, which is a limitation of other
crisp or standard methods. Therefore, much of the grayness in subjectivity is captured and
accounted for, resulting in a more balanced assessment. Thus, with appropriate expert-based
professional judgment (likely by a panel of experts in the field of the subject matter), FCM
can be an effective assessment tool. Problems 14.12–14.14 at the end of this chapter are given
as exercises to illustrate how various changes to the paths in this example result in different
results and conclusions of the FCM approach.
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SYSTEM IDENTIFICATION

Suppose we have a standard fuzzy relational equation of the form B∼ = A∼◦R∼. In the normal
situation we have a fuzzy relation R∼ from either rules or data, and the information contained
in A∼ is also known from data or is assumed. The determination of B∼ usually is accomplished
through some form of composition. Suppose, however, that we know B∼ and R∼, and we
are interested in finding A∼ . There are many physical problems where this situation arises.
Foremost among these is the field of system identification. We might have a system (modeled
by R∼) which is subjected to an input which is unknown (represented by A∼), but we are able
to observe or measure the output of the system (given by B∼). So, we want to find out what
possible sets of the input could generate the observed output.

If the relational equation were linear, we would find the inverse of the equation, i.e.,
A∼ = B∼◦R∼

−1.
Unfortunately, a fuzzy relational equation is not linear, and the inverse cannot provide

a unique solution, in general, or any solution in some situations. In fact, the inverse is
difficult to find for most situations [Terano et al., 1992].

A fuzzy relational equation can be expressed in expanded form by

(a1 ∧ r11) ∨ (a2 ∧ r12) ∨ · · · ∨ (an ∧ r1n) = b1

(a1 ∧ r21) ∨ (a2 ∧ r22) ∨ · · · ∨ (an ∧ r2n) = b2

...

(a1 ∧ rm1) ∨ (a2 ∧ rm2) ∨ · · · ∨ (an ∧ rmn) = bm

(14.13)

where ai, rij , and bi are membership values for A∼, R∼, and B∼, respectively.
To solve A∼ = {a1, a2, . . . , an} given rij and bj (i = 1, 2, . . . , n and j = 1, 2, . . . , m),

we can use a method reported by Tsukamoto and Terano [1977] that produces interval
values for the solution. In this approach there are two standard definitions that first must be
presented: a fuzzy equality and a fuzzy inequality. An equality is expressed as

Equality a ∧ r = b (14.14)

The inverse solution for a in the equality in Eq. (14.14), given r and b are known, is
generally an interval number and is denoted by an operator b � r ,

b � r =
{

b, r > b

[b, 1], r = b

∅, r < b

(14.15)

An inequality is defined as
Inequality a ∧ r ≤ b (14.16)

For the inequality (14.16) the inverse solution for a is also an interval number, denoted by
the operator b�̂r , and is given by

b �̂ r =
{

[0, b], r > b

[0, 1], r ≤ b
(14.17)
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A typical row of the standard fuzzy relational equation system (see Eqs. (14.13)), say
the first row, can be represented in a simpler form,

(a1 ∧ r1) ∨ (a2 ∧ r2) ∨ · · · ∨ (an ∧ rn) = b (14.18)

The expression in Eq. (14.18) can be subdivided into n equalities of the type

(a1 ∧ r1) = b, (a2 ∧ r2) = b, . . . , (an ∧ rn) = b (14.19)

and n inequalities of the type

(a1 ∧ r1) ≤ b, (a2 ∧ r2) ≤ b, . . . , (an ∧ rn) ≤ b (14.20)

A solution, represented as an interval vector, to the fuzzy relational Eq. (14.18) exists if and
only if there is at least one equality and no more than (n − 1) inequalities in the solution.
That is, the inverse solution for ai in Eq. (14.18), denoted Wi , is

ai = W1 or W2 or . . . or Wn (14.21)

where
Wi = (b �̂ r1, . . . , b �̂ ri−1, b � ri, b �̂ ri+1, . . . , b �̂ rn) (14.22)

Note that the ith term in Eq. (14.22) is an equality and the other terms are inequalities.

Example 14.4. Suppose we want to solve for ai (i = 1, 2, 3, 4) in the single inverse fuzzy
equation

(a1 ∧ 0.7) ∨ (a2 ∧ 0.8) ∨ (a3 ∧ 0.6) ∨ (a4 ∧ 0.3) = 0.6

Making use of expressions (14.19)–(14.20), we subdivide the single fuzzy equation into n = 4
equalities:

Yeq = {b � r1, b � r2, . . . , b � rn}
= {0.6 � 0.7, 0.6 � 0.8, 0.6 � 0.6, 0.6 � 0.3}
= {0.6, 0.6, [0.6, 1],∅} (four equality values)

and into n = 4 inequalities:

Yineq = {b �̂ r1, b �̂ r2, . . . , b �̂ rn}
= {0.6 �̂ 0.7, 0.6 �̂ 0.8, 0.6 �̂ 0.6, 0.6 �̂ 0.3}
= {[0, 0.6], [0, 0.6], [0, 1], [0, 1]} (four inequality values)

Then Eq. (14.22) provides for the n = 4 potential solutions, Wi , where i = 1, 2, 3, 4:

W1 = {0.6, [0, 0.6], [0, 1], [0, 1]} (position 1 is the first equality value)

W2 = {[0, 0.6], 0.6, [0, 1], [0, 1]} (position 2 is the second equality value)

W3 = {[0, 0.6], [0, 0.6], [0.6, 1], [0, 1]} (position 3 is the third equality value)

W4 = {[0, 0.6], [0, 0.6], [0, 1],∅} = ∅ (position 4 is the fourth equality value)
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where all values are the inequalities, except those equalities noted specifically. Equation (14.21)
provides for the aggregated solution in interval form; note that W4 does not contribute to the
aggregated solution because it has a value of null. Hence,

ai = W1 or W2 or W3

Its maximum solution is amax = {0.6, 0.6, 1, 1}. Its minimum solutions are

amin = {0.6, 0, 0, 0} from W1

= {0, 0.6, 0, 0} from W2

= {0, 0, 0.6, 0} from W3

Now suppose instead of a single equation we want to find the solution for an equation
set; that is, a collection of m simultaneous equations of the form given in Eqs. (14.13).
Then the solution set will consist of an m set of n equalities, expressed in an m × n matrix
(denoted Y) and an m set of n inequalities, also expressed in an m × n matrix (denoted Ŷ):

Y =




b1 � r11 b1 � r12 . . . b1 � r1n

b2 � r21 b2 � r22 . . . b2 � r2n

...

bm � rm1 bm � rm2 . . . bm � rmn


 (14.23)

Ŷ =




b1 �̂ r11 b1 �̂ r12 . . . b1 �̂ r1n

b2 �̂ r21 b2 �̂ r22 . . . b2 �̂ r2n

...

bm �̂ rm1 bm �̂ rm2 . . . bm �̂ rmn


 (14.24)

Taking an element for each row from Y and replacing the corresponding element in Ŷ, we
get an array solution for each element, ij , in the m × n equation matrix:

W ∗
(i1,i2,...,im) =




b1 �̂ r11 . . . b1 � r1i . . . b1 �̂ r1n

b2 �̂ r21 . . . b2 � r2i . . . b2 �̂ r2n

...

bm �̂ rm1 . . . bm � rmi . . . bm �̂ rmn


 = (w∗

ij ) (14.25)

where indices i1 = (1, 2, . . . , n), i2 = (1, 2, . . . , n), and im = (1, 2, . . . , n) represent m
arrays that are all of length n. Each array is a solution to one row of the original
equations (i.e., of Eqs. (14.13)), and we need at most m arrays for the complete solution.
Hence, we can have (nm) solutions, including null solutions, of the type expressed by
Eq. (14.25). To establish a sign convention we denote a particular solution, (w∗

ij ), of the
m × n array by identifying its location (ij) in the array. The complete solution incorporating
all m × n possible solutions will be denoted

W(i1,i2,...,im) = {w1, w2, . . . , wm} (14.26)

where
wj = ∩

i
w∗

ij (14.27)

and where i = 1, 2, . . . , n and j = 1, 2, . . . , m.
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In the foregoing development, each possible solution w1, w2, . . . , wm in Eq. (14.26)
is found by taking the intersection of all the solutions in the jth column, i.e., Eq. (14.27), of
the solution arrays described by Eq. (14.25).

Example 14.5. Suppose we have a system of three simultaneous equations as given here. In
this example, m = 3 and n = 3. Hence, there is a potential for 33 = 27 distinct solutions that
need to be explored in order to develop the full solution. Our goal is to find interval values for
the three unknown quantities, {a1, a2, a3}, in the following inverse equations:

{a1, a2, a3}◦
[

0.3 0.5 0.2
0.2 0 0.4
0 0.6 0.1

]
= [ 0.2 0.4 0.2 ]

To begin the solution process, we need to find the individual equality sets, Y, and
inequality sets, Ŷ, using Eqs. (14.23) and (14.24), respectively. So for the first row of Y we
operate b1 on the first column of the r matrix, i.e., using Eq. (14.15),

{b1 � r11, b1 � r21, b1 � r31} = {0.2 � 0.3, 0.2 � 0.2, 0.2 � 0} = {0.2, [0.2, 1], ∅}

The second row of Y is found, by operating b2 on the second column of the r matrix, to be

{b2 � r12, b2 � r22, b2 � r32} = {0.4 � 0.5, 0.4 � 0, 0.4 � 0.6} = {0.4, ∅, 0.4}

The third row of Y is found, by operating b3 on the third column of the r matrix, to be

{b3 � r13, b3 � r23, b3 � r33} = {0.2 � 0.2, 0.2 � 0.4, 0.2 � 0.1} = {[0.2, 1], 0.2,∅}

Therefore, we have

Y =
[

0.2 [0.2, 1] ∅
0.4 ∅ 0.4

[0.2, 1] 0.2 ∅

]

To calculate the inequality matrix, Ŷ, we have the same sequence of operations of
elements in the b vector on columns in the r matrix, but we use the operator �̂ . For the first
row of Y we operate b1 on the first column of the r matrix, i.e., using Eq. (14.17),

{b1 �̂ r11, b1 �̂ r21, b1 �̂ r31} = {0.2 �̂ 0.3, 0.2 �̂ 0.2, 0.2 �̂ 0} = {[0, 0.2], [0, 1], [0, 1]}

The second row of Y is found, by operating b2 on the second column of the r matrix, to be

{b2 �̂ r12, b2 �̂ r22, b2 �̂ r32} = {0.4 �̂ 0.5, 0.4 �̂ 0, 0.4 �̂ 0.6} = {[0, 0.4], [0, 1], [0, 0.4]}

The third row of Y is found, by operating b3 on the third column of the r matrix, to be

{b3 �̂ r13, b3 �̂ r23, b3 �̂ r33} = {0.2 �̂ 0.2, 0.2 �̂ 0.4, 0.2 �̂ 0.1} = {[0, 1], [0, 0.2], [0, 1]}

Therefore, we have

Ŷ =
[

[0, 0.2] [0, 1] [0, 1]
[0, 0.4] [0, 1] [0, 0.4]
[0, 1] [0, 0.2] [0, 1]

]
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Now, using Eq. (14.25), we can construct the W ∗
ij matrices. The first matrix is W ∗

111, the
subscripts denoting that the equality element for the first row of W ∗

111 comes from the first
position in Y (the first subscript 1) in the first row; the equality element for the second row of
W ∗

111 comes from the first position in Y (the second subscript 1) in the second row; the equality
element for the third row of W ∗

111 comes from the first position in Y (the third subscript 1) in
the third row. All other elements for W ∗

111 come from the same positions they are in for the
matrix Ŷ. Hence, W ∗

111 looks like

W ∗
111 =

[
0.2 [0, 1] [0, 1]
0.4 [0, 1] [0, 0.4]

[0.2, 1] [0, 0.2] [0, 1]

]

Finally, using Eqs. (14.26)–(14.27), we take the intersection of the elements in each
column of W ∗

111 to get

W111 = (∅, [0, 0.2], [0, 0.4]) = ∅

Since there is a null element in W111, we set the entire value equal to null.
Continuing in a similar fashion, the second matrix is W ∗

112, with the subscripts denoting
that the equality element for the first row of W ∗

112 comes from the first position in Y (the first
subscript 1) in the first row; the equality element for the second row of W ∗

112 comes from the
first position in Y (the second subscript 1) in the second row; the equality element for the third
row of W ∗

112 comes from the second position in Y (the third subscript 2) in the third row. All
other elements for W ∗

112 come from the same positions they are in for the matrix Ŷ. Hence,
W ∗

112 looks like

W ∗
112 =

[
0.2 [0, 1] [0, 1]
0.4 [0, 1] [0, 0.4]

[0, 1] 0.2 [0, 1]

]

and using Eqs. (14.26)–(14.27) again, we get

W112 = (∅, 0.2, [0, 0.4]) = ∅

because there is at least one null element in W ∗
112.

Now, moving to other elements in w∗
ij , such as W ∗

131, we get

W ∗
131 =

[
0.2 [0, 1] [0, 1]

[0, 0.4] [0, 1] 0.4
[0.2, 1] [0, 0.2] [0, 1]

]

and the resulting solution after performing intersections on the elements in each column is

W131 = (0.2, [0, 0.2], 0.4)

This process continues for the other 24 solutions, e.g., W211, W232, W333, etc., out of the total
of 27 (33).

Of all 27 possible solutions, only four are non-null (nonempty). These four are

W131 = (0.2, [0, 0.2], 0.4)

W132 = (0.2, 0.2, 0.4)

W231 = (0.2, 0.2, 0.4)

W232 = ([0, 0.2], 0.2, 0.4)
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a3

a2

a1

0.2

0.4
amin

amin
W131

0.2

W232

amax = W132 = W231

FIGURE 14.11
Solution for Example 14.5.

By inspection we can see that W131 ⊇ W132 and W232 ⊇ W231, and that W231 = W132;
hence, the solution can be expressed by the intervals W132 and W232. This solution space in the
three dimensions governed by the original coordinates a1, a2, and a3 is shown in Fig. 14.11.

In the figure we see that the minimum solution is given by two points

amin,1 = {a1, a2, a3} = {0.2, 0, 0.4} from W131

amin,2 = {a1, a2, a3} = {0, 0.2, 0.4} from W232

and that the maximum solution is given by the single point

amax = {a1, a2, a3} = {0.2, 0.2, 0.4}
The entire solution in this three-dimensional example comprises the two edges that are darkened
in Fig. 14.11.

It is perhaps clear from Examples 14.4 and 14.5 that when the cardinal numbers n
and m are large, the number of analytical solutions becomes exponentially large; also,
sometimes the final solution can be null. For both these cases other approaches, such as
those in pattern recognition, might be more practical. In any case, fuzzy inverses are only
approximate; they are not unique in general, even for linear equations.

FUZZY LINEAR REGRESSION

Regression analysis is used to model the relationship between dependent and independent
variables. In regression analysis, the dependent variable, y, is a function of the independent
variables; and the degree of contribution of each variable to the output is represented by
coefficients on these variables. The model is empirically developed from data collected
from observations and experiments. A crisp linear regression model is shown in Eq. (14.28),

y = f (x, a) = a0 + a1x1 + a2x2 + · · · + anxn (14.28)
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In conventional regression techniques, the difference between the observed values
and the values estimated from the model is assumed to be due to observational errors, and
the difference is considered a random variable. Upper and lower bounds for the estimated
value are established, and the probability that the estimated value will be within these two
bounds represents the confidence of the estimate. In other words, conventional regression
analysis is probabilistic. But in fuzzy regression, the difference between the observed and
the estimated values is assumed to be due to the ambiguity inherently present in the system.
The output for a specified input is assumed to be a range of possible values, i.e., the output
can take on any of these possible values. Therefore, fuzzy regression is possibilistic in
nature. Moreover, fuzzy regression analyses use fuzzy functions to represent the coefficients
as opposed to crisp coefficients used in conventional regression analysis [Terano et al.,
1992]. Equation (14.29) shows a typical fuzzy linear regression model,

Y∼ = f (x, A∼) = A∼0
+ A∼1

x1 + A∼2
x2 + · · · + A∼n

xn (14.29)

where A∼ i
is the ith fuzzy coefficient (usually a fuzzy number).

Fuzzy regression estimates a range of possible values that are represented by a
possibility distribution (a more rigorous definition of possibilities is given in Chapter 15),
termed here a membership function. Membership functions are formed by assigning a
specific membership value (degree of belonging) to each of the estimated values (Fig. 14.12).
Such membership functions are also defined for the coefficients of the independent variables.
Triangular membership functions for the fuzzy coefficients, like those shown in Fig. 14.12,
allow for the solution to be found via a linear programming formulation; other membership
functions for the coefficients require alternative approaches [Kikuchi and Nanda, 1991].

The membership function µA∼
for each of the coefficients is expressed as

µA∼ i

(ai) =
{

1 − | pi − ai |
ci

, pi − ci ≤ xi ≤ pi + ci

0, otherwise
(14.30)

The fuzzy function A∼ is a function of two parameters, p and c, known as the middle value
and the spread, respectively. The spread denotes the fuzziness of the function. The figure
shows the membership function for a fuzzy number ‘‘approximately pi.’’ A more detailed
explanation of membership functions, fuzzy numbers, and operations on fuzzy numbers

µA

1.0

Ai

ci pi ci

a

µ

0

~

~

FIGURE 14.12
Membership function for the fuzzy coefficient A∼ .
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is given in Chapters 4 and 12. The fuzzy parameters A∼ = {A∼1, . . . , A∼n} can be denoted in
the vector form of A∼ = {p, c}, where p = (p0, . . . , pn) and c = (c0, . . . , cn). Therefore, the
output is a revised version of Eq. (14.29),

Y∼ = (p0, c0) + (p1, c1)x1 + (p2, c2)x2 + · · · + (pn, cn)xn

The membership function for the output fuzzy parameter, Y∼ , is given by

µY∼
(y) =

{
max(min

i
[µA∼ i

(ai)]), {a | y = f (x, a)} 	= ∅
0, otherwise

(14.31)

Substituting Eq. (14.30) into Eq. (14.31), we get [see Tanaka et al., 1982]

µY∼
(y) =




1 −

∣∣∣∣∣y −
n∑

i=1

pixi

∣∣∣∣∣
n∑

i=1

ci | xi |
, xi 	= 0

1, xi = 0, y = 0
0, xi = 0, y 	= 0

(14.32)

The foregoing equations are applied to m data sets that can be obtained from sampling. The
output and the input data can be either fuzzy or nonfuzzy. Table 14.1 shows an example of
the data sets for the nonfuzzy data. In the table, yj is the output for the jth sample, and xij

is the ith input variable for the jth sample.

The Case of Nonfuzzy Data

Tanaka et al. [1982] have determined the solution to the regression model by converting it
to a linear programming problem (this is not the only approach, as is discussed shortly). For
nonfuzzy data the objective of the regression model is to determine the optimum parameters
A∼

∗ such that the fuzzy output set, which contains yi , is associated with a membership value
greater than h, i.e.,

µY∼j
(yj ) ≥ h, j = 1, . . . , m (14.33)

The degree h is specified by the user; as h increases, the fuzziness of the output increases
[Kikuchi and Nanda, 1991]. Figure 14.13 shows the membership function for the fuzzy

TABLE 14.1
An example of the data sets for nonfuzzy data

Sample number, j Output, yj n inputs, xij

1 y1 x11, x21, . . . , xn1
...

...
...

m ym x1m, x2m, . . . , xnm
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FIGURE 14.13
Fuzzy output function.

output. Equation (14.33) states that the fuzzy output should lie between A and B of
Fig. 14.13. In the figure the middle value (

∑n
i=1 pixi) and the spread (

∑n
i=1 ci |xi |) are

obtained by considering Eq. (14.32), where h is specified by the user.
In regression we seek to find the fuzzy coefficients that minimize the spread of fuzzy

output for all the data sets. Equation (14.34) shows the objective function that has to be
minimized.

O = min


mc0 +

m∑
j=1

n∑
i=0

cixij


 (14.34)

where x0j = 1, for j = 1, . . . , m. The objective function given in Eq. (14.34) is minimized,
subject to two constraints. The constraints are obtained by substituting Eq. (14.32) into
Eq. (14.33); they become

yj ≥
n∑

i=1

pixij − (1 − h)

n∑
i=1

cixij (14.35)

and

yj ≤
n∑

i=1

pixij + (1 − h)

n∑
i=1

cixij (14.36)

Since each data set produces two constraints, there is a total of 2m constraints for each
data set.

The Case of Fuzzy Data

When human judgment or imprecise measurements are involved in determining the output,
the output is seldom a crisp number. The output in such situations is best represented by a
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ej yj
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FIGURE 14.14
An example of fuzzy output.

fuzzy number as Y∼ j = (yj , ej ), where yj is the middle value and ej represents the ambiguity
in the output, as seen in Fig. 14.14.

The membership function for the observed fuzzy output is given as

µY∼j
(y) = 1 − |yj − y|

ej

(14.37)

An estimate of this fuzzy output can be obtained from Eq. (14.32) as

µY∼
∗
j
(y) = 1 −

∣∣∣∣∣yj −
n∑

i=1

pixij

∣∣∣∣∣
n∑

i=1

ci |xij |
for j = 1, m (14.38)

The degree of fitting of the estimated fuzzy output Y∼
∗
j

to the given data Y∼ j
is determined by

hj , which maximizes h subject to Y∼
h

j
⊂ Yh∗

j where

Y∼
h

j
=

{
y | µY∼j

(y) ≥ h
}

Y∼
h∗
j =

{
y | µY∼

∗
j
(y) ≥ h

} (14.39)

Figure 14.15 illustrates these concepts. The objective of the fuzzy linear regression
model is to determine fuzzy parameters A∼

∗ that minimize the spread subject to the constraint
that hj ≥ H for all j, where H is chosen by the user as the degree of fitting of the fuzzy
linear model. The jth fitting parameter, hj , is computed from Fig. 14.15 as

hj = 1 −

∣∣∣∣∣yj −
n∑

i=1

pixij

∣∣∣∣∣
n∑

i=1

ci |xij | − ej

(14.40)

In summary the objective function to be minimized is

Of = min


mc0 +

m∑
j=1

n∑
i= 0

cixij


 (14.41)
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FIGURE 14.15
Degree of fitting of estimated fuzzy output to the given fuzzy output.

subject to the constraints

yj ≥
n∑

i=1

pixij − (1 − H)

n∑
i=1

cixij + (1 − H)ej (14.42)

and

yj ≤
n∑

i=1

pixij + (1 − H)

n∑
i=1

cixij − (1 − H)ej (14.43)

for each data set where j = 1, . . . , m. In Eqs. (14.42) and (14.43) we note that ej = yj − y.
The important equations used in the fuzzy linear regression model for both the nonfuzzy
output (yj ) and the fuzzy output (Y∼ j

) cases, along with the equation numbers, are
summarized in Table 14.2.

Example 14.6. The concepts of fuzzy regression are illustrated through a trivial one-
dimensional problem. Here, we will only use two data points to illustrate the linear regression
approach. The data set is shown in Table 14.3. For these two points the equation of the line
that runs through them both is y = 2.9762x + 0.5524. We should get these values in our fuzzy
analysis since, for two points, we do not have uncertainty in the regression analysis.

Let this data set be represented by a linear regression model, Y∼ = A∼0
+ A∼1

x, where the
coefficients A∼0

and A∼1
are fuzzy numbers. For the data set given in the Table 14.3, i = 1 and

j = 2. From Eq. (14.34) the objective function to be minimized is given by

O =



m∑
j=1

n∑
i=0

cixij


 = mc0 + (x11 + x12)c1 = mc0 + (0.52 + 1.36)c1

= 2c0 + 1.88c1
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TABLE 14.2
Summary of equations used in fuzzy linear regression model (Eq. (14.29)), Y∼ = f (x, A∼) = A∼0 +
A∼1x1 + A∼2x2 + · · · + A∼nxn

Membership functions

A∼ µA∼ i
(ai) =

{
1 − |pi − ai |

ci

pi − ci ≤ xi ≤ pi + ci

0 otherwise
. Eq. (14.30)

Y∼ µY∼
(y) =




1 −

∣∣∣∣∣y −
n∑

i=1

pixi

∣∣∣∣∣
n∑

i=1

ci |xi |
xi 	= 0

1 xi = 0, y = 0
0 xi = 0, y 	= 0

. Eq. (14.32)

Solution
Nonfuzzy data

Objective function O = min


mc0 +

m∑
j=1

n∑
i= 0

cixij


 Eq. (14.34)

Constraints

1 yj ≥
n∑

i=1

pixij − (1 − h)

n∑
i=1

cixij Eq. (14.35)

2 yj ≤
n∑

i=1

pixij + (1 − h)

n∑
i=1

cixij Eq. (14.36)

Fuzzy data

Objective function Of = min


mc0 +

m∑
j=1

n∑
i=0

cixij


 Eq. (14.41)

Constraints

1 yj ≥
n∑

i=1

pixij − (1 − H)

n∑
i=1

cixij + (1 − H)ej Eq. (14.42)

2 yj ≤
n∑

i=1

pixij + (1 − H)

n∑
i=1

cixij − (1 − H)ej Eq. (14.43)

TABLE 14.3
Two data sets describing one-dimensional
problem

yi xij

2.1 0.52
4.6 1.36
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Since there are two data sets, the objective function has to be minimized subject to four
constraints as shown here:

y1 ≥ p0 + 0.52p1 − (1 − h)(c0 + 0.52c1)

y1 ≤ p0 + 0.52p1 + (1 − h)(c0 + 0.52c1)

y2 ≥ p0 + 1.36p1 − (1 − h)(c0 + 1.36c1)

y2 ≤ p0 + 1.36p1 + (1 − h)(c0 + 1.36c1)

Substituting the values of yj (i = 1, 2), and setting h = 0.5, we get

2.1 ≥ p0 + 0.52p1 − 0.5c0 − 0.26c1

2.1 ≤ p0 + 0.52p1 + 0.5c0 + 0.26c1

4.6 ≥ p0 + 1.36p1 − 0.5c0 − 0.68c1

4.6 ≤ p0 + 1.36p1 + 0.5c0 + 0.68c1

The linear programming problem is now solved using the simplex method; a good
explanation of this method is available in Hillier and Lieberman [1980]. Since the constraint
equations are expressed by inequality relationships, basic variables (Di) are introduced to
convert the inequalities to equations (these variables are equated to the slack in the inequality).
Also, since basic variables cannot be negative (this requirement arises due to the ‘‘less than’’
inequality), artificial variables are introduced to account for the negative sign. The basic
variables are variables in the objective function that have a zero coefficient. The artificial
variables are denoted by a bar on top of the letter, i.e., Di .

2.1 = p0 + 0.52p1 − 0.5c0 − 0.26c1 + D1 (1)

2.1 = p0 + 0.52p1 + 0.5c0 + 0.26c1 − D2 + D3 (2)

4.6 = p0 + 1.36p1 − 0.5c0 − 0.68c1 + D4 (3)

4.6 = p0 + 1.36p1 + 0.5c0 + 0.68c1 − D5 + D6 (4)

In the simplex method, an additional variable, denoted M , is used to weight the artificial
variables (there are two, D3 and D6) in the objective function. The updated objective function
is then

O = 2c0 + 1.88c1 + MD3 + MD6

where M is a very large number compared with the magnitudes of the numbers in the original
data set; in this example M is set at 100. Therefore, the final objective function is

−O + 2c0 + 1.88c1 + 100D3 + 100D6 = 0 (0)

The basic variables are D1, D3,D4, and D6. Since the stopping rule of the simplex
method requires the basic variables to have a coefficient of 0, Eq. (0) is subtracted from M times
the equations containing the artificial variables, Eqs. (2) and (4). This procedure works very
much like a Gaussian elimination method for solving simultaneous equations. The calculations
are shown in Table 14.4.

The values of c0, c1, p0, and p1 are determined so that −O has the maximum value
(or O has the minimum value). The calculations performed to determine c0, c1, p0, and p1 by
the simplex method are shown in Tables 14.4 and 14.5. The simplex method is an iterative
process in which the basic variable is replaced by the nonbasic variable that lies in the column
of the highest negative coefficient in row (0) (the nonbasic variable in this column becomes
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an entering basic variable). This is the nonbasic variable that would increase the objective
function at the fastest rate. For example, in the first block of Table 14.5 (blocks are separated by
single horizontal lines), the value of −200 is the largest negative number in Eq. (0); therefore,
p0 is selected as the entering basic variable.

The basic variable that is replaced by the entering basic variable is called the leaving
basic variable. The leaving basic variable is determined by dividing y (right-hand side) by the
positive coefficients in the column containing the entering basic variable; the row that yields
the lowest value contains the leaving basic variable. This is the basic variable that reaches zero
first as the entering basic variable is increased. In this example, for block 1 the lowest value
(2.1/1, 2.1/1, 4.6/1, 4.6/1) lies in rows (1) and (2); either one of the rows can be chosen for
selecting the leaving basic variable.

The column that contains the entering basic variable is called the pivot column and the
row containing the leaving basic variable is the pivot row. As the basic variables must have a
coefficient of +1, the entire pivot row is divided by the pivot number (placed at the intersection
of the pivot row and pivot column). The new basic variable is now eliminated from all the
other equations by the following formula:

New row = old row − (pivot column coefficient) × new pivot row

Therefore, row (0) of the second block is

[−99 −92.1 −200 −188 0 100 0 0 100 0 −670]
−(−200) × [ 0.5 0.26 1 0.52 0 −1 1 0 0 0 2.1]
New row = [ 1 −40.1 0 −84 0 −100 200 0 100 0 −250]

Similar calculations are conducted on all the other equations of the first block.

Row (1) (row (2) is the pivot row):

[−0.5 −0.26 1 0.52 1 0 0 0 0 0 2.1]
− (1) × [ 0.5 0.26 1 0.52 0 −1 1 0 0 0 2.1]

New row = [−1 −0.52 0 0 1 1 −1 0 0 0 0 ]

Row (3):

[−0.5 −0.68 1 1.36 0 0 0 1 0 0 4.6]
− (1) × [0.5 0.26 1 0.52 0 −1 1 0 0 0 2.1]

New row = [−1 −0.94 0 0.84 0 1 −1 1 0 0 2.5]

Row (4):

[0.5 0.68 1 1.36 0 0 0 0 −1 1 4.6]
− (1) × [0.5 0.26 1 0.52 0 −1 1 0 0 0 2.1]

New row = [0 0.42 0 0.84 0 1 −1 0 −1 1 2.5]

In Table 14.5 the leaving basic variable in each block of calculations is identified with an
asterisk.

From the last column in the final block of Table 14.6, we see that A∼0 = (p0, c0) =
(0.55, 0) and A∼1

= (p1, c1) = (2.97, 0). Substituting these values into Y∼ = A∼0
+ A∼1

x yields

Y∼ = (0.55, 0) + (2.97, 0) × 0.52 = 2.09

which is essentially (to within computational error) the same as the actual y value (i.e., 2.1).
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TABLE 14.4
First step in the simplex method

Equation c0 c1 p0 p1 D1 D2 D3 D4 D5 D6 y

Eq. (0) 1 1.88 0 0 0 0 100 0 0 100 0
Eq. (2)∗M 50 26 100 52 0 −100 100 0 0 0 210
Eq. (4)∗M 50 68 100 136 0 0 0 0 −100 100 460
Eq. (0)–Eq. (2)–Eq. (4) −99 −92.1 −200 −188 0 100 0 0 100 0 −670

TABLE 14.5
Calculations of the simplex method

Basic Equation Coefficient of
variable

O c0 c1 p0

(pivot
column)

p1 D1 D2 D3

(pivot
row)

D4 D5 D6 y

Block 1
O (0) −1 −99 −92.1 −200 188 0 100 0 0 100 0 −670
D1 (1) 0 −0.5 −0.26 1 0.52 1 0 0 0 0 0 2.1
∗D3 (2) 0 0.5 0.26 1 0.52 0 −1 1 0 0 0 2.1
D4 (3) 0 −0.5 −0.68 1 1.36 0 0 0 1 0 0 4.6
D6 (4) 0 0.5 0.68 1 1.36 0 0 0 0 −1 1 4.6

Block 2
O (0) −1 1 −40.1 0 −84 0 −100 200 0 100 0 −250

∗D1 (1) 0 −1 −0.52 0 0 1 1 −1 0 0 0 0
p0 (2) 0 0.5 0.26 1 0.52 0 −1 1 0 0 0 2.1
D4 (3) 0 −1 −0.94 0 0.84 0 1 −1 1 0 0 2.5
D6 (4) 0 0 0.42 0 0.84 0 1 −1 0 −1 1 2.5

Block 3
O (0) −1 −99 −90.1 0 −84 100 0 100 0 100 0 −250
D2 (1) 0 −1 −0.52 1 0 1 1 −1 0 0 0 0
p0 (2) 0 −0.5 −0.26 0 0.52 1 0 0 0 0 0 2.1
D4 (3) 0 0 −0.42 0 0.84 −1 0 0 1 0 0 2.5
∗D6 (4) 0 1 0.94 0 0.84 −1 0 0 0 −1 1 2.5

Block 4
O (0) −1 0 0.94 0 −0.84 1 0 100 0 1 99 −2.5

∗D2 (1) 0 0 0.42 0 0.84 0 1 −1 0 −1 1 2.5
p0 (2) 0 0 0.21 1 0.94 0.5 0 0 0 −0.5 0.5 3.35
D4 (3) 0 0 −0.42 0 0.84 −1 0 0 1 0 0 2.5
c0 (4) 0 1 0.94 0 0.84 −1 0 0 0 −1 1 2.5

∗Leaving variable

In Example 14.5 the fuzziness in the coefficients is 0; we should get the exact solution
because we only had two points in the data set. For nontrivial data sets this outcome is
not the case, and the coefficients turn out to be fuzzy sets as represented by a triangular
membership function of the form expressed in Fig. 14.12. The following example illustrates
this idea.
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TABLE 14.6
Final block of simplex calculations

Basic Equation Coefficient of
variable

O c0 c1 p0 p1 D1 D2 D3 D4 D5 D6 y

O (0) −1 0 3.29 0 0 1 1 99 0 0 2 0
p1 (1) 0 0 0.5 0 1 0 1.2 −1.2 0 −1.2 1.2 2.97
p0 (2) 0 0 −0.26 1 0 0.5 −1.1 1.1 0 0.62 −0.44 0.55
D4 (3) 0 0 −0.84 0 0 −1 −1 1 1 1 −1 0
c0 (4) 0 1 0.52 0 0 −1 −1 1 0 0 0 0

TABLE 14.7
Five data samples

y x1 x2

3.54 0.84 0.46
4.05 0.65 0.52
4.51 0.76 0.57
2.63 0.7 0.3
1.9 0.73 0.2

Example 14.7 [Kikuchi and Nanda, 1991]. Consider the data set given in Table 14.7. In
this case there are five data points; hence there will be 2 × 5 = 10 constraints.

The fuzzy linear regression equation, Y∼ = A∼0 + A∼1x1 + A∼2x2 is used to fit the data set.
The objective function to be minimized is

O = 5c0 +
∑

j

x1j c1 +
∑

j

x2j c2 + MD3 + MD6 + MD9 + MD12 + MD15

O = 5c0 + 3.68c1 + 2.05c2 + MD3 + MD6 + MD9 + MD12 + MD15

Using an h value of 0.5 and Eqs. (14.35)–(14.36) for each of the m data points, we get the
following constraint equations:

3.54 = p0 + 0.84p1 + 0.46p2 − 0.5[c0 + 0.84c1 + 0.46c2] + D1 (1)

3.54 = p0 + 0.84p1 + 0.46p2 + 0.5[c0 + 0.84c1 + 0.46c2] − D2 + D3 (2)

4.05 = p0 + 0.65p1 + 0.52p2 − 0.5[c0 + 0.65c1 + 0.52c2] + D4 (3)

4.05 = p0 + 0.65p1 + 0.52p2 + 0.5[c0 + 0.65c1 + 0.52c2] − D5 + D6 (4)

4.51 = p0 + 0.76p1 + 0.57p2 − 0.5[c0 + 0.76c1 + 0.57c2] + D7 (5)

4.51 = p0 + 0.76p1 + 0.57p2 + 0.5[c0 + 0.76c1 + 0.57c2] − D8 + D9 (6)

2.63 = p0 + 0.7p1 + 0.3p2 − 0.5[c0 + 0.7c1 + 0.3c2] + D10 (7)

2.63 = p0 + 0.7p1 + 0.3p2 + 0.5[c0 + 0.7c1 + 0.3c2] − D11 + D12 (8)

1.9 = p0 + 0.73p1 + 0.2p2 − 0.5[c0 + 0.73c1 + 0.2c2] + D13 (9)

1.9 = p0 + 0.73p1 + 0.2p2 + 0.5[c0 + 0.73c1 + 0.2c2] − D14 + D15 (10)
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As explained in Example 14.6, the final objective function equation is obtained by considering
the equations containing the artificial variables:

− 1(O) − 1.5M(c0) − 1.84M(c1) − 1.025M(c2) − 5M(p0) − 3.68M(p1)

− 2.05M(p2) + 0(D1) + (1)M(D2) + 0(D3) + 0(D4) + (1)M(D5) + 0(D6)

+ 0(D7) + (1)M(D8) + 0(D9) + 0(D10) + (1)M(D11) + 0(D12) + 0(D13)

+ (1)M(D14) + 0(D15) − 16.63M(y) = 0

(0)

where the zeros in expression (0) are coefficients on the many slack variables that do not
appear in the objective equation. The same solution procedure as in Example 14.6 is used to
determine the parameters of the coefficients of the fuzzy linear regression model. The fuzzy
coefficients computed [Kikuchi and Nanda, 1991] are

A∼0
= (1.242, 0); A∼1

= (0, 1.4); A∼2
= (5.843, 0)

We see that coefficient A∼1
is fuzzy because it has a nonzero spread. It can be determined that as

h increases, the fuzziness of the output increases (see Problem 14.8 at the end of the chapter).

We conclude this section with a few comments on fuzzy regression. First, the fact
that the estimated value for the output variable, y, is given as a fuzzy number represents
a drawback when outlier points exist in the data set. The presence of an outlier point
makes the spread of the estimate very large since the estimate must cover that point
at least to the level of confidence, h. However, Kikuchi and Nanda [1991] have shown
that, although the spread of the fuzzy numbers may become large in fuzzy regression,
the prototypical values (modal values) of the estimates remain relatively stable. Second,
if a high value of h is given, the spread of the estimate of the output, y, increases in
order to satisfy the increased measure of goodness of fit. Third, each data point requires
two constraint equations; see Eqs. (14.35)–(14.36) or (14.42)–(14.43). The first of each
of these equation pairs represents the case when yj lies in the interval to the left of the
prototypical value and the latter represents the case when yj lies in the interval to the
right of the prototypical value. For m data sets this means 2m constraints; for large data
sets the computational load associated with these equations can become a deterrent to this
regression method.

There are, of course, alternatives to the solution of fuzzy regression equations using
a linear programming approach. For example, Tanaka et al. [1982] solve the dual problem
expressed by Eqs. (14.42)–(14.43). Here the number of equations is related to the number of
independent variables, n, as opposed to the number of constraints, 2N . This relation makes
the computational burden significantly lower than with conventional linear programming
methods for situations where N ≥ n. In addition to the problem of N ≥ n, when n changes
the entire set of constraints has to be reformulated; this characteristic also limits the utility
of the fuzzy regression method. Any linear programming formulation requires that all the
unknown variables must be positive, as demonstrated in the examples here. Hence, a prior
knowledge of the effect of each variable on the outcome is useful. If ambiguity in the sign
of a variable is a feature of the problem, the unknown value must be presented as a linear
combination of two positive numbers – yet another growth in the number of equations.
To overcome these difficulties, some investigators are using other methods to solve fuzzy
regression problems, such as artificial neural networks [Kikuchi and Nanda, 1991].
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SUMMARY

This chapter summarizes fuzzy logic applications in the areas of optimization, cognitive
mapping, system identification, and regression. This only begins to scratch the surface
of the plethora of applications being developed in the rapidly expanding field of fuzzy
logic. The reader is referred to the literature for many other applications projects, which
are summarized in such works or collected bibliographies as Schmucker [1984], Klir and
Folger [1988], McNeill and Freiberger [1993], Kosko [1993], Dubois and Prade [1980],
Ross et al. [2003], and Cox [1994], or discussed in some of the active international research
journals focusing on fuzzy applications such as Intelligent and Fuzzy Systems, Fuzzy Sets
and Systems, and IEEE Transactions on Fuzzy Systems.
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PROBLEMS

Fuzzy Optimization

14.1. The feedforward transfer function for a unit-feedback control system is 1/(s − 1), as shown
in Fig. P14.1. A unit step signal is input to the system. Determine the minimum error of the
system response by using a fuzzy optimization method for the time period, 0 < t < 10 s, and
a fuzzy constraint given by

uc(t) =
{

1, 0 ≤ t ≤ 1
e1−t , t > 1

1
s + 1

E(s)R(s) C(s)

+
–

FIGURE P14.1
14.2. A beam structure is forced by an axial load P (Fig. P14.2). When P is increased to its critical

value, the beam will buckle. Prove that the critical force P to cause buckling can be expressed
by a function

P = n2π2EI

L

where EI = stiffness of the beam
L = span length of the beam
n = number of sine waves the beam shape takes when it buckles (assume it to be

continuous)

If 0 ≤ n ≤ 2, assume that n is constrained by the fuzzy member function

uc(n) =
{

1 − n, 1 ≤ n ≤ 2
0, n < 1
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y

P

FIGURE P14.2

14.3. Suppose that the beam structure in Problem 14.2 also has a transverse load P applied at the
middle of the beam. Then the maximum bending stress can be calculated by the equation
σb = P l/4wz, where wz, with units m3, is a coefficient based on the shape and size of the
cross section of the beam, and l is in meters. If 0 ≤ σb ≤ 60 MPa, and the fuzzy constraint
function for σb is

µc(σb) =



1

(x + 1)2
, 0 ≤ x ≤ 1

0, x > 1

where x = σ

60MPa
combine the conditions given in Problem 14.2 to find the optimum load P, in newtons.
Hint: This problem involves multiple constraints.

14.4. In the metallurgical industry, the working principle for a cold rolling mill is to extrude a steel
strip through two rows of working rollers, as shown in Fig. P14.4. The size of the roller is
very important. The stress between the roller and the strip can be expressed by the following
function:

σH = 0.564

√
PE

LR

where E = Young’s modulus (kN/cm2)
P = loading force (N)
L = contact length between roll and strip (cm)
R = radius of a roller (cm)

If σH = 2.5 kN/cm2 and 10 < R < 20, find the minimum R in which σH has a maximum
value. The radius R has a fuzzy constraint of

uc(R) =



1, 10 ≤ R ≤ 15
20 − R

5
, 15 < R ≤ 20

...

...

R

P

Strip
Working rollers

FIGURE P14.4

System Identification

14.5. In a fuzzy relation equation, A∼◦R∼ = B∼, ri is known as (0.5, 0.7, 0.9) and bi is 0.6. Use the
Tsukamoto method for an inverse fuzzy equation to find ai (i = 1, 2, 3).
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14.6. A fuzzy relation has an expression given as

{a1, a2}◦
[

0.4 0.6
0.8 0.1

]
= [0.3 0.1]

Find ai (i = 1, 2) by using the Tsukamoto method for inverse fuzzy relations.
14.7. A system having a single degree of freedom has the following ordinary differential governing

equation:
a1ẍ + a2ẋ + a3x = b

If b is the input signal, in which b1 = 0.5 and b2 = 0.6, and two sets of response data of x are
(0.4, 0.6, 0.8) and (0.5, 0.7, 0.9), respectively, find the system coefficients ai (i = 1, 2, 3).

Regression

14.8. Show that as the parameter h increases, the fuzziness of the output increases in the five-point
regression problem (Example 14.7) [Kikuchi and Nanda, 1991]. Use the simplex method for
values of h = 0.2 and 0.8.

14.9. Risk assessment is fast becoming the basis of many EPA guidelines that determine whether
a site contaminated with hazardous substances needs to be remediated or not. Risk is defined
as the likelihood of an adverse health impact to the public due to exposure to environmental
hazards. Risk assessment consists of four parts: (1) hazard identification; (2) dose–response
assessment – assessing the health response to a certain dose (concentration) of the chemical;
(3) exposure assessment – assessing the duration and concentration of exposure; and (4) risk
characterization – quantification and presentation of risks. Part (2) of the risk assessment
process consists of exposing a controlled population of animals to various doses of the
chemical and fitting a dose–response curve to the experimental data. The following table
comprises the data derived from the tests:

Dose (mg/L) Response

0 0
2 0.02
5 1.0
10 2.3

Assuming that the dose–response relationship can be expressed by a fuzzy linear regression
model, Y∼ = A∼0

+ A∼1
x, where x represents the dose in mg/L, determine the fuzzy coefficients

A∼0
and A∼1

. Use an h value of 0.5.
14.10. In a survey on costs for the construction of new houses, the number of rooms (including

bedrooms, kitchen, bathroom, and living rooms) in a house was compared with the material
costs of the house. The following table gives the results of the survey:

Cost ($) Number of rooms

10,000 2
25,000 5
100,000 8

Assuming an h of 0.5, determine the coefficients of the fuzzy one-dimensional linear regression
model, Y∼ = A∼0

+ A∼1
x.
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14.11. In fuzzy regression, the output y is a triangular fuzzy number with the spread ej representing
the error in measurement (Fig. P14.11).

1.0

ej yj
ej

y

µ

0

FIGURE P14.11

The accompanying table shows the fuzzy output and the corresponding crisp input:

y, e x

2.1, 0.2 0.52
4.6, 0.35 1.36

Using Eqs. (14.41)–(14.43) for fuzzy output, and h = 0.4, determine the fuzzy coefficients
for a simple fuzzy linear regression model, Y∼ = A∼0

+ A∼1
x.

Cognitive Mapping

14.12. For the information in Example 14.3 find the stabilized state vector corresponding to an initial
state vector of [0, 1, 0, 0, 0].

14.13. For the information in Example 14.3 find the stabilized state vector corresponding to a fuzzy
linguistic effect on the path from C1 to C2 that is ‘‘Much.’’

14.14. For the information in Example 14.3 find the stabilized state vector corresponding to an initial
state vector of [0, 0, 1, 0, 0] and a fuzzy linguistic effect on the path from C2 to C3 that is
‘‘Some.’’



CHAPTER

15
MONOTONE
MEASURES:
BELIEF,
PLAUSIBILITY,
PROBABILITY,
AND POSSIBILITY

. . . whenever you find yourself getting angry about a difference of opinion, be on your guard;
you will probably find, on examination, that your belief is getting beyond what the evidence
warrants.

Bertrand Russell
British philosopher and Nobel Laureate Unpopular Essays, 1923

A bag contains 2 counters, as to which nothing is known except that each is either black or
white. Ascertain their colours without taking them out of the bag.

Louis Carroll
Author and mathematician Pillow Problems, 1895

Most of this text has dealt with the quantification of various forms of non-numeric
uncertainty. Two prevalent forms of uncertainty are those arising from vagueness and from
imprecision. How do vagueness and imprecision differ as forms of uncertainty? Often
vagueness and imprecision are used synonymously, but they can differ in the following
sense. Vagueness can be used to describe certain kinds of uncertainty associated with
linguistic information or intuitive information. Examples of vague information are that the
image quality is ‘‘good,’’ or that the transparency of an optical element is ‘‘acceptable.’’
Imprecision can be associated with quantitative or countable data as well as noncountable

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)



MONOTONE MEASURES 573

data. As an example of the latter, one might say the length of a bridge span is ‘‘long.’’
An example of countable imprecision would be to report the length to be 300 meters. If
we take a measuring device and measure the length of the bridge 100 times we likely will
come up with 100 different values; the differences in the numbers will no doubt be on the
order of the precision of the measuring device. Measurements using a 10 meter chain will
be less precise than those developed from a laser theodolite. If we plot the bridge lengths
on some sort of probit paper and develop a Gaussian distribution to describe the length of
this bridge, we could state the imprecision in probabilistic terms. In this case the length
of the bridge is uncertain to some degree of precision that is quantified in the language of
statistics. Since we are not able to make this measurement an infinite number of times, there
is also uncertainty in the statistics describing the bridge length. Hence, imprecision can be
used to quantify random variability in quantitative uncertainty and it can also be used to
describe a lack of knowledge for descriptive entities (e.g., acceptable transparency, good
image quality). Vagueness is usually related to nonmeasurable issues.

This chapter develops the relationships between probability theory and evidence
theory; to a limited extent it also shows the relationship between a possibility theory,
founded on crisp sets, and a fuzzy set theory. All of these theories are related under
an umbrella theory termed monotone measures [see Klir and Smith, 2001] (which was
termed fuzzy measure theory for a couple decades despite the confusion this generates
when we try to distinguish other theories from fuzzy set theory); all of these theories
have been used to characterize and model various forms of uncertainty. That they are all
related mathematically is an especially crucial advantage in their use in quantifying the
uncertainty spectrum because, as more information about a problem becomes available, the
mathematical description of uncertainty can easily transform from one theory to the next
in the characterization of the uncertainty. This chapter begins by developing monotone
measures as an overarching framework for the other theories used to characterize various
forms of uncertainty. The development continues with specific forms of monotone measures
such as belief, plausibility, possibility, and probability. The chapter illustrates a new method
in developing possibility distributions from empirical data, and it briefly describes a special
kind of relationship between a possibility distribution and a fuzzy set. Examples are
provided to illustrate the various theories.

MONOTONE MEASURES

A monotone measure describes the vagueness or imprecision in the assignment of an
element a to two or more crisp sets. Figure 15.1 shows this idea. In the figure the universe
of discourse comprises a collection of sets and subsets, or the power set. In a monotone
measure what we are trying to describe is the vagueness or imprecision in assigning this
point to any of the crisp sets on the power set. This notion is not random; the crisp sets
have no uncertainty about them. The uncertainty is about the assignment. This uncertainty
is usually associated with evidence to establish an assignment. The evidence can be
completely lacking – the case of total ignorance – or the evidence can be complete – the
case of a probability assignment. Hence, the difference between a monotone measure and
a fuzzy set on a universe of elements is that, in the former, the imprecision is in the
assignment of an element to one of two or more crisp sets, and in the latter the imprecision
is in the prescription of the boundaries of a set.
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A1 A2 A3 A4

A5 A6 A7 A8

Ai –1 A i An

A2 ∪ A6 ∪ … ∪ A i

A1 ∪ A2

FIGURE 15.1
A monotone measure.

BELIEF AND PLAUSIBILITY

There are special forms of monotone measures. A form associated with preconceived
notions is called a belief measure. A form associated with information that is possible, or
plausible, is called a plausibility measure. Specific forms of belief measures and plausibility
measures are known as certainty and possibility measures, respectively. The intersection
of belief measures and plausibility measures (i.e., where belief equals plausibility) will
be shown to be a probability. Monotone measures are defined by weaker axioms than
probability theory, thus subsuming probability measures as specific forms of monotone
measures.

Basically, a belief measure is a quantity, denoted bel(A), that expresses the degree
of support, or evidence, for a collection of elements defined by one or more of the crisp
sets existing on the power set of a universe. The plausibility measure of this collection A is
defined as the ‘‘complement of the Belief of the complement of A,’’ or

pl(A) = 1 − bel(A) (15.1)

Since belief measures are quantities that measure the degree of support for a collection
of elements or crisp sets in a universe, it is entirely possible that the belief measure of
some set A plus the belief measure of A will not be equal to unity (the total belief, or
evidence, for all elements or sets on a universe is equal to 1, by convention). When this
sum equals 1, we have the condition where the belief measure is a probability; that is, the
evidence supporting set A can be described probabilistically. The difference between the
sum of these two quantities (bel(A) + bel(A)) and 1 is called the ignorance, i.e., ignorance
= 1 − [bel(A) + bel(A)]. When the ignorance equals 0 we have the case where the evidence
can be described by probability measures.

Say we have evidence about a certain prospect in our universe of discourse, evidence
of some set occurring or some set being realized, and we have no evidence (zero evidence) of
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the complement of that event. In probability theory we must assume, because of the excluded
middle axioms, that if we know the probability of A then the probability of A is also known,
because we have in all cases involving probability measures, prob(A) + prob(A) = 1.
This constraint of the excluded middle axioms is not a requirement in evidence theory.
The probability of A also has to be supported with some sort of evidence. If there is
no evidence (zero degree of support) for A then the degree of ignorance is large. This
distinction between evidence theory and probability theory is important. It will also be
shown that this is an important distinction between fuzzy set theory and probability theory
(see Appendix A).

Monotone measures are very useful in quantifying uncertainty that is difficult to
measure or that is linguistic in nature. For example, in assessing structural damage in
buildings and bridges after an earthquake or hurricane, evidence theory has proven quite
successful because what we have are nonquantitative estimates from experts; the information
concerning damage is not about how many inches of displacement or microinches per inch
of strain the structure might have undergone, but rather is about expert judgment concerning
the suitability of the structure for habitation or its intended function. These kinds of
judgments are not quantitative; they are qualitative.

The mathematical development for monotone measures follows [see, for example,
Klir and Folger, 1988]. We begin by assigning a value of membership to each crisp set
existing in the power set of a universe, signifying the degree of evidence or belief that a
particular element from the universe, say x, belongs in any of the crisp sets on the power
set. We will label this membership g(A), where it is a mapping between the power set and
the unit interval,

g : P(X) −→ [0, 1] (15.2)

and where P(X) is the power set of all crisp subsets on the universe, X (see Chapter 2). So,
the membership value g(A) represents the degree of available evidence of the belief that a
given element x belongs to a crisp subset A.

The collection of these degrees of belief represents the fuzziness associated with
several crisp alternatives. This type of uncertainty, which we call a monotone measure, is
different from the uncertainty associated with the boundaries of a single set, which we call a
fuzzy set. Monotone measures are defined for a finite universal set by at least three axioms,
two of which are given here (a third axiom is required for an infinite universal set):

1. g(∅) = 0, g(X) = 1

2. g(A) ≤ g(B) for A, B ∈ P(X), A ⊆ B (15.3)

The first axiom represents the boundary conditions for the monotone measure, g(A). It says
that there is no evidence for the null set and there is complete (i.e., unity) membership for
the universe. The second axiom represents monotonicity by simply stating that if one set A
is completely contained in another set B then the evidence supporting B is at least as great
as the evidence supporting the subset A.

A belief measure also represents a mapping from the crisp power set of a universe to
the unit interval representing evidence, denoted

bel : P(X) −→ [0, 1] (15.4)



576 MONOTONE MEASURES

Belief measures can be defined by adding a third axiom to those represented in Eq. (15.3),
given by

bel(A1 ∪ A2 ∪ · · · ∪ An) ≥
∑

i

bel(Ai ) −
∑
i<j

bel(Ai ∩ Aj ) + · · ·

+ (−1)n+1bel(A1 ∩ A2 ∩ · · · ∩ An) (15.5)

where there are n crisp subsets on the universe X. For each crisp set A ∈ P(X), bel(A) is
the degree of belief in set A based on available evidence. When the sets Ai in Eq. (15.5) are
pairwise disjoint, i.e., where Ai ∩ Aj = ∅, then Eq. (15.5) becomes

bel(A1 ∪ A2 ∪ · · · ∪ An) ≥ bel(A1) + bel(A2) + · · · + bel(An) (15.6)

For the special case where n = 2, we have two disjoint sets A and A, and Eq. (15.6) becomes

bel(A) + bel(A) ≤ 1 (15.7)

A plausibility measure is also a mapping on the unit interval characterizing the total
evidence, i.e.,

pl : P(X) −→ [0, 1] (15.8)

Plausibility measures satisfy the basic axioms of monotone measures, Eq. (15.3), and one
additional axiom (different from Eq. (15.5) for beliefs),

pl(A1 ∩ A2 ∩ · · · ∩ An) ≤
∑

i

pl(Ai ) −
∑
i<j

pl(Ai ∪ Aj ) + · · ·

+ (−1)n+1pl(A1 ∪ A2 ∪ · · · ∪ An) (15.9)

From Eq. (15.1) we have a mutually dual system between plausibility and belief [see Shafer,
1976],

pl(A) = 1 − bel(A)

bel(A) = 1 − pl(A) (15.10)

For the specific case of n = 2, i.e., for two disjoint sets A and A, Eq. (15.10) produces

pl(A) + pl(A) ≥ 1 (15.11)

By combining Eq. (15.7) and Eq. (15.10) it can be shown that

pl(A) ≥ bel(A) (15.12)

Equation (15.12) simply states that for whatever evidence supports set A, its plausibility
measure is always at least as great as its belief measure.
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We now define another function on the crisp sets (A ∈ P(X)) of a universe, denoted
m(A), which can be used to express and determine both belief and plausibility measures.
This measure is also a mapping from the power set to the unit interval,

m : P(X) −→ [0, 1] (15.13)

This measure, called a basic evidence assignment (bea) has been termed a basic
probability assignment (bpa) before in the literature, and has boundary conditions

m(∅) = 0 (15.14)∑
A∈P(X)

m(A) = 1 (15.15)

The measure m(A) is the degree of belief that a specific element, x, of the universe X
belongs to the set A, but not to any specific subset of A. In this way m(A) differs from both
beliefs and plausibility. It’s important to remark here, to avoid confusion with probability
theory, that there is a distinct difference between a basic evidence assignment (bea) and
a probability density function (pdf). The former are defined on sets of the power set of
a universe (i.e., on A ∈ P(X)), whereas the latter are defined on the singletons of the
universe (i.e., on x ∈ P(X)). This difference will be reinforced through some examples in
this chapter. To add to the jargon of the literature, the first boundary condition, Eq. (15.14),
provides for a normal bea.

The bea is used to determine a belief measure by

bel(A) =
∑
B⊆A

m(B) (15.16)

In Eq. (15.16) note that m(A) is the degree of evidence in set A alone, whereas bel(A) is
the total evidence in set A and all subsets (B) of A. The measure m(A) is used to determine
a plausibility measure by

pl(A) =
∑

B∩A 	=∅
m(B) (15.17)

Equation (15.17) shows that the plausibility of an event A is the total evidence in set A
plus the evidence in all sets of the universe that intersect with A (including those sets that
are also subsets of A). Hence, the plausibility measure in set A contains all the evidence
contained in a belief measure (bel(A)) plus the evidence in sets that intersect with set A.
Hence, Eq. (15.12) is verified.

Example 15.1. A certain class of short-range jet aircraft has had, for the shorter fuselage
versions, a history of an oscillatory behavior described as vertical bounce. This is due to
the in-flight flexing of the fuselage about two body-bending modes. Vertical bounce is most
noticeable at the most forward and aft locations in the aircraft. An acceptable acceleration
threshold of ±0.1g has been set as the point at which aft lower-body vortex generators should
be used to correct this behavior. In order to avoid the cost of instrumented flight tests, expert
engineers often decide whether vertical bounce is present in the aircraft. Suppose an expert
engineer is asked to assess the evidence in a particular plane for the following two conditions:

1. Are oscillations caused by other phenomena? (O)
2. Are oscillations characteristic of the vertical bounce? (B)
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TABLE 15.1
Measures of evidence for aircraft bounce

Focal element, Ai Expert

m(Ai) bel(Ai) pl(Ai)

∅ 0 0 0
O 0.4 0.4 0.8
B 0.2 0.2 0.6
O ∪ B 0.4 1 1

This universe is a simple one, consisting of the singleton elements O and B. The non-null
(Eq. (15.14) reminds us that the null set contains no evidence, i.e., m(∅) = 0) power set then
consists simply of the two singletons and the union of these two, O ∪ B; including the null
set there are 22 = 4 elements in the power set. All the elements in the power set are called
focal elements. Suppose the expert provides the measures of evidence shown in Table 15.1 for
each of the focal elements (i.e., the expert gives m(Ai ), for i = 1, . . . , 4). Note that the sum of
the evidences in the m(A) column equals unity, as required by Eq. (15.15). We now want to
calculate the degrees of belief and plausibility for this evidence set. Using Eq. (15.16), we find

bel(O) = m(O) = 0.4 and bel(B) = m(B) = 0.2

as seen in Table 15.1. The singletons O and B have no other subsets in them. Using Eq. (15.16)
we find

bel(O ∪ B) = m(O) + m(B) + m(O ∪ B) = 0.4 + 0.2 + 0.4 = 1

as seen in Table 15.1. Using Eq. (15.17), we find

pl(O) = m(O ∩ O) + m(O ∩ (O ∪ B)) = 0.4 + 0.4 = 0.8

and
pl(B) = m(B ∩ B) + m(B ∩ (O ∪ B)) = 0.2 + 0.4 = 0.6

since sets O and B both intersect with the set O ∪ B; and finally,

pl(O ∪ B) = m((O ∪ B) ∩ O) + m((O ∪ B) ∩ B)

+ m((O ∪ B) ∩ (O ∪ B)) = 0.4 + 0.2 + 0.4 = 1

since all sets in the power set intersect with (O ∪ B). These quantities are included in the
fourth column of Table 15.1. Thus, the engineer believes the evidence supporting set O
(other oscillations) is at least 0.4 and possibly as high as 0.8 (plausibility), and believes
the evidence supporting set B (vertical bounce) is at least 0.2 and possibly as high as 0.6
(plausibility). Finally, the evidence supporting either of these sets (O ∪ B) is full, or complete
(i.e., bel = pl = 1).

EVIDENCE THEORY

The material presented in the preceding section now sets the stage for a more complete
assessment of evidence, called evidence theory [Shafer, 1976]. Suppose the evidence for
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certain monotone measures comes from more than one source, say two experts. Evidence
obtained in the same context (e.g., for sets Ai on a universe X) from two independent
sources (e.g., two experts) and expressed by two beas (e.g., m1 and m2) on some power
set P(X) can be combined to obtain a joint bea, denoted m12, using Dempster’s rule of
combined evidence [Dempster, 1967]. The procedure to combine evidence is given here in
Eqs. (15.18) and (15.19):

m12(A) =

∑
B∩C=A

m1(B) · m2(C)

1 − K
for A 	= ∅ (15.18)

where the denominator is a normalizing factor such that

K =
∑

B∩C=∅
m1(B) · m2(C) (15.19)

Dempster’s rule of combination combines evidence in a manner analogous to the way in
which joint probability density functions (pdfs) in probability theory are calculated from
two independent marginal pdfs. We can define a body of evidence, then, as a pair (A, m)
where A are sets with available evidence m(A).

Example 15.2. If a generator is to run untended, the external characteristic of the shunt
machine may be very unsatisfactory, and that of a series even more so, since a source of
constant potential difference supplying a varying load current is usually required. The situation
is even less satisfactory if the load is supplied via a feeder with appreciable resistance, since this
will introduce an additional drop in potential at the load end of the feeder. What is required is
a generator with rising external characteristics, since this would counteract the effect of feeder
resistance. Such a characteristic may be obtained from a compound generator. In a compound
generator we can get variable induced electromotive force (emf) with increase of load current
by arranging the field magnetomotive force (mmf). So, shunt and field windings are used in the
generator as shown in Fig. 15.2. In this figure, Ra , Rc, Rf , and Rs are the armature, compound,

Rc

Rf

Nf

Ns

Rs

Ra

If Il

Vt

Ea

FIGURE 15.2
Electrical diagram of a compound generator.
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field, and series resistance, respectively; If and Il are the field and load current, respectively;
Ea and Vt are the induced armature and terminal voltages, respectively; and Nf and Ns are the
number of turns in the series and field windings, respectively. By arranging the field winding in
different combinations (i.e., varying the difference between Ns and Nf ), we can get different
combinations of compound generators; in particular we can get (1) overcompounded (OC), (2)
flatcompounded (FC), and (3) undercompounded (UC) generators. Each type of compounded
generator has its own external and internal characteristics.

We can say that these three types comprise a universal set of generators, X. Let us con-
sider two experts, E1 an electrical engineer and E2 a marketing manager, called to evaluate the
efficiency and performance of a compound generator. We can come to some conclusion that, say
for a particular outdoor lighting situation, the machine chosen by the two experts may be differ-
ent for various reasons. On the one hand, the electrical engineer may think about performance
issues like minimizing the error, maintaining constant voltage, and other electrical problems.
On the other hand, the marketing manager may be concerned only with issues like minimizing
the cost of running or minimizing maintenance and depreciation costs. In reality both experts
may have valid reasons for the selection of a specific machine required for final installation.

Suppose that a company hires these two individuals to help it decide on a specific kind
of generator to buy. Each expert is allowed to conduct tests or surveys to collect information
(evidence) about the value of each of the three generators. The universe showing the individual
sets of the power set is illustrated in Fig. 15.3. The focal elements of the universe in this figure
are OC, FC, UC, OC ∪ FC, OC ∪ UC, FC ∪ UC, and OC ∪ FC ∪ UC (hereafter we ignore the
null set in determining evidence since this set contains no evidence by definition, Eq. (15.14)),
as listed in the first column of Table 15.2. Note that there are 23 − 1 = 7 non-null elements.
Suppose that the two experts, E1 and E2, give their information (evidence measures) about each
focal element Ai , where i = 1, 2, . . . , 7; that is, they provide m1(Ai ) and m2(Ai ), respectively
(the second and fourth columns in Table 15.2). Note that the sum of the entries in the second
and fourth columns equals unity, again guaranteeing Eq. (15.15).

Using this information, we can calculate the belief measures for each expert. For
example,

bel1(OC ∪ FC) =
∑

B⊆(OC∪FC)

m1(B) = m1(OC ∪ FC) + m1(OC) + m1(FC)

= 0.15 + 0 + 0.05 = 0.20

bel2(FC ∪ UC) =
∑

B⊆(FC∪UC)

m2(B) = m2(FC ∪ UC) + m2(FC) + m2(UC)

= 0.20 + 0.15 + 0.05 = 0.40

OC ∪ UC

OC ∪ FC
FC ∪ UC

X

OC

FC UC

FIGURE 15.3
Universe X of compound generators.
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TABLE 15.2
Focal elements and evidence for compound generators

Focal Expert 1 Expert 2 Combined evidence
elements, Ai

m1(Ai) bel1(Ai) m2(Ai) bel2(Ai) m12(Ai) bel12(Ai)

OC 0 0 0 0 0.01 0.01
FC 0.05 0.05 0.15 0.15 0.21 0.21
UC 0.05 0.05 0.05 0.05 0.09 0.09
OC ∪ FC 0.15 0.20 0.05 0.20 0.12 0.34
OC ∪ UC 0.05 0.10 0.05 0.10 0.06 0.16
FC ∪ UC 0.10 0.20 0.20 0.40 0.20 0.50
OC ∪ FC ∪ UC 0.60 1 0.50 1 0.30 1

The remaining calculated belief values for the two experts are shown in the third and fifth
columns of Table 15.2.

Using the Dempster rule of combination (Eqs. (15.18)–(15.19)), we can calculate the
combined evidence (m12) measures (calculations will be to two significant figures). First we
must calculate the normalizing factor, K , using Eq. (15.19). In calculating this expression we
need to sum the multiplicative measures of all those focal elements whose intersection is the
null set, i.e., all those focal elements that are disjoint:

K = m1(FC)m2(OC) + m1(FC)m2(UC) + m1(FC)m2(OC ∪ UC) + m1(OC)m2(FC)

+ m1(OC)m2(UC) + m1(OC)m2(FC ∪ UC) + m1(UC)m2(FC)

+ m1(UC)m2(OC) + m1(UC)m2(FC ∪ OC) + m1(FC ∪ OC)m2(UC)

+ m1(FC ∪ UC)m2(OC) + m1(OC ∪ UC)m2(FC) = 0.03

Hence 1 − K = 0.97. So, for example, combined evidence on the set FC can be calculated
using Eq. (15.18):

m12(FC) = {m1(FC)m2(FC) + m1(FC)m2(OC ∪ FC) + m1(FC)m2(FC ∪ UC)

+ m1(FC)m2(FC ∪ UC ∪ OC) + m1(OC ∪ FC)m2(FC)

+ m1(OC ∪ FC)m2(FC ∪ UC) + m1(FC ∪ UC)m2(FC)

+ m1(FC ∪ UC)m2(OC ∪ FC) + m1(FC ∪ UC ∪ OC)m2(FC)}/0.97

= {0.05 × 0.15 + 0.05 × 0.05 + 0.05 × 0.2 + 0.05 × 0.5 + 0.15 × 0.15

+ 0.15 × 0.2 + 0.1 × 0.15 + 0.1 × 0.05 + 0.6 × 0.15}/0.97 = 0.21

Similarly, for the combined event FC ∪ UC, we get

m12(FC ∪ UC) = {m1(FC ∪ UC)m2(FC ∪ UC) + m1(FC ∪ UC)m2(FC ∪ OC ∪ UC)

+ m1(FC ∪ OC ∪ UC)m2(FC ∪ UC)}/0.97

= {0.1 × 0.2 + 0.1 × 0.5 + 0.6 × 0.2}/0.97 = 0.20

Finally, using the combined evidence measures, m12, we can calculate the combined belief
measures (bel12). For example, for OC ∪ FC we have

bel12(OC ∪ FC) = m12(OC ∪ FC) + m12(OC) + m12(FC) = 0.12 + 0.01 + 0.21 = 0.34

The remaining calculated values are shown in Table 15.2.
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PROBABILITY MEASURES

When the additional belief axiom (Eq. (15.5)) is replaced with a stronger axiom (illustrated
for only two sets, A and B),

bel(A ∪ B) = bel(A) + bel(B), A ∩ B = ∅ (15.20)

we get a probability measure. Let us now introduce a formal definition for a probability
measure in the context of an evidence theory.

If we have a bea for a singleton, x, denoted m(x) = bel(x), and we have m(A) = 0
for all subsets A of the power set, P(X), that are not singletons, then m(x) is a probability
measure. A probability measure is also a mapping of some function, say p(x), to the unit
interval, i.e.,

p : x −→ [0, 1] (15.21)

To conform to the literature we will let m(x) = p(x) to denote p(x) as a probability
measure. The mapping p(x) then maps evidence only on singletons to the unit interval. The
key distinction between a probability measure and either a belief or plausibility measure,
as can be seen from Eq. (15.21), is that a probability measure arises when all the evidence
is on singletons only, i.e., only on elements x; whereas, when we have some evidence on
subsets that are not singletons, we cannot have a probability measure and will have only
belief and plausibility measures (both, because they are duals – see Eq. (15.10)). If we have
a probability measure, we will then have

bel(A) = pl(A) = p(A) =
∑
x∈A

p(x) for all A ∈ P(X) (15.22)

where set A is simply a collection of singletons; this would define the probability of set A.
Equation (15.22) reveals that the belief, plausibility, and probability of a set A are all equal
for a situation involving probability measures. Moreover, Eqs. (15.7) and (15.11) become a
manifestation of the excluded middle axioms (see Chapter 2) for a probability measure:

pl(A) = p(A) = bel(A) −→ p(A) + p(A) = 1 (15.23)

Example 15.3. Two quality control experts from PrintLaser Inc. are trying to determine the
source of scratches on the media that exit the sheet feeder of a new laser printer already in
production. One possible source is the upper arm and the other source is media sliding on top
of other media (e.g., paper on paper). We shall denote the following focal elements:

W denotes scratches from wiper arm.

M denotes scratches from other media.

The experts provide their assessments of evidence supporting each of the focal elements as
follows:

Focal elements Expert 1, m1 Expert 2, m2

W 0.6 0.3
M 0.4 0.7
W ∪ M 0 0
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We want to determine the beliefs, plausibilities, and probabilities for each non-null focal
element. We can see that evidence is only available on the singletons, W and M. We find the
following relationships for the first expert:

bel1(W) = m1(W) = 0.6

bel1(M) = m1(M) = 0.4

bel1(W ∪ M) = m1(W) + m1(M) + m1(W ∪ M) = 0.6 + 0.4 + 0 = 1

pl1(W) = m1(W) + m1(W ∪ M) = 0.6 + 0 = 0.6

pl1(M) = m1(M) + m1(W ∪ M) = 0.4 + 0 = 0.4

pl1(W ∪ M) = m1(W) + m1(M) + m1(W ∪ M) = 0.6 + 0.4 + 0 = 1

We note that bel1(W) = pl1(W), bel1(M) = pl1(M), and bel1(W ∪ M) = pl1(W ∪ M). From
Eq. (15.23), these are all probabilities. Hence, p1(W) = 0.6, p1(M) = 0.4, and p1(W ∪ M) =
p(W) + p(M) = 0.6 + 0.4 = 1 (this also follows from the fact that the probability of the
union of disjoint events is the sum of their respective probabilities). In a similar fashion for the
second expert we find

p2(W) = 0.3, p2(M) = 0.7 and p2(W ∪ M) = 0.3 + 0.7 = 1

POSSIBILITY AND NECESSITY MEASURES

Suppose we have a collection of some or all of the subsets on the power set of a universe
that have the property A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ An. With this property these sets are said
to be nested [Shafer, 1976]. When the elements of a set, or universe, having evidence
are nested, then we say that the belief measures, bel(Ai), and the plausibility measures,
pl(Ai), represent a consonant body of evidence. By consonant we mean that the evidence
allocated to the various elements of the set (subsets on the universe) does not conflict, i.e.,
the evidence is free of dissonance.

For a consonant body of evidence, we have the following relationships [Klir and
Folger, 1988] for two different sets on the power set of a universe, i.e., for A, B ∈ P(X):

bel(A ∩ B) = min[bel(A), bel(B)] (15.24)

pl(A ∪ B) = max[pl(A), pl(B)] (15.25)

The expressions in Eqs. (15.24)–(15.25) indicate that the belief measure of the intersection
of two sets is the smaller of the belief measures of the two sets and the plausibility measure
of the union of these two sets is the larger of the plausibility measures of the two sets.

In the literature consonant belief and plausibility measures are referred to as neces-
sity (denoted η) and possibility (denoted π ) measures, respectively. Equations (15.24)
and (15.25) become, respectively for all A, B ∈ P(X),

η(A ∩ B) = min[η(A), η(B)] (15.26)

π(A ∪ B) = max[π(A), π(B)] (15.27)
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For a consonant body of evidence, the dual relationships expressed in Eq. (15.10) then take
the forms,

π(A) = 1 − η(A)

η(A) = 1 − π(A)
(15.28)

Since the necessity and possibility measures are dual relationships, the discussion to
follow focuses only on one of these, possibility. If necessity measures are desired, they can
always be derived with the expressions in Eq. (15.28).

We now define a possibility distribution function as a mapping of the singleton
elements, x, in the universe, X, to the unit interval, i.e.,

r : X −→ [0, 1] (15.29)

This mapping will be related to the possibility measure, π (A), through the relationship

π(A) = max
x∈A

r(x) (15.30)

for each A ∈ P(X) [see Klir and Folger, 1988, for a proof]. Now, a possibility distribution
can be defined as an ordered sequence of values,

r = (ρ1, ρ2, ρ3, . . . , ρn) (15.31)

where ρi = r(xi) and where ρi ≥ ρj for i < j . The length of the ordered possibility
distribution given in Eq. (15.31) is the number n. Every possibility measure also can be
characterized by the n-tuple, denoted as a basic distribution [Klir and Folger, 1988],

m = (µ1, µ2, µ3, . . . , µn) (15.32a)
n∑

i=1

µi = 1 (15.32b)

where µi ∈ [0, 1] and µi = m(Ai). Of course, the sets Ai are nested as is required of all
consonant bodies of evidence. From Eq. (15.17) and the relationship

ρi = r(xi) = π(xi) = pl(xi) (15.33)

it can be shown [Klir and Folger, 1988] that

ρi =
n∑

k=i

µk =
n∑

k=i

m(Ak) (15.34)

or, in a recursive form,
µi = ρi − ρi+1 (15.35)
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where ρn+1 = 0 by convention. Equation (15.35) produces a set of equations of the form

ρ1 = µ1 + µ2 + µ3 + · · · + µn

ρ2 = µ2 + µ3 + · · · + µn

ρ3 = µ3 + · · · + µn

. . .

ρn = µn

(15.36)

Nesting of focal elements can be an important physical attribute of a body of
evidence. Consider the following example where physical nesting is an important feature
of an engineering system.

Example 15.4. Suppose there are seven nodes in a communication network X, labeled x1 –x7
and represented by boxes. Of these seven nodes, one is causing a problem. The company
network expert is asked for an opinion on which node is causing the communications problem.
The network expert aggregates these nodes into sets, as given in the accompanying table. The
third column in the table represents the expert’s basic distribution (basic evidence assignments),
and the last column is the possibility distribution found from Eq. (15.34).

Set A Aggregation of focal elements µn = µ(An) ρi

A1 x1 0.4 1
A2 x1 ∪ x2 0.2 0.6
A3 x1 ∪ x2 ∪ x3 0 0.4
A4 x1 ∪ x2 ∪ x3 ∪ x4 0.1 0.4
A5 x1 ∪ x2 ∪ x3 ∪ x4 ∪ x5 0 0.3
A6 x1 ∪ x2 ∪ x3 ∪ x4 ∪ x5 ∪ x6 0.2 0.3
A7 x1 ∪ x2 ∪ x3 ∪ x4 ∪ x5 ∪ x6 ∪ x7 0.1 0.1

The physical significance of this nesting (shown in Fig. 15.4) can be described as follows. In
the network expert’s belief, node x1 is causing the problem. This node has new hardware and

x1 x2 x3 x4 x5 x6 x7

r (x1) = r1 = 1

r (x2) = r2 = 0.6
r (x3) = r3 = 0.4 r (x4) = r4 = 0.4

r (x5) = r5 = 0.2

r (x6) = r6 = 0.2

r (x7) = r7 = 0.1

m (A7) = 0.1m (A6) = 0.2m (A4) = 0.1
m (A2) = 0.2

m (A1) = 0.4

FIGURE 15.4
Nesting diagram, Example 15.4.
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is an experimental CPU. For these reasons, the network expert places the highest belief on this
set (set A1). The next set with nonzero belief (supporting evidence), A2, is comprised of the
union, x1 or x2. The network expert has less belief that node x1 or x2 is causing the problem.
Node x2 has new hardware as well, but has a trusted CPU. The next set with nonzero belief,
A4, is nodes x1 or x2 or x3 or x4. The network expert has even less belief that the problem
is caused by this set. The expert reasons that x3 or x4 has trusted hardware and CPUs. The
next set with nonzero belief, A6, is nodes x1 or x2 or x3 or x4 or x5 or x6. The network expert
has slightly more belief that this set is the problem than set A4, but much less than the initial
set A1, the reasons being that there are two new programmers using these nodes for testing
communications software. The final set with evidence is the union of all seven nodes. The
expert has little belief that this set is the problem because node x7 is usually turned off.

Note that the first element of any ordered possibility distribution, ρ1, is always equal
to unity, i.e., ρ1 = 1. This fact is guaranteed by Eq. (15.32b). The smallest possibility
distribution of length n has the form r = (1, 0, 0, 0, . . . , 0), where there are (n − 1) zeros
after a value of unity in the distribution. The associated basic distribution would have
the form m = (1, 0, 0, 0, . . . , 0). In this case there would be only one focal element with
evidence, and it would have all the evidence. This situation represents perfect evidence;
there is no uncertainty involved in this case.

Alternatively, the largest possibility distribution of length n has the form r =
(1, 1, 1, 1, . . . , 1), where all values are unity in the distribution. The associated basic
distribution would have the form m = (0, 0, 0, 0, . . . , 1). In this case all the evidence is on
the focal element comprising the entire universe, i.e., An = x1 ∪ x2 ∪ · · · ∪ xn; hence, we
know nothing about any specific focal element in the universe except the universal set. This
situation is called total ignorance. In general, the larger the possibility distribution, the less
specific the evidence and the more ignorant we are of making any conclusions.

Since possibility measures are special cases of plausibility measures and necessity
measures are special cases of belief measures, we can relate possibility measures and
necessity measures to probability measures. Equation (15.23) shows that, when all the
evidence in a universe resides solely on the singletons of the universe, the belief and
plausibility measures become probability measures. In a like fashion it can be shown that
the plausibility measure approaches the probability measure from an upper bound and that
the belief measure approaches the probability measure from a lower bound; the result is a
range around the probability measure [Yager and Filev, 1994],

bel(A) ≤ p(A) ≤ pl(A) (15.37)

Example 15.5. Probabilities can be determined by finding point-valued quantities and then
determining the relative frequency of occurrence of these quantities. In determining the salvage
value of older computers, the age of the computer is a key variable. This variable is also
important in assessing depreciation costs for the equipment. Sometimes there is uncertainty in
determining the age of computers if their purchase records are lost or if the equipment was
acquired through secondary acquisitions or trade. Suppose the age of five computers is known,
and we have no uncertainty; here the ages are point-valued quantities.

Computer Age (months)

1 26
2 21
3 33
4 24
5 30
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With the information provided in the table we could answer the following question: What
percentage of the computers have an age in the range of 20 to 25 months, i.e., what percentage
of the ages fall in the interval [20, 25]? This is a countable answer of 2

5 , or 40%.
Now suppose that the age of the computers is not known precisely, but rather each age

is assessed as an interval. Now the ages are set-valued quantities, as follows:

Computer Age (months)

1 [22, 26]
2 [20, 22]
3 [30, 35]
4 [20, 24]
5 [28, 30]

With this information we can only assess possible solutions to the question just posed: What
percentage of the computers possibly fall in the age range of [20, 25] months? Because the
ages of the computers are expressed in terms of ranges (or sets on the input space), the solution
space of percentages will also have to be expressed in terms of ranges (or sets on the solution
space).

To approach the solution we denote the query range as Q, i.e., Q = [20, 25] months.
We denote the age range of the ith computer as Di . Now, we can determine the certainty and
possibility ranges using the following rules:

1. Age (i) is certain if Di ⊂ Q.
2. Age (i) is possible if Di ∩ Q 	= ∅.
3. Age (i) is not possible if Di ∩ Q = ∅.

The first rule simply states that the age is certainly in the query range if the age range of the ith
computer is completely contained within the query range. The second rule states that the age
is possibly in the query range if the age range of the ith computer and the query range have
a non-null intersection, i.e., if they intersect at any age. The third rule states that the age is
not possible if the age range of the ith computer and the query range have no age in common,
i.e., their intersection is null. We should note here that a solution that is certain is necessarily
possible (certainty implies possibility), but the converse is not always true (things that are
possible are not always certain). Hence, the set of certain quantities is a subset of the set of
possible quantities. In looking at the five computers and using the three rules already given,
we determine the following relationships:

Computer η or π

1 Possible
2 Certain
3 Not possible
4 Certain
5 Not possible

In the table we see that, of the five computers, two have age ranges that are certainly (denoted
η(Q)) in the query interval and three have age ranges that are possibly (denoted π(Q)) in the
query interval (one possible and two certain). We will denote the solution as the response to
the query, or resp(Q). This will be an interval-valued quantity as indicated earlier, or

resp(Q) = [η(Q), π(Q)] = [ 2
5 , 3

5 ]

Hence, we can say that the answer to the query is ‘‘Certainly 40% and possibly as high as
60%.’’ We can also see that the range represented by resp(Q) represents a lower bound and an
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upper bound to the actual point-valued probability (which was determined earlier to be 40%)
as indicated by Eq. (15.37).

In Example 15.5 all computer ranges were used in determining the percentages for
possibilities and certainties (i.e., all five). In evidence theory null values are not counted in
the determination of the percentages as seen in the normalization constant, K, expressed
in Eq. (15.19). This characteristic can lead to fallacious responses, as illustrated in the
following example.

Example 15.6. Suppose again we wish to determine the age range of computers, this time
expressed in units of years. In this case we ask people to tell us the age of their own computer
(PC). These responses are provided in the accompanying table. In the table the null symbol, ∅,
indicates that the person queried has no computer.

Person Age of PC (years)

1 [3, 4]
2 ∅
3 [2, 3]
4 ∅
5 ∅

Let us now ask the question: What percentage of the computers have an age in the range
Q = [2, 4] years? Using the rules given in Example 15.5, we see that we have two certainties
(hence, we have two possibilities) and three null values. If we include the null values in our
count, the solution is

resp(Q) = [η(Q), π(Q)] = [ 2
5 , 2

5 ] = 2
5

In this case, we have not used a normalization process because we have counted the null values.
If we decide to neglect the null values (hence, we normalize as Dempster’s rule of combination
suggests), then the solution is

resp(Q) = [η(Q), π(Q)] = [ 2
2 , 2

2 ] = 1

We see a decidedly different result when normalization is used.

A graphical interpretation of the evidence theory developed by Dempster and Shafer
is provided in what is called the ball–box analogy [Zadeh, 1986].

Example 15.7 [Zadeh, 1984]. Suppose the king of country X believes a submarine, S, is in
the territorial waters of X. The king summons n experts, E1, E2, . . . , En, to give him advice
on the location of the submarine, S. The n experts each provide their assessment of the
location of S; call these possible locations L1, L2, . . . , Lm, . . . , Ln, where m ≤ n. Here, Li are
subsets of the territorial waters, X. To be more specific, experts E1, E2, . . . , Em say that S is
in L1, L2, . . . , Lm and experts Em+1, . . . , En−1, En say that S is not located in the territorial
waters of X, i.e., Lm+1 = Lm+2 = · · · = Ln = ∅. So there are (m − n) experts who say that S is
not in the territorial waters. Now the king asks, ‘‘Is S in a subset A of our territorial waters?’’
Figure 15.5 shows possible location regions, Li , and the query region of interest, region A.

If we denote Ei as the location proffered by the ith expert, we have the following two
rules:

1. Ei ⊂ A implies that it is certain that S ∈ A.
2. Ei ∩ A 	= ∅ implies that it is possible that S ∈ A.
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L1

L2

L3

A

Territorial waters

FIGURE 15.5
Ball–box analogy of the Dempster–Shafer evidence theory.

We note again that a certainty is contained in the set of possibilities, i.e., certainty implies
possibility. We further assume that the king aggregates the opinions of his experts by averaging.
Thus, if k out of n experts vote for rule number 1, then the average certainty = k/n; if l out
of n (where l ≥ k) experts vote for rule number 2, then the average possibility = l/n. Finally,
if the judgment of those experts who think there is no submarine anywhere in the territorial
waters is ignored, the average certainty and possibility will be k/m and l/m, respectively
(where m ≤ n). Ignoring the opinion of those experts whose Li is the null set corresponds to
the normalization (Eq. (15.19)) in the Dempster–Shafer evidence theory.

Dempster’s rule of combination may lead to counterintuitive results because of the
normalization issue. The reason for this [Zadeh, 1984] is that normalization throws out
evidence that asserts the object under consideration does not exist, i.e., is null or empty (∅).
The following example from the medical sciences illustrates this idea very effectively.

Example 15.8 [Zadeh, 1984]. A patient complaining of a severe headache is examined by
two doctors (doctor 1 and doctor 2). The diagnosis of doctor 1 is that the patient has either
meningitis (M) with probability 0.99 or a brain tumor (BT) with probability 0.01. Doctor 2
agrees with doctor 1 that the probability of a brain tumor (BT) is 0.01, but disagrees with
doctor 1 on the meningitis; instead doctor 2 feels that there is a probability of 0.99 that the
patient just has a concussion (C). The following table shows the evidence for each of the focal
elements in this universe for each of the doctors (m1 and m2) as well as the calculated values
for the combined evidence measures (m12). In the table there is evidence only on the singletons
M, BT, and C; hence, all the measures are probability measures (the doctors provided their
opinions in terms of probability).

Focal element m1 m2 m12

M 0.99 0 0
BT 0.01 0.01 1
C 0 0.99 0
M ∪ BT 0 0
M ∪ C 0 0
BT ∪ C 0 0
M ∪ BT ∪ C 0 0
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The combined evidence measures are calculated as follows. First, by using Eq. (15.19) the
normalization constant, K , is calculated. Then use of Eq. (15.18) produces values for m12. For
example, m12 for a brain tumor is found as

m12(BT) = 0.01(0.01)

1 − {0.99[0.01 + 0.99] + 0.01[0 + 0.99] + 0[0 + 0.01]} = 0.0001

1 − 0.9999
= 1

One can readily see that the combined measures m12(C) and m12(M) will be zero from the fact
that

m1(C) = m2(M) = 0

The table reveals that using the Dempster–Shafer rule of combination (in Shafer [1976],
null values are not allowed in the definition of belief functions but do enter in the rule of
combination of evidence) results in a combined probability of 1 that the patient has a brain
tumor when, in fact, both doctors agreed individually that it was only one chance in a hundred!
What is even more confusing is that the same conclusion (i.e., m12(BT) = 1) results regardless
of the probabilities associated with the other possible diagnoses.

In Example 15.8 it appears that the normalization process suppressed expert opinion;
but is this omission mathematically allowable? This question leads to the conjecture that
the rule of combination cannot be used until it is ascertained that the bodies of evidence
are conflict-free; that is, at least one parent relation exists that is absent of conflict. In
particular, under this assertion, it is not permissible to combine distinctly different bodies
of evidence. In the medical example, the opinions of both doctors reveal some missing
information about alternative diagnoses. A possibility theory might suggest an alternative
approach to this problem in which the incompleteness of information in the knowledge
base propagates to the conclusion and results in an interval-valued, possibilistic answer.
This approach addresses rather than finesses (like excluding null values) the problem of
incomplete information.

POSSIBILITY DISTRIBUTIONS AS FUZZY SETS

Belief structures that are nested are called consonant. A fundamental property of consonant
belief structures is that their plausibility measures are possibility measures. As suggested
by Dubois and Prade [1988], possibility measures can be seen to be formally equivalent
to fuzzy sets. In this equivalence, the membership grade of an element x corresponds to
the plausibility of the singleton consisting of that x; that is, a consonant belief structure is
equivalent to a fuzzy set F of X where F(x) = pl({x}).

A problem in equating consonant belief structures with fuzzy sets is that the
combination of two consonant belief functions using Dempster’s rule of combination
in general does not necessarily lead to a consonant result [Yager, 1993]. Hence, since
Dempster’s rule is essentially a conjunction operation, the intersection of two fuzzy sets
interpreted as consonant belief structures may not result in a valid fuzzy set (i.e., a consonant
structure).

Example 15.9 [Yager, 1993]. Suppose we have a universe comprised of five singletons, i.e.,

X = {x1, x2, x3, x4, x5}
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and we have evidence provided by two experts. The accompanying table provides the experts’
degrees of belief about specific subsets of the universe, X.

Focal elements Expert 1, m1(Ai) Expert 2, m2(Bi)

A1 = {x1, x2, x3} 0.7
A2 = X 0.3
B1 = {x3, x4, x5} 0.8
B2 = X 0.2

Because A1 ⊂ A2 and B1 ⊂ B2 we have two consonant (nested) belief structures represented
by A and B. Using Dempster’s rule of combination and applying Eqs. (15.18)–(15.19), we
have for any set D on the universe X

m(D) = 1

1 − k

∑
Ai∩Bj =D

m1(Ai ) · m2(Bj )

and
k =

∑
Ai∩Bj =∅

m1(Ai ) · m2(Bj )

Since there are two focal elements in each experts’ belief structures, we will have 22 = 4 belief
structures in the combined evidence case, which we will denote as m. We note for these data
that we get a value of k = 0, because there are no intersections between the focal elements
of A and B that result in the null set. For example, the intersection between A1 and B1 is the
singleton, x3. Then, we get

D1 = A1 ∩ B1 = {x3} m(D1) = 0.56 (i.e., 0.7 × 0.8)

D2 = A1 ∩ B2 = {x1, x2, x3} m(D2) = 0.14 (i.e., 0.7 × 0.2)

D3 = A2 ∩ B1 = {x3, x4, x5} m(D3) = 0.24 (i.e., 0.3 × 0.8)

D4 = A2 ∩ B2 = X m(D4) = 0.06 (i.e., 0.3 × 0.2)

For the focal elements Di we note that D1 ⊂ D2 ⊂ D4 and D1 ⊂ D3 ⊂ D4, but we do not have
D2 ⊂ D3 or D3 ⊂ D2. Hence, the combined case is not consonant (i.e., not completely nested).

Yager [1993] has developed a procedure to prevent the situation illustrated by
Example 15.9 from occurring; that is, a method is available to combine consonant possibility
measures where the result is also a consonant possibility measure. However, this procedure
is very lengthy to describe and is beyond the scope of this text; the reader is referred to the
literature [Yager, 1993] to learn this method.

Another interpretation of a possibility distribution as a fuzzy set was proposed by
Zadeh [1978]. He defined a possibility distribution as a fuzzy restriction that acts as an
elastic constraint on the values that may be assigned to a variable. In this case the possibility
distribution represents the degrees of membership for some linguistic variable, but the
membership values are strictly monotonic as they are for an ordered possibility distribution.
For example, let A∼ be a fuzzy set on a universe X, and let the membership value, µ, be a
variable on X that assigns a ‘‘possibility’’ that an element of x is in A∼ . So we get

π(x) = µA∼
(x) (15.38)



592 MONOTONE MEASURES

Zadeh points out that the possibility distribution is nonprobabilistic and is used
primarily in natural language applications. There is a loose relationship, however, between
the two through a possibility/probability consistency principle [Zadeh, 1978]. In sum, what
is possible may not be probable, but what is impossible is inevitably improbable (see the
discussion on this issue later in this chapter).

Example 15.10. Let A∼ be a fuzzy set defined on the universe of columns needed to support
a building. Suppose there are 10 columns altogether, and we start taking columns away until
the building collapses; we record the number of columns at the time the building collapses.
Let A∼ be the fuzzy set defined by the number of columns ‘‘possibly’’ needed, out of 10 total,
just before the structure fails. The structure most certainly needs at least three columns to stand
(imagine a stool). After that the number of columns required for the building to stand is a
fuzzy issue (because of the geometric layout of the columns, the weight distribution, etc.), but
there is a possibility it may need more than three. The following fuzzy set may represent this
possibility:

A∼ =
{

1

1
+ 1

2
+ 1

3
+ 0.9

4
+ 0.6

5
+ 0.3

6
+ 0.1

7
+ 0

8
+ 0

9
+ 0

10

}

A probability distribution on the same universe may look something like the following table,
where u is the number of columns prior to collapse, and p(u) is the probability that u is the
number of columns at collapse:

u 1 2 3 4 5 6 7 8 9 10

p(u) 0 0 0.1 0.5 0.3 0.1 0 0 0 0

As seen, although it is possible that one column will sustain the building, it is not
probable. Hence, a high degree of possibility does not imply a high probability, nor does a low
degree of probability imply a low degree of possibility.

Belief measures and plausibility measures overlap when they both become probability
measures. However, possibility, necessity, and probability measures do not overlap with
one another except for one special measure: the measure of one focal element that is a
singleton. These three measures become equal when one element of the universal set is
assigned a value of unity, and all other elements in the universe are assigned a value of
zero. This measure represents perfect evidence [Klir and Folger, 1988].

POSSIBILITY DISTRIBUTIONS DERIVED FROM EMPIRICAL
INTERVALS

Analyzing empirical data is an important exercise in any experimental analysis. In practice,
it is very common to use probabilistic tools to analyze data from experimental studies.
However, there are a number of occasions when it is more appropriate to conduct
possibilistic analysis than a probabilistic analysis. For example, in the determination of
the residual strength of an existing bridge, one might have only subjective estimates from
visual inspections of the bridge or limited information of the strength from nondestructive
evaluation. In such cases, data are usually available as a range of numbers or intervals
(see Fig. 15.6), and an analyst is required to determine the best possible estimate from
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FIGURE 15.6
Residual strength estimates acquired as ‘‘consistent’’ intervals.

(a) (b)

FIGURE 15.7
(a) Overlapping but inconsistent intervals; (b) completely disjoint intervals.

such data. When data are available as a set of intervals, possibilistic analysis captures the
true uncertainty in the interval without relying on predetermined distributions and by not
requiring an analyst to come up with specific data (i.e., singletons). Possibility distributions
capture the imprecision resulting from nonspecificity of the intervals by considering the
entire length of the interval. This section describes an approach for developing possibility
distributions from such empirical measurements.

As described in the previous section, when the intervals are nested (consonant
intervals), possibility measures are plausibility measures as defined by evidence theory.
Thus, for nested intervals one can derive a possibility distribution by tracing a contour over
all the nested intervals. In practice, however, intervals are seldom nested and are usually
available as sets of overlapping and nonoverlapping portions. In such cases, special methods
are required to transform the nonconsonant intervals into consonant intervals in accordance
with the available evidence. The nonconsonant intervals can be consistent, where at least
one common interval exists among all the measurements (Fig. 15.6), partially overlapping,
where some intervals overlap (Fig. 15.7a), or disjoint, where there is no overlap among
the intervals (Fig. 15.7b). The next section describes a method for developing possibility
distributions for more common cases where the intervals are consistent and partially
overlapping.

Deriving Possibility Distributions from Overlapping Intervals
[Donald, 2003]

Let us consider a system that can be described within a domain X = {x1, x2, . . . , xn}, the
behavior of which is described by evidence obtained as observations over a collection of
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sets, F . The set X is called the domain of the system. For example, the domain of the system
can be all the possible residual strengths of the bridge under consideration for maintenance.
Now, let F = {〈

Aj, wj

〉}
represent the original intervals along with their weights. If M

measurements are observed, then the weights wj of each observation Aj is calculated by
frequency analysis as

wj = n(Aj )

M
(15.39)

where n(Aj ) is the frequency count of interval Aj , and
∑

j wj = 1,
∑

j n(Aj ) = M.
In conventional probability analysis, the observations A1 and A2 are disjoint such

that A1 ∩ A2 = 	O, and the frequency of occurrence of any event Aj is simply the ratio
of the count of a particular event to the total number of occurrences of all the events.
However, such disjoint measurements are uncommon and measurements are usually such
that F consists of overlapping intervals Aj . In deriving a set of consonant intervals it
is assumed that the underlying evidence is coherent such that the observations obtained
should reveal intervals that are nested within each other. This is accomplished such that the
smallest interval (having the least nonspecificity) is selected as the interval that has the most
intersections with the observations and the next smallest one as that having the second-most
intersections, and so forth. This process yields Q unique countable intersections and a set
G = {〈Bk, ν(Bk)〉} , k = 1, 2, . . . , Q of intersections, where Bk is the interval obtained by
the kth intersection of original intervals Ai and Aj , and ν(Bk) is the weight assigned to
the corresponding Bk . Union of all the sets, S = ⋃

Aj ∈F Aj , where w(Aj ) 	= 0, forms the
support interval and is derived as

S = [ min
Ai∈F,x∈Ai

(x), max
Ai∈F,x∈Ai

(x)] (15.40)

Weights νk assigned to each of the Q elements of G are determined by utilizing any
of the t-norms (see Chapter 2) for conjunctions as ν(Bk) = T(Ai, Aj )k, where T(Ai, Aj )k
is any conjunctive triangular norm operating on the sets Ai and Aj that form the kth
intersection. In this section the standard fuzzy intersection (t-norm, minimum operator) is
used to determine weights ν(Bk) of the conjunction of sets Ai and Aj , and therefore the
weights are obtained as

ν(Bk) = min(wi, wj )k (15.41)

Since a min t-norm is based on a weaker axiom of nonadditivity, the weights do not
necessarily add to 1, and hence the weights derived are normalized as

η(Bk) = ν(Bk)

Q∑
k=1

, ν(Bk)

(15.42)

such that,
∑

k η(Bk) = 1.
In deriving the elements of G, however, some elements by virtue of their origin from

the intersections from parent sets (sets from which the intervals were derived) tend to be
consonant with the parent set while they are not necessarily consonant with other parent
sets. Therefore, if Q represents the total number of focal elements (intervals with nonzero
weights) in the focal set G derived from the intersections of original measurements, there
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are QH elements in the consonant set H, and QI elements in the nonconsonant set I, such
that ∑

Bk∈QH

η(Bk) +
∑

Bk∈QI

η(Bk) = 1.0 (15.43)

Consonant intervals can be extracted from the intersection set G as a combination of
frequency analysis and expert judgments. The most possible interval is the one that occurs
most frequently, and in which an expert has the most confidence. Once the task of selecting
consonant intervals is accomplished, the weight from the remaining nonconsonant intervals
is redistributed to the consonant intervals in such a manner that the total information from
underlying evidence is preserved.

Redistributing Weight from Nonconsonant to Consonant Intervals

Weights are redistributed from nonconsonant to consonant sets according to the dissonance
between individual intersecting sets (the conflict between two sets). The logic used here
is that the higher the similarity between two sets (or the lower the conflict) the greater is
the weight that can be transferred between the two sets. Parameters that are useful in the
redistribution of weight are identified as the cardinality of each set, |Hi |, and the number
of common elements between the sets

∣∣Hi ∩ Ij
∣∣. In the case of continuous intervals, the

cardinality |.| can be replaced by the length l of the interval defined over a real line, and
the set of real numbers comprising the intersecting interval can be determined as the length
that is common to both the intervals. The similarity, β, of two sets is given as

βij =
∣∣Hi ∩ Ij

∣∣
|Hi | (15.44)

or, for a set of real numbers,

βij = l[min ωi | ωi ∈ Hi ∩ Ij 	= 	O, max ωi |ωi ∈ Hi ∩ Ij 	= 	O]

l[Hi]
(15.45)

where l [.] denotes the length of the interval and is simply given as l[a, b] = b − a, with l[.]
equal to 1 for singletons and βij = 1 when Hi is completely included in Ij .

A redistribution factor κ is then computed as

κij = βij

QH∑
i=1

βij

(15.46)

such that, for any j ,
∑QH

i=1 κij = 1.0.
The redistribution factor can be viewed as the fraction of the weight that is transferred

from the nonconsonant to the consonant interval. The redistribution weight ρ is then
calculated by determining the weight of the nonconsonant interval Ij that is transferred to
the corresponding consonant interval Hi . Therefore, for the ith consonant interval and j th
nonconsonant interval,

ρij = κij ∗ η(Ij ) (15.47)
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From Eq. (15.45) it is clear that when Ij intersects with Hi and no other set then β = 1,
thus assigning the entire weight of I to H, and also, when H does not intersect with any
portion of I, β = 0. The final weights of the initial consonant sets as determined after the
redistribution is given over the entire set of nonconsonant intervals as

m(Hi ) = η(Hi ) +
QI∑
j=1

ρij = η(Hi ) +
QI∑

j=1

κijη(Ij ) (15.48)

The above process indicates that the total weight is preserved among the consonant data
intervals. It can be proved that

∑QH
i=1 m(Hi ) = 1.0. From Eq. (15.48) and with the constraint∑QH

i=1 κij = 1.0, we have

QH∑
i=1

m(Hi ) =
QH∑
i=1

η(Hi ) +
QH∑
i=1

QI∑
j=1

κijη(Ij )

=
QH∑
i=1

η(Hi ) +
QI∑

j=1

(
η(Ij )

QH∑
i=1

κij

)

=
QH∑
i=1

η(Hi ) +
QI∑

j=1

η(Ij )

= 1.0

The possibility distribution from the weights is then obtained as follows:

π(x) =
∑
x∈Hi

m(Hi ) (15.49)

Example 15.11. Suppose it is required to determine the strength of a wooden bridge that is
subject to heavy foot traffic and an expert is hired to estimate the residual strength of the
bridge. The expert uses various nondestructive techniques at various points of the bridge and
offers estimates for the strength as shown in Table 15.3. Based on these estimates, an analyst
needs to determine the possible strength of the bridge to decide on the appropriate action.

The first step in the solution is to determine the support of the distribution and the most
possible interval based on the intersections of all the measurements. The support is calculated
from Eq. (15.40) as S = [1000, 5000], and the intervals obtained by intersections of all the
measurements are shown in Table 15.4.

TABLE 15.3
Original data intervals

Estimate Residual strength (lb/in2) Weight

1 [1000, 4000] 0.2
2 [2000, 4000] 0.4
3 [3000, 5000] 0.2
4 [2000, 5000] 0.2
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TABLE 15.4
Intervals obtained by intersections of original data inter-
vals in Table 15.3

Interval Weight Normalized weights

[3000, 4000] 0.2 0.143
[1000, 4000] 0.2 0.143
[2000, 4000] 0.4 0.285
[3000, 5000] 0.2 0.143
[2000, 5000] 0.2 0.143
[1000, 5000] 0.2 0.143

TABLE 15.5
Redistribution of weights between the nonconsonant and consonant intervals

Nonconsonant
intervals

Consonant intervals β κ ρ

[3000, 5000] [3000, 4000] 1 0.316 0.045
[2000, 4000] 1 0.316 0.045
[2000, 5000] 0.66 0.209 0.03
[1000, 5000] 0.5 0.159 .023

[1000, 4000] [3000, 4000] 1 0.267 0.038
[2000, 4000] 1 0.267 0.038
[2000, 5000] 1 0.267 0.038
[1000, 5000] 0.75 0.199 0.029

From this table, it can be seen that the interval [3000, 4000] is included in all the intervals
and, hence, is selected as the most possible interval. The selection of this most possible interval
can also be based on other criteria that the expert chooses. The set of consonant intervals
is then determined from this most possible interval by choosing intervals in the order of
increasing cardinality, which include the most possible interval such that the selected intervals
are nested. Any intervals that are not part of this nested structure then form the elements for
the nonconsonant set. The set of consonant intervals forms the intervals for the possibility
distribution and the total weight of the evidence is then preserved by transferring the weight
from the nonconsonant set to the consonant set (Eqs. (15.44)–(15.46)). Table 15.5 shows this
redistribution of weights.

Redistribution parameters β, κ , ρ are determined using Eqs. (15.44)–(15.47) as

β11 = [3000, 5000] ∩ [3000, 4000]

[3000, 4000]
= 1

k11 = β11

β11 + β21 + β31 + β41
= 1

3.16
= 0.316

ρ11 = κ11 ∗ η(I1) = 0.316 ∗ 0.143 = 0.045

The final weights are then determined using Eq. (15.48) as

m[3000, 4000] = 0.143 + ρ11 + ρ12

= 0.143 + 0.045 + 0.038 = 0.226

Similarly, weights for other interval measurements are determined and are shown in Table 15.6.
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TABLE 15.6
Possibility intervals and final weights

Interval Final weight Possibilistic weight

[3000, 4000] 0.226 1.0
[2000, 4000] 0.368 0.774
[2000, 5000] 0.211 0.406
[1000, 5000] 0.195 0.195

Residual strength (lb/in2)

0.2

0.4

0.6

0.8

1.0

p

1000 50002500 4500 FIGURE 15.8
Possibility distribution for the residual strength of the bridge.

Finally, a possibility distribution is traced over the consonant intervals from Table 15.6
with the corresponding new weights, as shown in Fig. 15.8.

There is significant information in any possibility distribution that is not available when
one chooses to represent the same information probabilistically. For example, the possibility
distribution in Fig. 15.8 has possibilistic information on residual strength of a wooden bridge.
Suppose we choose to focus on a specific interval of strengths, say A = [2500, 4500] lb/in2

(as shown by the broken lines in Fig. 15.8). The possibility of the actual strength of the
bridge being in the interval [2500, 4500] lb/in2 is unity. This is because the actual interval in
Fig. 15.8 with π([3000, 4000]) = 1.0 is fully contained within the interval of interest, i.e.,
within [2500, 4500] lb/in2. Said another way, the possibility of the actual strength not being
in the interval [2500, 4500] lb/in2 is 0.774, i.e., π(not A) = max(any possibility value for
values outside the interval A) = max(0.774, 0.406, 0.195). Finally, but most importantly,
the necessity (see Eq. (15.28)) is η = 1 − π(not A) = 0.226. Hence, we can say that the
actual strength of the bridge being in the interval [2500, 4500] lb/in2 is certainly 0.226 but
could be possibly 1.0. The interval of [3000, 4000] lb/in2 would contain the most possible
value. A probabilistic assessment of this same question would only provide a confidence
level about the interval A, which does not truly represent the kind of evidence available;
that is, the information is ambiguous and imprecise and not subject to random variability. In
a probabilistic assessment of these data we would get a 95% confidence interval around the
most probable value, which usually overestimates the interval that would contain the actual
strength. Moreover, to get such a confidence interval we have to make assumptions about the
data (e.g., the underlying probability distribution) for which we might not have information.

As explained earlier, possibility theory is based on two dual functions, necessity
measures (η) and possibility measures (π ). The two functions, whose range is [0, 1], can
be converted to a single function, C, whose range is [−1, 1], as described below [Klir and
Yuan, 1995],

C(A) = η(A) + π(A) − 1 (15.50)



POSSIBILITY DISTRIBUTIONS DERIVED FROM EMPIRICAL INTERVALS 599

Positive values of C(A) indicate the degree of confirmation of A by the available evidence,
and negative values of C(A) express the degree of disconfirmation of A by the evidence.
Such a metric adds value to the use of possibility theory in its use in characterizing the
forms of uncertainty due to ambiguity, nonspecificity, and imprecision. For instance, in
Example 15.11 we compute the degree of confirmation for the interval A to be 0.226.

Example 15.12. In the previous example, the intervals were consistent and hence it was
relatively straightforward to calculate the most possible interval and subsequent nested
intervals. This example illustrates the application of Donald’s [2003] method when the
intervals are not consistent, i.e, when there is no common interval that spans across all the data
intervals. Consider a set of data intervals as shown in Table 15.7.

As there is no interval that is included in all the original intervals, experts can choose
the maximally possible interval by relying on their experiences, or they can choose the interval
that intersects with the most original data intervals. Due to its objectivity, the latter approach
is used in this example. Once the maximally possible interval is identified, the process of
choosing the nested intervals is dependent on the degree to which each interval includes a
subsequent interval. The following steps illustrate the entire process of generating a possibility
distribution. Table 15.8 shows all the intervals produced by taking the intersections of the
original data.

From Table 15.8, it can be seen that the interval [11, 13] intersects with the most intervals
and thus forms the maximally possible interval. Given this interval, the rest of the consonant
intervals are selected according to the nesting structure of the subsequent intervals. Table 15.9
shows one of the series of consonant and nonconsonant intervals that were selected for this
example. Once the nesting structure is determined, the weights are then redistributed from the
nonconsonant to the consonant intervals as explained in the previous example. Table 15.10
shows the final weights assigned to each interval after this redistribution, and Fig. 15.9 shows
the possibility distribution plotted according to the weights on the intervals shown in the
Table 15.10.

TABLE 15.7
Original data intervals

Observation Intervals Weight

1 [ 1, 6] 0.25
2 [ 2, 14] 0.25
3 [ 7, 13] 0.25
4 [11, 17] 0.25

TABLE 15.8
Intervals produced by taking the intersections of
all the original data intervals

Interval Weight Normalized weight

[1, 6] 0.25 0.125
[2, 6] 0.25 0.125
[2, 14] 0.25 0.125
[7, 13] 0.25 0.125
[11, 17] 0.25 0.125
[11, 13] 0.25 0.125
[11, 14] 0.25 0.125
[1, 17] 0.25 0.125
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TABLE 15.9
Redistribution of weights from the nonconsonant to the consonant intervals

Nonconsonant
interval

Consonant interval β κ ρ

[1, 6] [11, 13] 0 0 0
[ 7, 13] 0 0 0
[ 2, 14] 0.3333 0.516 0.0645
[ 1, 17] 0.3125 0.484 0.0605

[2, 6] [11, 13] 0 0 0
[ 7, 13] 0 0 0
[ 2, 14] 0.3333 0.571 0.0714
[ 1, 17] 0.2500 0.429 0.0536

[11, 17] [11, 13] 1 0.512 0.0640
[ 7, 13] 0.3333 0.170 0.0213
[ 2, 14] 0.2500 0.128 0.0160
[ 1, 17] 0.3750 0.190 0.0238

[11, 14] [11, 13] 1 0.566 0.0708
[ 7, 13] 0.3333 0.187 0.0233
[ 2, 14] 0.2500 0.141 0.0176
[ 1, 17] 0.1875 0.106 0.0133

TABLE 15.10
Final possibilistic weights after the transfer of weight
from the nonconsonant to the consonant intervals

Interval Final weight Possibilistic weight

[11, 13] 0.26 1.00
[7, 13] 0.17 0.74
[2, 14] 0.29 0.57
[1, 17] 0.28 0.28
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FIGURE 15.9
Possibility distribution generated from nonconsistent intervals.

Comparison of Possibility Theory and Probability Theory

Both possibility theory and probability theory are special branches of evidence theory. This
chapter has shown how the two theories relate. Both share similar axiomatic foundations,
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but there are a few, quite distinct, differences (see Appendix A). Their normalizations are
different: probabilities must sum to unity, and possibilities have one or more maximal
elements equal to unity. And the way in which each represents ignorance is different. For
probability measures, total ignorance is expressed by the uniform probability distribution
function

p(x) = 1

|X| = m({x}) (15.51)

for all x ∈ X. This follows from the fact that basic probability assignments are required to
focus only on singletons. This choice is justified on several grounds with probability theory,
where it is required that every uncertainty situation be characterized by a single probability
distribution. But this reasoning represents a paradox: on purely intuitive grounds if no
information is available about a situation, then no distribution is supported by any evidence
and, hence, a choice of one over the other is arbitrary. Total ignorance should be represented
by all possible distribution functions, but this is not a formulation of the theory.

In possibility theory ignorance is represented naturally (as discussed in the section on
evidence theory), and is expressed by

m(X) = 1 (15.52)

Here we have that all the evidence is allocated only to the full universe, X. Hence the
information is completely nonspecific; there is no evidence supporting any singleton or
subset of the universe, i.e., m(A) = 0 for all A 	= X.

Although interpretations of possibility theory are less developed than their probabilis-
tic counterparts, it is well established that possibility theory provides a link between fuzzy
set theory and probability theory. When information regarding some situation is given in
both probabilistic and possibilistic terms, the two interpretations should, in some sense, be
consistent. That is, the two measures must satisfy some consistency condition (this form
of consistency should not be confused with the same term used in the previous section
on consistent intervals). Although several such conditions have been reported [Klir and
Yuan, 1995] the weakest one acceptable on an intuitive basis is stated as: ‘‘an event that
is probable to some degree must be possible to at least that same degree,’’ or, the weak
consistency condition can be expressed formally as

p(A) ≤ π(A) (15.53)

for all A ∈ P(X). The strongest consistency condition would require, alternatively, that any
event with nonzero probability must be fully possible; formally,

p(A) > 0 ⇒ π(A) = 1 (15.54)

All other consistency conditions fall between the extremes specified by Eqs. (15.53)
and (15.54).

SUMMARY

This chapter has summarized very briefly a few of the various elements of monotone
measures: beliefs, plausibilities, possibilities, necessities (certainties), and probabilities.
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The axiomatic expansion of these measures, along with fuzzy set theory as a special case,
is known collectively in the literature as generalized information theory (GIT) [Klir and
Wierman, 1999]. GIT contains fuzzy set theory, but this development is not explored in
this text. Suffice it to say that the current research in GIT is expanding and showing
that, collectively, these various theories are very powerful in representing a large suite of
uncertainties: fuzziness, vagueness, unknownness, nonspecificity, strife, discord, conflict,
randomness, and ignorance.

The engineering community has mostly relied on probabilistic methods to analyze
empirical data. These methods are widely used in experimental analysis for studying the
variation in model parameters, for determining structural properties of various materials
and for image processing. The variables under consideration are assumed to be randomly
distributed and hence the analysis depends on methods that satisfy the axioms of probability.
However, on many occasions the data available do not necessarily represent complete
knowledge and thus do not support probabilistic analysis. When faced with limited data it
might be more appropriate to use possibility distributions such that complete knowledge is
not assumed. Possibility distributions can capture the imprecision in data and are thus useful
in quantifying uncertainty resulting from incomplete knowledge. This chapter presented
some of the recent advances in the area of generation of possibility distributions from
empirical data that are imprecise, i.e, when data are available as a set of overlapping
intervals. In addition to the methods presented in this chapter, other methods for deriving
possibility distributions exist; the reader is referred to Donald [2003] and Joslyn [1997] for
alternative methods, especially for deriving possibility distributions from disjoint data sets.

There exists a formal relationship between probability and fuzzy logics; this rela-
tionship, detailed in Appendix A, illustrates axiomatically that their common features are
more substantial than their differences. It should be noted in Appendix A that, whereas the
additivity axiom (axiom 9) is common to both a probability and a fuzzy logic, it is rejected
in the Dempster–Shafer theory of evidence [Gaines, 1978], and it often presents difficulties
to humans in their reasoning. For a probability logic the axiom of the excluded middle (or
its dual, the axiom of contradiction, i.e., p(x ∧ x) = 0) must apply; for a fuzzy logic it may
or may not apply.

There are at least two reasons why the axiom of the excluded middle might be
inappropriate for some problems. First, people may have a high degree of belief about
a number of possibilities in a problem. A proposition should not be ‘‘crowded out’’ just
because it has a large number of competing possibilities. The difficulties people have
in expressing beliefs consistent with the axioms of a probability logic are sometimes
manifested in the rigidity of the axiom of the excluded middle [Wallsten and Budescu,
1983]. Second, the axiom of the excluded middle results in an inverse relationship between
the information content of a proposition and its probability. For example, in a universe of
n singletons, as more and more evidence becomes available on each of the singletons, the
relative amount of evidence on any one diminishes [Blockley, 1983]. This characteristic
makes axiom A.1 inappropriate as a measure for modeling uncertainty in many situations.

Finally, rather than debate what is the correct set of axioms to use (i.e., which
logic structure) for a given problem, one should look closely at the problem, determine
which propositions are vague or imprecise and which ones are statistically independent
or mutually exclusive, and use these considerations to apply a proper uncertainty logic,
with or without the axiom of the excluded middle. By examining a problem so closely
as to determine these relationships, one finds out more about the structure of the problem
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in the first place. Then the assumption of a strong truth-functionality (for a fuzzy logic)
could be viewed as a computational device that simplifies calculations, and the resulting
solutions would be presented as ranges of values that most certainly form bounds around
the true answer if the assumption is not reasonable. A choice of whether a fuzzy logic is
appropriate is, after all, a question of balancing the model with the nature of the uncertainty
contained within it. Problems without an underlying physical model, problems involving a
complicated weave of technical, social, political, and economic factors, and problems with
incomplete, ill-defined, and inconsistent information where conditional probabilities cannot
be supplied or rationally formulated perhaps are candidates for fuzzy logic applications.
Perhaps, then, with additional algorithms like fuzzy logic, those in the technical and
engineering professions will realize that such difficult issues can now be modeled in their
designs and analyses.
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PROBLEMS

15.1. In structural dynamics a particular structure that has been subjected to a shock environment
may be in either of the fuzzy sets ‘‘damaged’’ or ‘‘undamaged,’’ with a certain degree of



604 MONOTONE MEASURES

membership over the magnitude of the shock input. If there are two crisp sets, functional (F)
and nonfunctional (NF), then a monotone measure would be the evidence that a particular
system that has been subjected to shock loading is a member of functional systems or
nonfunctional systems. Given the evidence from two experts shown here for a particular
structure, find the beliefs and plausibilities for the focal elements.

Focal elements m1 m2 bel1 bel2 pl1 pl2

F 0.3 0.2
NF 0.6 0.6
F ∪ NF 0.1 0.2

15.2. Suppose you have found an old radio (vacuum tube type) in your grandparents’ attic and you
are interested in determining its age. The make and model of the radio are unknown to you;
without this information you cannot find in a collector’s guide the year in which the radio was
produced. Here, the year of manufacture is assumed to be within a particular decade. You
have asked two antique radio collectors for their opinion on the age. The evidence provided
by the collectors is fuzzy. Assume the following questions:
1. Was the radio produced in the 1920s?
2. Was the radio produced in the 1930s?
3. Was the radio produced in the 1940s?
Let R, D, and W denote subsets of our universe set P – the set of radio-producing years called
the 1920s (Roaring 20s), the set of radio-producing years called the 1930s (Depression years),
and the set of radio-producing years called the 1940s (War years), respectively. The radio
collectors provide beas as given in the accompanying table.

Collector 1 Collector 2 Combined evidence

Focal elements m1 bel1 pl1 m2 bel2 pl2 m12 bel12 pl12

R 0.05 0.05 0.8 0.15 0.15 0.85 0.1969
D 0.1 0.1 0.1 0.1
W 0 0 0 0
R ∪ D 0.2 0.35 1 0.25 0.5 1 0.2677
R ∪ W 0.05 0.05
D ∪ W 0.1 0.05
R ∪ D ∪ W 0.5 0.4

(a) Calculate the missing belief values for the two collectors.
(b) Calculate the missing plausibility values for the two collectors.
(c) Calculate the missing combined evidence values.
(d) Calculate the missing combined belief and plausibility values.

15.3. The quality control for welded seams in the hulls of ships is a major problem. Ultrasonic
defectoscopy is frequently used to monitor welds, as is x-ray photography. Ultrasonic
defectoscopy is faster but less reliable than x-ray photography. Perfect identification of flaws
in welds is dependent on the experience of the person reading the signals. An abnormal signal
occurs for three possible types of situations. Two of these are flaws in welds: a cavity (C)
and a cinder inclusion (I); the former is the more dangerous. Another situation is due to a
loose contact of the sensor probe (L), which is not a defect in the welding seams but an error
in measuring. Suppose we have two experts, each using a different weld monitoring method,
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who are asked to identify the defects in an important welded seam. Their responses in terms
of beas are given in the table. Calculate the missing portions of the table.

Expert 1 Expert 2 Combined evidence

Focal elements m1 bel1 pl1 m2 bel2 pl2 m12 bel12 pl12

C 0.3 0.3 0.85 0.2 0.2 0.4 0.4
I 0.05 0.05 0.1 0.1 0.15 0.15
L 0.05 0.05 0.05 0.05
C ∪ I 0.2 0.55 0.15 0.45 0.16 0.71
C ∪ L 0.05 0.4 0.95 0.05 0.3
I ∪ L 0.05 0.5 0.15 0.3
C ∪ I ∪ L 0.3 1 0.3 1

15.4. You are an aerospace engineer who wishes to design a bang–bang control system for a
particular spacecraft using thruster jets. You know that it is difficult to get a good feel for the
amount of thrust that these jets will yield in space. Gains of the control system depend on
the amount of the force the thrusters yield. Thus, you pose a region of three crisp sets that
are defined with respect to specific gains. Each set will correspond to a different gain of the
control system.

You can use an initial estimate of the force you get from the thrusters, but you can refine
it in real time utilizing different gains for the control system. You can get a force estimate and
a belief measure for that estimate for a specific set. Suppose you define the following regions
for the thrust values, where thrust is in pounds:

A1 applies to a region 0.8 ≤ thrust value ≤ 0.9.

A2 applies to a region 0.9 ≤ thrust value ≤ 1.0.

A3 applies to a region 1.0 ≤ thrust value ≤ 1.1.

Two expert aerospace engineers have been asked to provide evidence measures reflecting
their degree of belief for the various force estimates. These beas along with calculated belief
measures are given here. Calculate the combined belief measure for each focal element in the
table.

Expert 1 Expert 2

Focal elements m1 bel1 m2 bel2

A1 0.1 0.1 0 0
A2 0.05 0.05 0.05 0.05
A3 0.05 0.05 0.1 0.1
A1 ∪ A2 0.05 0.2 0.05 0.1
A1 ∪ A3 0.05 0.2 0.15 0.25
A2 ∪ A3 0.1 0.2 0.05 0.2
A1 ∪ A2 ∪ A3 0.6 1 0.6 1

15.5. Consider the DC series generator shown in Fig. P15.5. Let Ra = armature resistance, Rs =
field resistance, and R = load resistance. The voltage generated across the terminal is given
by Vl = Eg − (IsRs + IaRa). Note: If there is no assignment for R, i.e., if the value of R

is infinity, then the generator will not build up because of an open circuit. Also Ra can
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have a range of values from a low value to a high value. To generate different load voltages
required, we can assign values for R,Ra , and Rs in different ways to get the voltage. They
are very much interrelated and the generated voltage need not have a unique combination of
R,Ra , and Rs . Hence, nesting of focal elements for these resistances does have some physical
significance.

Va

Is

Id

Load

Ia

R

Rs

Armature

Il
Vl

Ra

FIGURE P15.5

Let the basic evidence assignment for the elements of universe X {R,Ra,Rs} be as
shown in the accompanying table:

X m1 m2

Ra 0.1 0.1
R 0.1 0
Rs 0.1 0.5
Ra ∪ Rs 0.3 0.3
R ∪ Ra 0.1 0
Rs ∪ R 0.2 0
Ra ∪ R ∪ Rs 0.1 0.1

(a) Does m1 or m2 represent a possibility measure?
(b) If either of the evidence measures (or both) is nested, find the possibility distributions.

15.6. A general problem in biophysics is to segment volumetric MRI (Magnetic Resonance Imaging)
data of the head given a new set of MRI data. We use a ‘‘model head’’ that has already
had the structures in the head (mainly brain and brain substructures) labeled. We can use
the model head to help in segmenting the data from the new head by assigning beas to each
voxel (a voxel is a three-dimensional pixel) in the new MRI data set, based on what structures
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contain, or are near, the corresponding voxel in the model head. In this example a nested
subset corresponds to the physical containment of a head structure within another structure.
We will select a voxel for which the beas form a consonant body of evidence.

X = {structures in the MRI data}
H = head

B = brain

N = neocortex

L = occipital lobe

C = calcarine fissure

Thus, we have C ⊂ L ⊂ N ⊂ B ⊂ H. For voxel V we have a basic distribution of

m = (µC, µL, µN, µB, µH) = (0.1, 0.1, 0.2, 0.3, 0.3)

Find the corresponding possibility distribution and draw the nesting diagram.
15.7. A test and diagnostics capability is being developed for a motion control subsystem that

consists of the following hardware: a motion control IC (Integrated Circuit), an interconnect
between motion control IC, an H-switch current driver, an interconnect between H-switch
current driver, a motor, and an optical encoder.
The elements of the motion control subsystem are as follows:

x1 = motion control IC

x2 = interconnect 1

x3 = H-switch current driver

x4 = interconnect 2

x5 = motor

x6 = optical encoder

If a motion control subsystem failure exists, a self-test could describe the failure in the
following bea: m = (0.2, 0, 0.3, 0, 0, 0.5). This nested structure is based on the level of
hardware isolation of the diagnostic software. This isolation is hierarchical in nature. You
first identify a motion control subsystem failure m(A6) that includes a possibility of any
component failure (x1, x2, x3, x4, x5, x6). The test then continues and, due to isolation
limitations, a determination can be made of the failure possibility consisting of m(A3), subset
(x1, x2, x3), followed by the ability to isolate to an x1 failure if x1 is at fault. Basic evidence
assignments are constructed from empirical data and experience.

Find the associated possibility distribution and draw the nesting diagram.
15.8. Design of a geometric traffic route can be described by four roadway features: a corner, a

curve, a U-turn, and a circle. The traffic engineer can use four different evaluation criteria
(expert guidance) to use in the design process:

m1 = criteria: fairly fast, short distance, arterial road, low slope points

m2 = criteria: slow, short distance, local road, low slope points

m3 = criteria: fast, long distance, ramp-type road, medium slope points

m4 = criteria: very fast, medium distance, highway, medium slope points
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Corner Curve U-turn Circle m1 m2 m3 m4

0 0 0 1 0 0 0.2 0.1
0 0 1 0 0.1 0.1 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0.3 0.2 0.3 0.4
0 1 0 1 0 0 0.5 0.5
0 1 1 0 0.1 0.1 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0.2 0.3 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0.1 0.1 0 0
1 0 1 1 0 0 0 0
1 1 0 0 0.1 0.1 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0.1 0.1 0 0
1 1 1 1 0 0 0 0

Using the 15 (24 − 1) focal elements shown in the accompanying table, determine which, if
any, of the four evidence measures (m1 –m4) results in an ordered possibility distribution.

15.9. Given a communication link with a sender, receiver, and interconnecting link, an error in a
message could occur at the sender, receiver, or on the interconnecting link. Combinations
such as an error on the link that is not corrected by the receiver are also possible. Let S, R, and
L represent sources of error in the sender, receiver, and link, respectively. If E is the universe
of error sources, then

P(E) = (∅, {S}, {R}, {L}, {S, R}, {S, L}, {R, L}, {S, R, L})

Now assume each source has its own expert and each of these provides their basic assignment
of the actual source of an error as follows:

S R L mS mR mL

0 0 0 0 0 0
0 0 1 0.4 0.3 0
0 1 0 0.2 0 0
0 1 1 0.2 0 0
1 0 0 0 0.5 0.5
1 0 1 0.1 0.2 0
1 1 0 0 0 0.4
1 1 1 0.1 0 0.1

Indicate which experts, if any, have evidence that is consonant. For each of these, do the
following:
(a) Determine the possibility distribution.
(b) Draw the nesting diagram.
(c) Give the physical significance of the nesting.

15.10 There are a number of hazardous waste sites across the country that pose significant health risk
to humans. However, due to high costs involved in exposure analysis only a limited amount
of information can be collected from each site to determine the extent of contamination.
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Suppose it is determined that one of the sites is contaminated by a new carcinogenic chemical
identified as Tox. The table shows the results from the chemical analysis of the groundwater
samples collected from one of the sites. Given these sparse data, determine the possibility
distribution of exposure concentrations for the chemical Tox.

Observation Concentration (mg/L)

1 [0.01, 0.1]
2 [0.03, 0.2]
3 [0.03, 0.15]
4 [0.008, 0.06]

15.11. Due to their excellent self-healing properties, rock salt caverns are used to store nuclear waste
from various nuclear plants. One of the properties useful in determining the suitability of a
cavern for nuclear waste storage is the creep rate of salt; salt creeps very slowly with time.
This creep rate determines the strength of the cavern and the duration that the cavern can
be accessible to human operations. The table shows the strain rate results from creep tests
conducted on rock salt cores from four locations of the waste repository. Given these data,
determine the strain rate interval that is 80% possible (possibilistic weight = 0.8). Also, find
the degree of confirmation.

Observation Strain rate (s−1)

1 [6.0E-10, 8.5E-10]
2 [8.0E-10, 1.1E-9]
3 [9.0E-10, 2.0E-9]
4 [5.0E-10, 9.0E-10]

15.12. Predicting interest rates is critical for financial portfolio management and other investment
decisions. Based on historical variations and other factors, the following interest rates are
predicted for the next two months.

Observation Interest rate

1 [0.75, 1.5]
2 [1.0, 1.25]
3 [0.75, 1.25]
4 [1.5, 2.0]
5 [1.75, 2.25]

(a) What is the possibility that the interest rates will be higher than 2%?
(b) Give the reason for your choice of consonant intervals.
(c) Find the degree of confirmation.
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A
AXIOMATIC
DIFFERENCES
BETWEEN FUZZY
SET THEORY AND
PROBABILITY
THEORY

A slight variation in the axioms at the foundation of a theory can result in huge changes at the
frontier.

Stanley P. Gudder
Quantum Probability, 1988

In Chapter 1 of this book is a discussion of the relationships and historical confusion between
probability theory and fuzzy set theory. It seems fitting that this book should conclude by
coming full circle to that same discussion. A paper by Gaines [1978] does an eloquent job
of addressing this issue. Historically, probability and fuzzy sets have been presented as
distinct theoretical foundations for reasoning and decision making in situations involving
uncertainty. Yet when one examines the underlying axioms of both probability and fuzzy
set theories, the two theories differ by only one axiom in a total of 16 axioms needed for a
complete representation! The material that follows is a brief summary of Gaines’s paper,
which established a common basis for both forms of logic of uncertainty in which a basic
uncertainty logic is defined in terms of valuation on a lattice of propositions. Addition of
the axiom of the excluded middle to the basic logic gives a standard probability logic.
Alternatively, addition of a requirement for strong truth-functionality gives a fuzzy logic.

In this discussion fuzzy logic is taken to be a multivalued extension of Boolean logic
based on fuzzy set theory in which truth values are extended from the endpoints of the

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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interval [0, 1] to a range through the entire interval. The normal logical operations are
defined in terms of arithmetic operations on these values; the values are regarded as degrees
of membership to truth. The logic operations and associated arithmetic operations are those
of conjunction (involving the minimum operator), disjunction (involving the maximum
operator), and negation (involving a subtraction from unity). Gaines [1978] points out
that the use of the max and min operations in fuzzy logic is not sufficient to distinguish
it from that of probability theory – both operators arise naturally in the calculation of
the conjunction and disjunction of probabilistic events. Our association of addition and
multiplication as natural operations upon probabilities comes from our frequent interest in
statistically independent events, not from the logic of probability itself.

In developing a basic uncertainty logic, we begin first by defining a lattice consisting
of a universe of discourse, X, a maximal element T, a minimal element F, a conjunction,
∧, and a disjunction, ∨. This lattice will be denoted L(X, T, F, ∧, ∨). For the axioms (or
postulates) to follow, lowercase letters x, y, and z denote specific elements of the universe
X within the lattice. The following 15 axioms completely specify a basic uncertainty logic.

The basic uncertainty logic begins with the lattice L satisfying idempotency:

1. For all x ∈ L x ∨ x = x ∧ x = x commutativity:

2. For all x, y ∈ L x ∨ y = y ∨ x and x ∧ y = y ∧ x associativity:

3. For all x, y, z ∈ L x ∨ (y ∨ z) = (x ∨ y) ∨ z absorption:

4. For all x, y ∈ L x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x

and the definition of the maximal and minimal elements:

5. For all x ∈ L x ∨ T = T and x ∧ T = x

The usual order relation may also be defined:

6. For all x, y ∈ L x ≤ y if there exists a z ∈ L such that y = x ∨ z

Now suppose that every element of the lattice L is assigned a truth value (for various
applications this truth value would be called a probability, degree of belief, etc.) in the
interval [0, 1] by a continuous, order-preserving function, p : L → [0, 1], with constraints:

7. p(F) = 0; p(T) = 1

8. For all x, y ∈ L x ≤ y then p(x) ≤ p(y)

and an additivity axiom:

9. For all x, y ∈ L p(x ∧ y) + p(x ∨ y) = p(x) + p(y)

We note that for p to exist we have to have

p(x ∧ y) ≤ min[p(x), p(y)] ≤ max[p(x), p(y)] ≤ p(x ∨ y)

Now a logical equivalence (or congruence) is defined by

10. For all x, y ∈ L x ↔ y if p(x ∧ y) = p(x ∨ y)

The general structure provided by the first 10 axioms is common to virtually all
logics. To finalize Gaines’s basic uncertainty logic we now need to define implication
and negation, for it is largely the definition of these two operations that distinguishes
among various multivalued logics [Gaines, 1978]. We also note that postulate 9 still holds
when the outer inequalities become equalities – a further illustration that the additivity
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of probability-like valuations is completely compatible with, and closely related to, the
minimum and maximum operations of fuzzy logic.

To define implication and negation we make use of a metric on the lattice L that
measures distance between the truth values of two different propositions. This is based on
the notion that logically equivalent propositions should have a zero distance between them.
So, we define a distance measure:

11. For all x, y ∈ L d(x, y) = p(x ∨ y) − p(x ∧ y)

where d(x, x) = 0, 0 ≤ d(x, y) ≤ 1, and d(x, y) + d(y, z) = d(x, z). This axiom is shown
schematically in Fig. A.1.

Therefore, a measure of equivalence between two elements can be 1 minus the
distance between them, or

12. For all x, y ∈ L p(x ↔ y) = 1 − d(x, y) = 1 − p(x ∨ y) + p(x ∧ y)

Hence, if d = 0, the two elements x and y are equivalent, as seen in Fig. A.2.
To measure the strength of an implication, we measure a distance between x and

x ∧ y, as seen in Fig. A.3.

13. For all x, y ∈ L p(x → y) = p(x ↔ x ∧ y) = 1 − d(x, x ∧ y)

= 1 − p(x) + p(x ∧ y)

= 1 + p(y) − p(x ∨ y) = 1 − d(y, x ∨ y)

Negation can now be defined in terms of equivalence and implication as

14. For all x ∈ L p(x) = p(x ↔ F) = 1 − p(x) = 1 − d(x, F)

We note by combining axioms 9 and 14 that if element y is replaced by element x, we
get

p(x ∨ x) + p(x ∧ x) = p(x) + p(x) = 1

x y

d (x, y )

d (x, y ) = p (x ∨y ) x↔y ; ∴ d (x, y ) = 0

x, y

FIGURE A.1
Venn diagrams on distance measure, d(x, y).

x, y

d (x, y ) = 0

p (x↔y ) = 1

y

d (x, y ) = p (x ∨y )

p (x↔y ) = 1 – p (x ∨y )

x

FIGURE A.2
Venn diagram on equivalent and maximally nonequivalent elements.
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y
x

x y

p (x→y ) = 1 p (x→y ) = 1 – p (x )

FIGURE A.3
Venn diagram for implication.

This has also been termed the ‘‘additivity axiom’’ in a probability theory.
Finally, we add a postulate of distributivity:

15. For all x, y, z ∈ L x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

which will prove useful for the two specializations of this basic uncertainty logic to be
described in the remaining paragraphs.

Axioms 1–15 above provide for a basic distributive uncertainty logic. The addition
of a special 16th (denoted 16.1) axiom, known in the literature as the axiom of the excluded
middle:

16.1. For all x ∈ L p(x ∨ x) = 1

leads to Rescher’s standard probability logic [Rescher, 1969].
Alternatively, if we add another special 16th (denoted 16.2) axiom to the basic axioms

1–15, we get a special form of fuzzy logic:

16.2. For all x, y ∈ L {p(x → y) = 1 ∨ p(y → x) = 1}
known in the literature as the Lukasiewicz infinite-valued logic [Rescher, 1969]. Axiom
16.2 is called the strong truth-functionality, or strict implication, in the literature.

It should be pointed out that a weaker form of axiom 16.2, or

For all x, y ∈ L p((x → y) ∨ (y → x)) = 1

is embraced by both a probability and a fuzzy logic [Gaines, 1978].
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APPENDIX

B
ANSWERS TO
SELECTED
PROBLEMS

CHAPTER 1

1.9. Crisp: χLD50 = 1, for 0 < LD50 ≤ 5000 mg/kg
χLD50 = 0, for LD50 > 5000 mg/kg and LD50≤0

1.11. (b) A(x) = 0, x ≤ a; 1 − e−k(x−a)2
, x > a; (e) A(x) = e−k(x−a)2

, k > 0
1.16. P(x) = {x1, x2, . . . , (x1, x2), . . . , (x3, x4), . . . , (x1, x2, x4), . . .}

CHAPTER 2

2.2. (b) 0.8/1 + 0.4/2 + 0.9/3 + 1/4 + 1/5
2.4. (c) 0/1.0 + 0.25/1.5 + 0.7/2.0 + 0.85/2.5 + 1.0/3.0

(e) 0/1.0 + 0.4/1.5 + 0.3/2.0 + 0.15/2.5 + 0/3.0
2.7. (a) 1/1 + 1/10 + 1/20 + 0.5/40 + 0.2/80 + 0/100

(e) 0/1 + 0/10 + 0/20 + 0.5/40 + 0.8/80 + 1/100
2.13. Difference: A∼|B∼ = 0.14/0 + 0.32/1 + 0.61/2 + 0.88/3 + 0.86/4 + 0.68/5 + 0.39/6

+ 0.12/7 + 0/8 + 0.04/9 + 0.01/10
2.14. (d) 0/1 + 0/2 + 0/3 + 0/4 + 0.2/5 + 0/6 + 0.5/7 + 0/8

(f ) 1/1 + 1/2 + 1/3 + 1/4 + 0.9/5 + 0.4/6 + 0.5/7 + 0/8

CHAPTER 3

3.3. (a) g11 = 0.1, g12 = 0.4, g22 = 0.9, g31 = 0.6;
(b) C11 = 0.1, C12 = 0.9

Fuzzy Logic with Engineering Applications, Second Edition T. J. Ross
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-86074-X (HB); 0-470-86075-8 (PB)
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3.4. (a) R11 = 1, R13 = 0.25, R22 = 0.4, R32 = 0.2;
(b) S11 = 0.1, S23 = 0.25, S31 = 1, S33 = 0.25
(c) 0.3/SRR + 0.3/MRR + 0.25/FRR
(d) 0.2/SRR + 0.2/MRR + 0.2/FRR

3.7. (a) 0.7/1 + 1/2 + 0.7/6
(b) 0.56/1 + 1/2 + 0.7/6

3.11. (a) R11 = R12 = R13 = R14 = R15 = R16 = R21 = R31 = R41 = R51 = 0.1;
R52 = R53 = R54 = R55 = R56 = R26 = R36 = R46 = 0.2; R35 = 0.5;
R22 = R23 = R24 = R25 = R32 = R33 = R42 = R43 = 0.3; R34 = R54 =
R55 = 0.4;

(b) S11 = S12 = S13 = S21 = S31 = S41 = S51 = S61 = 0.1; S52 = 0.5; S42 = 0.4;
S62 = S63 = 0.2; S22 = S23 = S32 = S33 = S43 = S53 = 0.3;

(c) M11 = M12 = M13 = M21 = M31 = M41 = M51 = 0.1; M22 = M23 = M33 =
M43 = 0.3; M52 = M53 = 0.2; M32 = 0.5; M42 = 0.4

3.14. (a) R11 = 0.2, R23 = 0.5, R31 = 0.3, R34 = 0.8, R43 = 0.9, R55 = 0.6
(b) 0.3/0.5 + 0.6/1.0 + 0.9/1.5 + 0.9/4 + 0.6/8 + 0.3/20
(c) 0.3/0.5 + 0.6/1.0 + 0.81/1.5 + 0.9/4 + 0.6/8 + 0.3/20

3.17. (a) R11 = 0.1, R12 = 0.1, R21 = 0.3, R22 = 0.7, R31 = 0.3, R32 = 0.4
(b) S11 = S21 = 0.1, S12 = S22 = 0.2, S13 = S14 = 0.3, S23 = 0.8, S24 = 0.7
(c) C11 = 0.1, C22 = 0.2, C23 = 0.7, C33 = 0.4

3.18. (a) R11 = 1, R12 = 0.4925, R13 = 0.2121, R55 = 1, R45 = 0.0363, R34 = 0.1561
(b) R11 = 1, R21 = 0.8503, R13 = 0.3447, R55 = 1, R45 = 0.0430, R34 = 0.3093

3.21. R11 = 1, R12 = 0.538, R23 = 0.25, R25 = 0.333, R35 = 0.176, R45 = 0.818, R55 = 1
3.24. (a) Symmetric relation Rii = 1, R12 = 0.836, R13 = 0.914, R14 = 0.682, R23 =

0.934, R24 = 0.6, R34 = 0.441
3.26. (i) µT∼

(x1, z1) = 0.5, µT∼
(x1, z2) = 0.7, µT∼

(x2, z2) = 0.7, µT∼
(x2, z3) = 0.5

(iii) µT∼
(x1, z1) = 0.1, µT∼

(x1, z3) = 0.2, µT∼
(x2, z1) = 0.1, µT∼

(x2, z2) = 0.4
3.27. Second row of column B∼: µB∼

(y11) = 1.0, µB∼
(y13) = 1.0, µB∼

(y23) = 1.0,
µB∼

(y31) = 0.7, µB∼
(y42) = 0.9

CHAPTER 4

4.1. (a) (A∼)0.7 = 1.0/x1 + 0/x2 + 0/x3 + 0/x4 + 0/x5 + 1.0/x6

(d) (A∼ ∩ B∼)0.6 = 0/x1 + 1.0/x2 + 0/x3 + 0/x4 + 0/x5 + 0/x6

4.3. For A∼ , (i) λ = 0.2, x = (0.89, 4.11); (ii) λ = 0.4, x = (0.09, 4.91); (iii) λ = 0.7,
x = (0.007, 4.993); (iv) λ = 0.9, x = (0.148, 4.85); (v) λ = 1.0, x = (0.00, 1.00).
For B∼, (i) λ = 0.2, x = 2.32; (ii) λ = 0.4, x = 1.32; (iii) λ = 0.7, x = 0.51; (iv)
λ = 0.9, x = 0.15; (v) λ = 1.0, x = 0.00.
For C∼, (i) λ = 0.2, x = 0.55; (ii) λ = 0.4, x = 1.25; (iii) λ = 0.7, x = 2.69; (iv)
λ = 0.9, x = 4.09; (v) λ = 1.0, x = 5.00.

4.5. (a) Rij = 1 (b) Rij = 1, (c) Rij = 1 (d) R11 = R12 = R15 = R21 = R22 = R25 = R33 =
R44 = R51 = R52 = R55 = 1, all others equal to 0.

4.9. Max membership, z∗ = 3; weighted average, z∗ = 3.33; center of sums, z∗ = 3.43;
center of largest area, z∗ = 2.02; first of maxima and last of maxima, z∗ = 3; centroid
method, z∗ = 3.56.
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4.12. First maxima, z∗ = 2; last maxima, z∗ = 3; center of sums, z∗ = 2.5; mean max,
z∗ = 2.5; centroid method, z∗ = 2.5; weighted average methods, z∗ = 2.5.

4.15. (ii) Defuzzified values using two centroids: centroid method, T ∗ ≈ 80.2◦C; weighted
average method, T ∗ ≈ 79.75◦C.

CHAPTER 5

5.1. If T(P) = T(Q) or P is false and Q is true, then P → Q is a tautology (that can be
shown in a truth table).

5.4.

P Q P Q P ∧ Q P ∨ Q (P ∧ Q) ∧ (P ∨ Q) (P ∧ Q) ∧ (P ∨ Q) ↔ 0

0 0 1 1 0 1 0 1
0 1 1 0 0 1 0 1
1 0 0 1 0 1 0 1
1 1 0 0 1 0 0 1

5.8. (a) ((P → Q) ∧ P) → Q by contradiction ((P → Q) ∧ P) ∧ Q

P Q P Q P → Q = P∨ Q (P → Q) ∧ P ((P → Q) ∧ P) ∧Q

0 0 1 1 1 0 0
0 1 1 0 1 0 0
1 0 0 1 0 0 0
1 1 0 0 1 1 0

5.12. (a) Mamdani: R22 = 0.5, R33 = 1, R42 = 0.5, R54 = R35 = 0
Product: R22 = 0.25, R33 = 1, R23 = 0.50, R54 = R35 = 0

(b) Mamdani: 0/0 + 0.5/1 + 1/2 + 0.5/3 + 0/4 (same for product)
5.13. (b) 0.3/0 + 0.3/1 + 0.4/2 + 0.6/3 + 0.7/4 + 0.7/5
5.16. (b) 0.4/66 + 0.6/68 + 0.6/70 + 0.6/72 + 0.4/74
5.18. (b) 0.8/10 + 0.8/20 + 0.8/30 + 0.8/40
5.22. (a) (i) 0.0/131 + 0.36/132 + 0.64/133 + 0.84/134 + 0.96/135 + 1.0/136

(b) (iii) 0/400 + 0.36/600 + 0.64/700 + 0.84/800 + 0.96/900 + 1.0/1000
5.27. (b) 0/1 + 0.01/2 + 0.04/3 + 0.64/4 + 0/5
5.29. IF (x1 ∩ x2), THEN y

5.30. IF (x1 ∩ x2), THEN t

5.33. No, the response surface obtained using a weighted sum defuzzifier will be different.
The weighted average defuzzifier incorporates a denominator composed of the sum
of the weights, and due to the manner in which these weights are derived (product,
minimum norm) it produces a different response curve.

5.35. Mamdani: µ(Re) = 0.25, µ(PrL) = 0.25, and µ(PrH) = 0.25, z = 550; Sugeno:
µ(Re) = 0.25, µ(PrL) = 0.75, and µ(PrH) = 0.25, Nu1 = 560.0993666,
Nu2 = 559.5643482, z = 559.8318574
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CHAPTER 6

6.5. (a) Isosceles, 0.92; Right, 0.89; RI, 0.89; Equilateral, 0.69; other, 0.083
(c) Isosceles, 0.75; Right, 0.83; RI, 0.75; Equilateral, 0.83; other, 0.167

6.7. Rank order: BMW, Mercedes, Infinity, Lexus, Porsche
6.12. For Economy – Class 1; Midsize – Class 2; Luxury – Class 3; S1 = 0.387 (x = 11);

S2 = 0.785 (x = 14); S3 = 0.284 (x = 21)

CHAPTER 7

7.1. After two cycles, θ̂ = {0.3646, 8.1779}, Y = 1.4320, 4.0883, 6.4798
7.2. (a) After two cycles, θ̂ = {1.2976, 7.5519}, Y = 1.6316, 3.8452, 6.5230
7.4. B = 0.9212, 6.0292; C = 0.0642, 2.0486; 2.0420, 4.0860; σ = 1.1186, 1.0154; 0.9994,

1.1291; (x1j , x2j , yj ) = (0, 2, 1.0398); (2, 4, 5.8662); (3, 6, 6.0288); j = 1, 2, 3

CHAPTER 8

8.3. (a) If ‘X1’ then ‘G1’: R1 = X1 • G1, R′
11 = 1, R′

22 = 0.25, R′
12 = R′

21 = 0.5,
R′

91 = 1, R′
82 = 0.25, R′

81 = R′
92 = 0.5, all others zero

(b) R(row1) = 1.0, 0.5, 0, 0, 0
R(row3) = 0, 0.5, 1, 0.5, 1.0
R(row8) = 0.5, 0.25, 0, 0.25, 0.5

8.5. Discretizing each membership function at integers yields the following:

x −10 −8 −6 −5 −4 −2 0
y 100 82 26 25 26 2 0

Note: the function is symmetric.
8.7. (a) R1(row 1) = 1, 0.6, 0.2, 0, R1(row 2) = 0.6, 0.6, 0.2, 0, R1(row 4) = 0, 0, 0, 0,

R2(row 2) = 0, 0.4, 0.4, 0.4, 0.4, 0.4, 0, R2(row 4) = 0, 0.4, 0.8, 1, 0.8, 0.4, 0,
R3(row 3) = 0.2, 0.4, 0.8, 0.8, 0.8, 0.4, 0, R6(row 6) = 0, 0.4, 0.4, 0.4, 0.4, 0.4, 0

(b)

x 0 0.2 0.4 0.5 0.6 0.8 1.0
y 0 0.1 0.5 0.5 0.5 0.5 0.5

CHAPTER 9

9.1. (a) All singular values = 4
9.2. (a) �11 = 19.9126, �22 = 5.7015, �44 = 0.1033,
9.4. dii = 0.4, dij = 0.2, where i 
= j

9.6. (c) �r11 = 16.3760, �r22 = 16.3760, Er33 = 0,
Zr (row 1) = 1.0404, 2.8772, 0.9494
Zr (row 2) = 3.9980, 3.7633, 2.0513
Zr (row 3) = 5.0534, 6.2819, 2.7256
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9.8. ZURC = 5.63

High

Input A 0.9*10
Input B 0.1*10
Input C 0.0*10
Accumulator array

Low

0.25*2
0.63*2
0.18*2

2.12

Medium

0.4*5
0.37*5
0.04*5

4.05 10.0

CHAPTER 10

10.2. e = (0.4, 0.4, 0.3)

10.4. e = (0.2, 0.5, 0.2, 0.2, 0.1)

10.6. Ranking: x4, x3, x1, x2 (C12 = 0.83, C31 = 0.56, C24 = 0.25)
10.9. C(R∼) = 0.61, m(R∼) = 0.53, distance = 94%
10.12. Average fuzziness, F(R∼) = 0.387; average certainty, C(R∼) = 0.613; distance to

consensus, m(R∼) = 0.524; distance to consensus for a Type I relation, m(R∼) = 0.293;
67% of the way to Type I consensus, Distance = 0.231; 48% of the way to Type II
consensus, Distance = 0.524.

10.15. The second alternative (µ = 0.6).
10.18. D(pipe) = 0.4; D(pond) = 0.5. The preferred method of construction to mitigate

flooding would be the construction of a pond.
10.19. (a) For imperfect information, P(D2|M3) = 0.444

For perfect information, P(D2|M3) = 0.720
(b) For perfect information, E(U1|M2) = 3(0.584) + 2(0.4) + (-1)(0.076) = 2.041,

where P(D1|M2) = 0.584, P(D2|M2) = 0.4, P(D3|M2) = 0.076;
For imperfect information, E(U1|M2) = 3(0.371) + 2(0.519) + (−1)(0.11) =
2.476, where P(D1|M2) = 0.371, P(D2|M2) = 0.519, P(D3|M2) = 0.11

10.21. (a) V (x) = 1.4169 − 2.6544 = −1.2375

CHAPTER 11

11.2. 3 classes {x1, x4}, x2, x3

11.5. C1 = [0.991, 0.994, 0.025, 0.014], error = 0
11.8. C1 = [0.972, 0.816, 0.247, 0.086], error = 0.25
11.9. C1 = [0.438, 0.343, 0.443], two cycles
11.12. (b) U(row 1) ≈ 0.893, 0.838, 0.069, 0.143, 0.058;

U(row2) ≈ 0.107, 0.162, 0.931, 0.857, 0.942; Fc(U) = 0.81091
(d) R11 = 1, R12 = 0.945, R13 = 0.176, R23 = 0.231, R24 = 0.305. R35 = 0.989

11.20. max[0.35, 0.6, 0.05, 0] = 0.6; Resembles Pattern 2 the most.
11.22. max[0, 0.25, 0.5, 0.25] = 0.5; Matches Pattern 3 the most.
11.25. max[0.5, 0.52, 0.65, 0.5] = 0.65; Composed of Black Powder.
11.28. max[0, 0.125, 0.7125, 0.1625, 0] = 0.7125; Heavy Solvent Neutral.
11.31. max[0.51, 0.8182, 0.8001, 0.8697] = 0.8697; The cell is classified under Pattern 4.
11.34. µ for an isosceles trapezoid is min[0.8, 1, 0.9, 1] = 0.8
11.36. µ(s) = µ(a8), for AC, S → I(a6, a7), for DC, S → I(a8, A)

11.38. Scaling the pixel values between 0 and 1 by dividing by 255 we get the following:
row 1 = 0.86, 0.12, 0.04, 0.06, 0.98; row 2 = 0.80, 0.90, 0, 0.94, 0.90; row 3 = 0.88,
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0.08, 0.88, 0.08, 0.86; row 4 = 0.85, 1, 0.72, 0.04, 0.84; row 5 = 0.86, 0.1, 0.06,
1, 0.92. Using the algorithm presented in the text we get: row 1 = 0.86, 0.12, 0.04,
0.06, 0.98; row 2 = 0.80, 0.25, 0.69, 0.26, 0.90; row 3 = 0.88, 0.92, 0.07, 0.68, 0.86;
row 4 = 0.85, 0.29, 0.50, 0.51, 0.84; row 5 = 0.86, 0.1, 0.06, 1, 0.92.

CHAPTER 12

12.1. (a) [2, 3] + [3, 4] = [5, 7]
(c) [4, 6] ÷ [1, 2] = [4, 6] ∗ [1, 0.5] = [min(4, 6, 2, 3), max(4, 6, 2, 3)] = [2, 6]

12.3. (a) Z = 0/−2 + 0.1/1 + 0.6/4 + 0.8/7 + 0.9/10 + 0.7/13 + 0.1/16 + 0/19
(d) Z = 0/0 − 0 + 0.1/1 − 1 + 0.6/2 − 2 + 0.8/3 − 3 + 0.9/4 − 4 + 0.7/5 − 5 +

0.1/6 − 6 + 0.0/7 − 7 = 3.2/0
(e) Z = 0/0 + 0.9/1 + 0.7/2 + 0.5/3 + 0.2/4 + 0.1/5 + 0/6 + 0/7

12.7. (a) F∼ = m∼ · A∼ = 0/1 + 0.2/2 + 0.2/3 + 0.5/4 + 0/5 + 0.7/6 + 0.5/8 +
1/9 + 0/10 + 0.5/12 + 0/15 + 0/16 + 0/20

(b) (ii) DSW algorithm, I+0 = [0, 20], I+0.5 = [3.2, 14], I+1 = [9, 9]
12.9. (a) From the DSW algorithm for I0+, I0.5, I0.8: y = 0.8/−3.17157+0.5/0.8284+0/

√
8

12.12. (b) 0.1/−9 + 0.1/−6 + 0.3/−4 + 0.1/−3 + 0.3/−2 + 0.7/−1 + 1/0 +
0.7/1 + 0.3/2 + 0.1/3 + 0.3/4 + 0.1/6 + 0.1/9

12.14. P∼ = 0.5/0 + 0.3/10 + 0.9/20 + 1/30 + 0.8/40 + 0.4/50 + 0.4/80 + 0.1/90 +
0.4/120 + 0.4/160 + 0.1/180 + 0.4/200 + 0.1/270 + 0.1/360 + 0.1/450

CHAPTER 13

13.1. Cycle 1, x1(0) = 80◦, x2(0) = 85◦, u(0) = 275.20; cycle 2, x1(1) = 200.2, x2(1) =
−5, u(1) = 303.10; cycle 3, x1(2) = −102.3, x2(2) = 205.2, u(2) = 292.55; cycle
4, x1(3) 702.2, x2(3) = −307.5, u(3) = 303.33

13.4. Cycle 1, t∗ = −0.67 N m, θ(1) = 0.5, θ̇(1) = −3.97;
Cycle 2, t∗ = 0.0 N m, θ(2) = −0.19, θ̇(2) = −12.40;
Cycle 3, t∗ = 1.2 N m, θ(3) = −0.5, θ̇(3) = 2.46;
Cycle 4, t∗ = 1.4056 N m, θ(4) = −0.19, θ̇(1) = 3.63

13.7. Cycle 1, α∗(0) = 47 mg/cm3 s
W1(1) = W1(0) + W2(0) = 800 − 280 = 520 mg/cm3

W2(1) = W2(0) + α(0) = −280 − 47 = −327 mg/cm3 cm
Cycle 2, α ∗ (1) = 48 mg/cm3 s
W1(2) = W1(1) + W2(1) = 193 mg/cm3

W2(1) = W2(0) + α(0) = −375 mg/cm3 cm
13.10. (a) The new valve position is approximately 0.6. This is an example of using a

‘‘dead band’’ in a control problem.
(b) The new valve position should be adjusted to approximately 0.8.
(c) The new valve position is adjusted to approximately 0.174.

CHAPTER 14

14.2. The moment, M, at an arbitrary distance x from the left support, −Py = M = EI y ′′,
so y ′′ + P/EI y = 0. A possible equation for y in terms of x is y = C1 sin(kx) +
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C2 cos(kx). Consider bounding conditions for C1 and C2; we have the following:
x = 0, y = 0, so C2 = 0, and x = 1, y = 0, so C1 sin(kl) = 0, thus C1 is not zero and
in order for C1 sin(kL) = 0, kL = nπ , where n = 1, 2, . . . , m. That is, k2 = P/EI =
(πn)2/L2 which gives P = (n2π2EI)/L2. Since n is constrained from 0 to 2, P (2) =
(4π2EI)/L2 and P (0) = 0; thus µG∼

(n) = (P (n) − P (0))/(P (2) − P (0)) = n2/4.
To find the optimal solution n∗, µc∼

(n) = 1 − n, 1 ≤ n ≤ 2 and µc∼
(n) = 0, n > 1;

µD∼
(n) = n2/4, 0 ≤ n ≤ n∗ and µD∼

(n) = 1 − n, n > n∗. n2/4 = 1 − n, n∗ = 0.8284

and results in a load of P (n∗) = ((0.8284)2π2EI)/L2.
14.5. amax = 1, amin = 0
14.10. (P0, C0) = (0, 0) and (P1, C1) = (5000, 0)

14.12. [0, 1, 1, 1, -1]

CHAPTER 15

15.1.

Focal elements m1 m2 bel1 bel2 pl1 pl2

F 0.3 0.2 0.3 0.2 0.4 0.4
NF 0.6 0.6 0.6 0.6 0.7 0.8
F ∪ NF 0.1 0.2 1.0 1.0 1.0 1.0

15.4.

Focal elements m1 bel1 m2 bel2 m12 bel12

A1 0.1 0.1 0 0 0.09 0.09
A2 0.05 0.05 0.05 0.05 0.09 0.09
A3 0.05 0.05 0.1 0.1 0.14 0.14
A1 ∪ A2 0.05 0.2 0.05 0.1 0.07 0.25
A1 ∪ A3 0.05 0.2 0.15 0.25 0.13 0.36
A2 ∪ A3 1 0.2 0.05 0.2 0.10 0.33
A1 ∪ A2 ∪ A3 0.6 1 0.6 1.0 0.38 1.0

15.7. m = (0.2, 0, 0.3, 0, 0, 0.5); r = (1, 0.8, 0.8, 0.5, 0.5, 0.5)

15.10. Assuming a uniform weight of 0.25 on the original data intervals, a typical set of
intervals and weights might be: [0.008, 0.2], 0.173228; [0.03, 0.2], 0.160663; [0.03,
0.15], 0.175523; [0.03, 0.1], 0.211611; [0.03, 0.06], 0.278975.

15.12. Assuming a uniform weight of 0.20 on the original data intervals, a typical set of
intervals and weights might be: [0.75, 2.25], 0.573; [0.75, 1.5], 0.143; [0.75, 1.25],
0.143; [1.0, 1.25], 0.143.

(a) The possibility that the interest rates will be greater than 2% is 0.573.
(b) Generation of consonant intervals depends on the characteristics of the original

data intervals and whether the expert desires a pessimistic or an optimistic
estimate. In this case, the expert is assumed to lean more toward the pessimistic
attitude and hence a more conservative estimate is generated. Therefore, intervals
with lower values are assigned more weight.

(c) Degree of confirmation = −0.427
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Absolute error, 294, 303
Accumulator array, rule-reduction, 283–284,

293, 302
Additively separable, function, 282, 284, 295,

302
Additivity axiom, 611
Adjacency matrix, cognitive mapping, 546
Aggregation operators, averaging, 43

ordered weighted averaging, 43
Algebra, abstract, 6, 264

linear, 6, 264, 275–276
mapping, 264

α-cut (see λ-cut)
Ambiguity, 13, 143, 245
Antecedents, 7, 123

disjunctive, 256
fuzzy, 139

Approaching degree, maximum, 398, 402
similarity, 397
weighted, 401

Approximate reasoning, 162, 249
Arithmetic, fuzzy, 445
Atomic terms, natural language, 143–144
Attribute data, statistical process control, 504

fuzzy, 513
traditional, 510

Axiom of contradiction, 30, 135

Ball-box analogy, evidence theory, 588–589
Basic evidence assignment, definition of, 577

joint, 579,
normal, 579

Basic uncertainty logic, 611

Batch least squares, rule generation, 212,
215–216

Bayesian, decision making, 310, 326, 349
inference, 4
updating, problems with, 310

Belief, monotone measures, 574–578, 586
Binomial distribution, statistical process control,

512
Body of evidence, 579

consonant, 583, 590–591
Boundary, crisp sets 25

fuzzy sets 25, 91–92

Cardinality, classification, 372, 374, 381
consensus relations, 319
possibility distributions, 595
sets, 26, 36

Cartesian product, 125, 253
classical sets, 42, 53
fuzzy sets, 59

Certainty (also necessity), monotone measures,
574, 587, 598

average 317
Chance, 13

games of, 4
Characteristic function, 32, 372
Chi-square distribution, statistical process

control, 504, 519
Classical sets, operations, 27–28

properties, 28–31
Classification, definition, 362–363

metric, 387–388
fuzzy, 379
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Cluster centers, 229–231
Clustering, neural networks, 187–188

method, rule generation, 212, 215, 228
c-means, clustering, 370

fuzzy, 363, 379–387
hard 363, 371–379

Cognitive mapping, conventional, 544
fuzzy, 545

Comb’s method of rapid inference, 276,
282–284, 292, 301

Combinatorial explosion, 2, 275, 282
Complement, classical, 27

standard fuzzy operation, 35
Complex system, 2, 7
Complexity, 245–247, 264, 274
Composite terms, natural language, 143
Composition, 251

chain strength analogy, 58
fuzzy, 60, 138
max-min, 57
max-product, 57
other methods, 74–75

Computational power, 274–275
Concentration, linguistic hedges, 145–146
Conditioning, column vectors, 281
Conjunction, axiomatic, 611
Consensus, degree of, 317

distance to, 319–320
types of, 318

Consequent, 7, 123, 216
fuzzy, 139

Consistency, condition, 601
principle, 592

Consonant measure, possibility distribution, 591
Continuous valued logic, 4
Contradiction, proof by, 131

logic, 121
Contrast enhancement, image recognition,

413–415
Control limits, statistical process control,

505–507, 517
Control surface, 479, 484–485
Control systems, graphical simulation, 489–492

industrial process, 481
multi-input, multi-output (MIMO), 492,

500–504
single-input, single-output (SISO), 492

Control, adaptive, 518
conventional methods, 479, 494–496
disturbance-rejection, 478, 493, 500, 502, 518
economic examples, 477
feedback, 477–78, 492
nonadaptive, 480
regulatory, 477–478
set-point tracking, 478, 493, 496, 500–503,

518
stability and optimality, 480

Convex hull, fuzzy set, 279–281
Convexity, membership functions, 91
Core, membership function, 91
Covariance matrix, 222
Credibility, 246

uncertainty, 274–275
Crossover, genetic algorithms, 193–194, 198

Decision, optimal 321–322
Deduction, 246

fuzzy rule-based, 148
shallow knowledge, 149

Deductive, logic, 9–10
reasoning, 74, 126

Defuzzification, 91, 258–260
Center, of largest area, 108

of sums, 107
-average, 215, 229

centroid, 283, 510
correlation-minimum, 503
first (or last) maxima, 108
fuzzy relations, 98
maximum membership principle, 100,

389–390, 484
mean-max membership, 102
measure criteria, 113
nearest neighbor classifier, 389–390
properties, 97
scalars, 99
weighted average, 101, 276

λ-cut sets, 96, 98–99
Degree of, attainment, 233

confirmation, possibility distributions,
598–599

Delta functions, 217, 221
DeMorgan’s principles, 30–32, 36, 124

relations, 57, 59
Dempster’s rule, evidence theory, 579
Difference, classical, 27, 124
Dilations, linguistic hedges, 145–146
Disjunction, axiomatic, 611
Dissonance, evidence theory, 583
Distance measure, axiomatic, 612
Doubly-stochastic matrix, 279, 288, 290, 300
Dual problem, linear regression, 566

El Farol problem, 9–10
Entropy minimization, inductive reasoning, 200,

202
Equality intervals, system identification, 550
Equivalence, relations, graphical analog, 70

properties of, 66, 69
classification, 363–369

axiomatic, 612
logical, 128–129

Error, surface, 224
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Euclidean distance, 371
norm, 373, 384

Evidence theory, 4, 578
Excluded middle axiom, 36, 134–135, 142, 301,

380
applications of, 602
axiomatic basis, 610, 613
counterexamples, 163
evidence theory, 575
principle of, 163
probability measure, 582
relations, 57, 59

Exclusive-nor, 129–130
Exclusive-or, 27, 129–130
Extension principle, 75, 162, 445, 515

definition of, 448

Falsity set, 121
Feature analysis, pattern recognition, 393
Fitness-function, genetic algorithms, 194
Forgetting factor, automated methods of rule

generation, 222
Frobenius-norm, error analysis, 294–303
Fuzzification, 94
Fuzziness, 13

average 317
Fuzzy, associative, mapping, 254–255, 264, 283

mapping, input-output, 446
matrices, conditioning, 277, 291
measure theory, 4, 573
number, definition, 93

triangular, 515
regression analysis, 556

relational equations, 250, 252
system identification, 550

relations, cardinality 59
operations and properties, 58–59

sets, convex, 98
noninteractive, 40–42
notation, 34
orthogonal, 334

system(s), 8, 121, 143, 148, 162, 275
model, 227, 243
transfer relation, 253
initial, 235

vectors, 44, 311
definition of, and complement, 395
product, inner and outer, 395–397
similarity, 397

weighting parameter, classification, 382

Generalized information theory, 602
Genetic algorithms, control, 518
Gradient method, rule generation, 212, 215, 223
Grammar, formal, 422, 424

language, 423

syntactic recognition, 421
syntax analysis, 421

Graphical inference, 258
Grid-point function sampling, 281

Height, membership functions, 93
Hidden layers, neural networks, 184

Identity-norm, error analysis, 294–303
IF-THEN rules, 249

control, 480
Ignorance, 5, 13, 246–247

monotone measures, 574
total, 586, 601

Implication, axiomatic, 612
Brouwerian, 142
classical, 124, 141, 322
correlation-product, 152
Lukasiewicz, 142
Mamdani, 151
other techniques, 141–142, 215

Imprecision, 2, 13
Inclusive-or, 282
Independence, axiom of, 310, 349
Indeterminacy, cognitive mapping, 545
Induction, 10, 246

deep knowledge, 149
laws of, 201–202

Inclusive-or, logical connectives, 122
Inequality intervals, system identification, 550
Inference, deductive, 132, 151

defuzzification, 152–153
centroidal, 154
weighted average, 156–157

fuzzy, 140
graphical methods, 151–161
implication, max-min, 151

max-product, 154
max-min, cognitive mapping, 547
Sugeno, 155–156, 215
Tsukamoto, 156–158

Information, distinction between fuzzy and
chance, 16

fuzzy, 333
imperfect, 329
perfect and imperfect, 329
uncertainty in, 5, 12
value of, decision making, 329, 348–349

Input-output data, 216
Intensification, linguistic hedges, 145–146

image recognition, 414–415
Interpolative reasoning, 249

control, 479
Intersection, classical, 27

standard fuzzy operation, 35
Intersection-rule-configuration (IRC), 275, 282,

285, 295, 302
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Intervals, types of, possibility distributions,
592–598

Intuitionism, logic, 162
Isomorphism, fuzzy systems, 7
Iterative optimization, classification, 374, 382

Knowledge, conscious, 242–243, 250
information, 246–248
subconscious, 242, 250

λ-cuts, 365–369, 515–517
optimization, 539

Language, fuzzy (see also grammar)
Laplace transforms, control, 494–496
Learning, shallow, 246

neural networks, 185
from examples, rule generation, 212, 214,

231, 239–240
Least squares, 219, 221, 224

statistical process control, 518–519
Length, possibility distribution, 584
Likelihood values, decision making, 328
Linear regression, conventional 555

fuzzy, 556, 566
Linguistic, connectives, 144, 254

hedges, 145–146
precedence, 147

natural language, 144
rule, 125, 264–265

Logic, Aristotelian, 1
classical (binary, or two-valued), 120–121,

134
constructive-or, 163
fuzzy, 134
linear, 163
paradox, 134–135
Sorites, 134

Logical, connectives, 122–123, 135–136
negation, 122–123, 135
proofs, 127–128, 130–132
propositions, 129

empty set, 135
-or, 27, 122
universal set, 135

Logics, multivalued, 162

Mamdani inference, 509, 514
Mapping, function-theoretic, 32

set-theoretic, 32
Matrix norm, classification, 383
Maximal fuzziness, decision making, 317–318
Maximum, fuzziness, 19

membership, criterion of, 394
operator, 33, 42

Measure, decision, 321–322

Measurement data, statistical process control,
504

fuzzy, 507–510
traditional, 504–507

Membership function, definition of, 15–16
generation, genetic algorithms, 197
inductive reasoning, 202
crossover points, 93
generalized, 94
interval-valued, 94
notation, 34
ordinary, 94
properties of, 15, 91
type-2, 94
dead band, 504
genetic algorithms, 193–200
inductive reasoning, 200–206
inference, 180–181
intuition, 179–180
neural networks, 182–193
non-negative, 278, 288, 298–290, 298
ordering, 181–183
orthogonal, 514
overlapping, 278, 288–289, 297–299
prototypical value, 277, 279, 288, 298, 300
regression analysis, 556, 561
smoothness, 156
triangular, 214, 231, 276, 286, 296

Membership, classical (binary) sets, 13–14
fuzzy sets, 14
unshared, 387–388

MIN and MAX, extended operations, 315
Minimum, operator, 33, 42
Model-free methods, 246
Models, abstraction 8–9
Modified learning from examples, rule

generation, 212, 215, 234
Modus ponens, deduction, 126, 251
Modus tollens, deduction, 127
Monotone measures, 4, 573

fuzzy sets, difference between, 573, 575
Multifeature, pattern recognition, 400
Multinomial distribution, statistical process

control, 512, 519
Multiobjective, decision making, 320
Multivalued logic, 4
Mutation, genetic algorithms, 193–194

rate of, 194
Mutual exclusivity, 122

Natural language, 13, 90, 143
interpretations, cognitive, 143–144
linguistic variable, 143, 148, 162

Nearest center, pattern recognition, 401
Nearest neighbor, 228, 236

pattern recognition, 400
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Necessity, monotone measures, 583–584
Nested sets, evidence theory, 583
Nesting diagram, possibility distribution, 585
Neural networks, 246

back-propagation, 185
inputs and outputs, 183
threshold element, 183–184
training, 188, 192
weights, 183

Newton’s second law, 246, 248
Newtonian mechanics, 3
Noninteractive fuzzy sets, 12, 253–254, 265,

401
Nonlinear, simulation, 251, 265

systems, 249, 254
Nonrandom errors, 11
Nonspecificity, 13

possibility distribution, 593–594
Nontransitive ranking, 315–316
Normal, membership function, 91
Null set, 26

evidence theory, 575
Null solutions, system identification, 552,

554–555

Objective function, fuzzy c-means, 382
hard c-means, 373
linear regression, 558–559, 565
optimization, 539

One-norm, error analysis, 294–303
Optimist’s dilemma, 8
Optimization, fuzzy, 537

one-dimensional, 538
Ordering, crisp 312

fuzzy 312
ordinal, 321

Orthogonal matrices, 277, 280, 291

Pairwise function, decision making, 315–316
Paradigm shift, fuzzy control, 476, 518
Partitioning, input and output, 253–258

classification, 371–372
p-chart, statistical process control, 510–513

fuzzy, statistical process control, 513–516
Perfect evidence, possibility distribution, 586,

592
Plausibility, monotone measures, 574–578, 586
Point set, classification, 371
Possibility, theory, 4

distribution, as a fuzzy set, 590–592
decision making, 349
definition of, 584

monotone measures, 574, 583
Power set, 19, 33, 575

fuzzy, 36
Precision, 1, 245

Preference, degree of, 319–320
importance, 322

Premise, 216
Principle of incompatibility, 245
Probability, posterior, 328

prior, 326
densify functions, 93, 577, 579
measure, belief as a lower bound, 586

evidence theory, 582
plausibility as an upper bound, 586

of a fuzzy event, 333
theory, 3, 10, 309

history of, 4
calculus of, 6
evidence theory, 590
monotone measures, 574

Proposition, compound, 122–123, 125
simple, 121
fuzzy logic, 135

Propositional calculus, 122, 138
Pseudo-goal, optimization, 529

Quantum mechanics, 248
Quotient set, classification, 364

Random, errors and processes, 10–11
Rational man, concept of, 162
R-chart, statistical process control, 506
Reasoning, approximate, 137–141

classical, 127
deep and shallow, 8
imprecise, 120
inductive, 8
inverse, 140

Recursive least squares, rule generation, 212,
215, 220, 240–242

Redistribution factor, possibility distributions,
595

Reflexivity, tolerance relations, 66
Regression vector, 221, 218
Relation(s), binary, 53–54

complete, 54, 56, 59
constrained, 55
equivalence, 66, 69
function-theoretic operations, 56
fuzzy 365
fuzzy preference, 318
identity, 55
matrix, 54
null, 56, 59
properties, 56–57
reciprocal, 182, 317
similarity, 52, 66–67
strength of, 54, 70
tolerance, 67, 68, 365
unconstrained, 54
universal, 55
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Relative error, 294, 303
Relativity, function, 315

values, matrix of, 316 (also comparison
matrix)

Reproduction, genetic algorithms, 193–194, 197
Risk averse, 309
Robust systems, 8
Rule generation, methods, 212
Rule-base, reduction, 216, 221, 224, 237, 249,

254, 275
error analysis, 293–295, 303

conjunctive, 282
disjunctive, 282
large and robust, 275

Rule(s), aggregation, conjunctive, 150, 252
disjunctive, 150–152, 253
Tsukamoto, 157

fuzzy IF-THEN, 136, 138, 148
scalability, 276
single-input, single-output (SISO), 282–283
statistical process control, 508

Sagittal diagram, 54–55, 57, 88
Set membership, 13
Sets, as points, 17–18

classical 24
Shoulder, membership function, 156
Sigmoid function, neural networks, 184–185,

189–190
Similarity, classification, 391

relations, cosine amplitude, 72
max-min, 74

Simplex method, linear regression, 562–565
Single-sample identification, pattern

recognition, 394
Singleton, crisp, 166

fuzzy, 80
examples, 584, 586, 589, 593, 595, 601–602

Singular value decomposition, 275–281, 297
Singular values, 276–281, 286–287, 292, 297
Smoothing, image recognition, 413–416,

419–420
Standard fuzzy, intersection, 594

operations, 42, 135, 144
Stationary processes, random error, 10–11
Statistical, mechanics, 3
Statistical process control (SPC), 504
Statistics, 11
Strong-truth functionality, 603, 610, 613
Subjective probabilities, 4
Sugeno output, 276
Support, membership function, 91

Symmetry, tolerance relation, 66
Synthetic evaluation, fuzzy 310–312
System identification, 550

Tautologies, 126
Taylor’s approximation, control 495
t-conorm, 42, 276
Tie-breaking, multiobjective decisions, 323
t-norm, 42, 276

product, 215
possibility theory, 594

Transitivity, equivalence relations, 67
Truth, set, 121

table, 127–128, 130, 132
value, 121, 124

axiomatic, 611
fuzzy, 135

Uncertainty, 246–247
general, 1
linguistic, 11

Union rule configuration (URC), 283–284, 302
Union rule matrix (URM), 283–284, 302
Union, classical, 27

standard fuzzy operation, 35
Universal approximator, 264

control 480
fuzzy systems, 6–7

Universe of discourse, 24–25, 121, 255, 611
Continuous and discrete, 26
monotone measures, 574

Utility, matrix, 327
maximum expected 310, 327, 330
rational theory, 309
values 326

Vagueness, 3, 5, 13, 143
Value set, 33
Venn diagrams, 27–31, 124–126, 129–130

extended, 36–37

Weighted recursive least squares, 222
Weighting factor, modified learning from

examples, 235–236
Whole set, 26

x-bar chart, statistical process control, 505
x-bar-R chart, fuzzy, statistical process control,

511
statistical process control, 507, 510, 518
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